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On the Z2-cohomology Cup-Length of Some Real Flag Manifolds
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Abstract. In this paper we discuss two different techniques for calculating theZ2-cohomology cup-length
– one based on fiberings and a result of Horanska and Korbaš, and the other based on Gröbner bases. We
use these techniques to obtainZ2-cohomology cup-length or bounds for theZ2-cohomology cup-length of
some of the real flag manifolds F(1, . . . , 1, 2 . . . , 2,n).

1. Introduction

The Z2-cohomology cup-length of a path connected space X, denoted by cup(X), is the supremum of
all positive integers m such that there exist classes a1, a2, . . . , am ∈ H̃∗(X;Z2) with nonzero cup product,
i.e., a1a2 · · · am , 0. The problem of finding the number cup(M) is extensively studied in the literature,
particularly since it is known that cup(M) provides a lower bound for the Lyusternik-Shnirel’man category
of M. Recall that the Lyusternik-Shnirel’man category of M, denoted by cat(M), is the minimum number
of open subsets of M covering M, each of which is contractible in M. Specifically, one has 1 + dim(M) ≥
cat(M) ≥ 1 + cup(M). Since we work only with cohomologies with Z2-coefficients, in the remainder of this
paper we will write ”cup-length” instead of ”Z2-cohomology cup-length”.

In this paper we are concerned with obtaining cup(M), when M is a real flag manifold of a specified type.
For positive integers n1, . . . ,nr, r ≥ 2, the real flag manifold F(n1, . . . ,nr) is the set of flags of type (n1, . . . ,nr)
(r–tuples (V1, . . . ,Vr) of mutually orthogonal subspaces in Rm, where m = n1 + . . . + nr, dim(Vi) = ni,
i = 1, r) with the manifold structure coming from the identification F(n1, . . . ,nr) = O(m)/O(n1) × · · · ×O(nr).
This identification makes F(n1, . . . ,nr) into a closed manifold of dimension δ(F(n1, . . . ,nr)) =

∑
1≤i< j≤r nin j.

For a general real flag manifold the cup-length is not known; it is not known even in the special case
of Grassmann manifolds (that is the real flag manifolds F(k,n)). In [4] and [12] the cup-length of some
Grassmann manifolds is obtained, namely F(2,n), F(3,n) and F(4,n); in [6] and [7] some bounds for the
cup-length of oriented Grassmann manifolds are obtained; in [9] the cup-length of some of the real flag
manifolds F(1... j, 2...d,n) is obtained (we are using the notation from [9]: F(1... j, 2...d,n) stands for the flag
manifold F(1, . . . , 1, 2, . . . , 2,n), with j ones and d twos).

In this paper we continue research in this area. We use two different techniques in order to obtain our
results. The first one is the method of fiberings, which is presented in Section 3. The second one is the
method of Gröbner bases, which is presented in Sections 4 and 5 (in Section 4 we restate some results from
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[11] on Gröbner bases for the real flag manifolds F(1... j, 2...d,n), and in Section 5 we use these results to obtain
the cup-length of some manifolds of this type). Finally, in Section 6 we give a brief comparison of these two
techniques.

2. The Cup-Length of the Real Flag Manifolds F(1... j, 2...d, n)

Throughout this paperN0 =N ∪ {0}. Also, we assume that j, d ∈N0, and n ≥ min{2, d + 1}.
As mentioned in the Introduction, an obvious upper bound for the cup-length of a manifold is its

dimension. In our case we have

cup(F(1... j, 2...d,n)) ≤ nj + 2nd +

(
j
2

)
+ 4

(
d
2

)
+ 2 jd.

Berstein detected all Grassmann manifolds for which the cup-length is equal to the dimension.

Theorem 2.1 ([2]). One has: cup(F(k,n− k)) = δ(F(k,n− k)) if and only if k = 1, or k = 2 and n = 2t + 1, for t ∈N.

Finding all flag manifolds for which the cup-length is equal to the dimension is still an open problem. In
[9] the authors obtained an infinite family of the real flag manifolds F(1... j, 2...d,n) for which the cup-length
is equal to the dimension, and asked if these are the only manifolds of this type for which this is true ([9,
Remark (a)]).

In [9] (and more generally [6]) the authors offered an algorithm for computing the cup-length of flag
manifolds. Although this algorithm is very hard to apply for a general flag manifold, it gives an idea of
how one can find the cup-length of some specific flag manifold. The starting point of this algorithm is
connected with the following result.

Lemma 2.2 ([9]). For a flag manifold F(n1,n2, . . . ,nq) of dimension δ, let ht(i), i = 1, q − 1, be the heights of the first
Stiefel-Whitney classes of the canonical vector bundles, and S = ht(1) + · · · + ht(q − 1). If S ≤ δ, then

cup(F(n1,n2, . . . ,nq)) ≤ S +
⌊
δ − S

2

⌋
.

Let β(F(n1,n2, . . . ,nq)) denote the upper bound from this lemma.
As suggested by the previous lemma, the heights of the first Stiefel-Whitney classes are often needed

for calculating the cup-length. For (all) flag manifolds these are known due to Korbaš and Lörinc (see [9]).
The following proposition is a special case of their result.

Proposition 2.3 ([9]). For the flag manifold F(1... j, 2...d,n) we have ht(xi) = n + j + 2d − 1, i = 1, j. If d ≥ 1, and
s ≥ 3 is the unique integer such that 2s−1 < n + j + 2d ≤ 2s, then ht(yi,1) = 2s

− 2, i = 1, d.

Note that by this proposition, if β(F(1... j, 2...d,n)) is well-defined, then we have

β(F(1... j, 2...d,n)) = j(n + j + 2d − 1) + d(2s
− 2) +

2nd + 4
(d

2
)
−

( j
2

)
− d(2s

− 2)

2


= j(n + j + 2d − 1) + d(n + d + 2s−1

− 2) +

⌊
−

j( j − 1)
4

⌋
.

3. Application of Fiberings for Cup-Length Calculations

In this section we use the method of fiberings to obtain the cup-length of some of the real flag manifolds
F(1... j, 2...d,n). The main idea of this method is to build an appropriate sequence of fiber bundles, and then
use the following result by Horanska and Korbaš ([5]).
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Theorem 3.1 ([5]). Let p : E → B be a smooth fiber bundle with connected base B and connected fiber F. Suppose
that the fiber inclusion induces an epimorphism in Z2-cohomology. Then cup(E) ≥ cup(F) + cup(B).

To put this result into context, let us observe the following fiber bundle (see [9]), with total space
supposed to satisfy the condition S ≤ δ (from Lemma 2.2),

F(nt+1, . . . ,nq) F(n1, . . . ,nq)

F(n1, . . . ,nt,nt+1 + · · · + nq).

Since the inclusion i : F(nt+1, . . . ,nq) → F(n1, . . . ,nq) induces an epimorphism in Z2-cohomology (see
[9]), by Theorem 3.1 if

(1) cup(F(nt+1, . . . ,nq)) ≥ d1 and

(2) cup(F(n1, . . . ,nt,nt+1 + · · · + nq)) ≥ d2,

then we have

min{δ(F(n1, . . . ,nq)), β(F(n1, . . . ,nq))} ≥ cup(F(n1, . . . ,nq)) ≥ d1 + d2. (1)

This will be used throughout this section.
Note that one also has

δ(F(nt+1, . . . ,nq)) + δ(F(n1, . . . ,nt,nt+1 + · · · + nq)) = δ(F(n1, . . . ,nq)). (2)

The cup-length of the real flag manifolds F(1... j,n) is known due to Korbaš and Lörinc (their proof is
based on the method of fiberings).

Proposition 3.2 ([9]). The cup length of F(1... j,n) is
( j

2

)
+ nj.

As mentioned in the Introduction, the cup-length of Grassmann manifold F(2,n) is known due to Hiller.

Proposition 3.3 ([4]). Let 2s−1 < n + 2 ≤ 2s. Then cup(F(2,n)) = n + 2s−1
− 1.

Note that β(F(2,n)) = 2s
− 2 +

⌊2n − 2s + 2
2

⌋
= n + 2s−1

− 1, i.e., cup(F(2,n)) is equal to the upper bound

obtained in Lemma 2.2.
For the remainder of the paper let s ∈N be the unique integer such that 2s−1 < n + j + 2d ≤ 2s. Moreover,

for 1 ≤ m ≤ d, let s(m) be the unique positive integer such that 2s(m)−1 < n + j + 2m ≤ 2s(m).
First, we investigate the case j = 0, and extend the result from Proposition 3.3.

Proposition 3.4. If δ is the dimension of F(2...d,n), then cup(F(2...d,n)) ≥ δ−
d∑

t=1

(n + 2t− 1− 2s(t)−1). In particular,

if 2s−1 < n + 2 ≤ n + 2d ≤ 2s, then cup(F(2...d,n)) = d(n + d + 2s−1
− 2).

Proof. We proceed by induction on d. For d = 1 the proof follows from Proposition 3.3. So, let us assume
that the proposition holds for d − 1 ≥ 1 and prove it for d.

Let us observe the following fiber bundle

F(2...d−1,n) F(2...d,n)

F(2,n + 2(d − 1)).
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By Proposition 3.3 we have cup(F(2,n + 2(d − 1))) = n + 2d − 3 + 2s−1, and by the inductive hypothesis

cup(F(2...d−1,n)) ≥ δ(F(2...d−1,n))−
d−1∑
t=1

(n + 2t− 1− 2s(t)−1) = δ− n− 2d + 3− 2s−1
−

d∑
t=1

(n + 2t− 1− 2s(t)−1).

So, by Theorem 3.1,

cup(F(2...d,n)) ≥ cup(F(2...d−1,n)) + cup(F(2,n + 2(d − 1)) = δ −
d∑

t=1

(n + 2t − 1 − 2s(t)−1),

which completes the proof of the first part of the proposition.
Now, let 2s−1 < n + 2 ≤ n + 2d ≤ 2s. Then s(i) = s, for i = 1, d, and δ = 2nd + 2d(d− 1), so, by the inequality

obtained in the first part of the proof, we have

cup(F(2...d,n)) ≥ d(n + d + 2s−1
− 2).

On the other hand,

β(F(2...d,n)) = (2s
− 2)d +

⌊
2d(d − 1) + 2dn − (2s

− 2)d
2

⌋
= d(n + d + 2s−1

− 2),

and therefore, by Lemma 2.2, cup(F(2...d,n)) = d(n + d + 2s−1
− 2).

In the following proposition we extend the previous result.

Proposition 3.5. If δ is the dimension of F(1... j, 2...d,n), then

cup(F(1... j, 2...d,n)) ≥ δ −
d∑

t=1

(n + j + 2t − 1 − 2s(t)−1).

Proof. Obviously, F(1... j, 2...d,n) is homeomorphic to F(2...d, 1... j,n). So, let us observe the following fiber
bundle

F(1... j,n) F(2...d, 1... j,n)

F(2...d,n + j).

By Proposition 3.2 we have cup(F(1... j,n)) = δ(F(1... j,n)), and by Proposition 3.4

cup(F(2...d,n + j)) ≥ δ(F(2...d,n + j)) −
d∑

t=1

(n + j + 2t − 1 − 2s(t)−1).

Therefore the desired inequality follows from Theorem 3.1.

In the following proposition we extend Proposition 3.2.4 from [9].

Proposition 3.6. i) If 2s−1 < n + 2, then cup(F(1, 2...d,n)) = n + d(n + d + 2s−1).

ii) If 2s−1 < n + 2, then cup(F(1, 1, 2...d,n)) = 2n + 1 + d(n + d + 2s−1 + 2).
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Proof. i) Let us observe the following fiber bundle

F(2...d,n) F(1, 2...d,n)

F(1,n + 2d).

By Proposition 3.2, we have cup(F(1,n+2d)) = n+2d, and by Proposition 3.4, cup(F(2...d,n)) = d(n+d+2s−1
−2).

On the other hand,

β(F(1, 2...d,n)) = n + 2d + d(2s
− 2) +

⌊
2nd + 2d(d − 1) − d(2s

− 2)
2

⌋
= n + d(n + d + 2s−1),

and therefore, by (1), we have cup(F(1, 2...d,n)) = n + d(n + d + 2s−1).

ii) Let us observe the following fiber bundle

F(2...d,n) F(1, 1, 2...d,n)

F(1, 1,n + 2d).

By Proposition 3.2, we have cup(F(1, 1,n + 2d)) = 2n + 4d + 1, and by Proposition 3.4, cup(F(2...d,n)) =
d(n + d + 2s−1

− 2). On the other hand,

β(F(1, 1, 2...d,n)) = 2(n + 2d + 1) + d(2s
− 2) +

⌊
2nd + 2d(d − 1) − d(2s

− 2) − 1
2

⌋
= 2n + 1 + d(n + d + 2s−1 + 2),

and therefore, by (1), we have cup(F(1, 2...d,n)) = 2n + 1 + d(n + d + 2s−1 + 2).

Remark 3.7. In Proposition 5.6 we will show that, if n + 2 = 2s−1, then cup(F(1, 2...d,n)) , n + d(n + d + 2s−1), i.e.,
the inequality 2s−1 < n + 2 in part i) of the previous proposition is, in a sense, the best possible.

The bound obtained in Proposition 3.5 is often not very tight. In the following proposition we improve
this bound for some of the real flag manifolds F(1... j, 2...d,n).

Proposition 3.8. If n + 1 ≤ 2s−1
≤ n + j + 1, then

cup(F(1... j, 2...d,n)) ≥ δ(F(1... j, 2...d,n)) − d(d − 1).

Proof. Let t = 2s−1
−n−1. Obviously, F(1... j, 2...d,n) is homeomorphic to F(1... j−t, 2...d, 1...t,n). So, let us observe
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the following sequence of fiber bundles

F(1...t,n) F(1... j−t, 2...d, 1...t,n)

F(2, 2s−1
− 1) F(1... j−t, 2...d, 2s−1

− 1)

F(2, 2s−1 + 1) F(1... j−t, 2...d−1, 2s−1 + 1)

...

F(2, 2s−1 + 2d − 3) F(1... j−t, 2, 2s−1 + 2d − 3)

F(1... j−t, 2s−1 + 2d − 1).

Going through these sequence of fiber bundles, and using Theorem 3.1, we obtain

cup(F(1... j, 2...d,n)) ≥ cup(F(1...t,n)) +

d−1∑
i=0

cup(F(2, 2s−1
− 1 + 2i)) + cup(F(1... j−t, 2s−1 + 2d − 1)). (3)

By Proposition 3.2, cup(F(1...t,n)) = δ(F(1...t,n)), and since 2s−1 < 2s−1 + 2i + 1 ≤ n + j + 2d ≤ 2s, for i = 0, d − 1,
by Proposition 3.3 we have cup(F(2, 2s−1

− 1 + 2i)) = δ(F(2, 2s−1
− 1 + 2i))− 2i, for i = 0, d − 1. Therefore, using

(2), the inequality (3) becomes

cup(F(1... j, 2...d,n)) ≥ δ(F(1...t,n)) +

d−1∑
i=0

δ(F(2, 2s−1
− 1 + 2i)) + δ(F(1... j−t, 2s−1 + 2d − 3)) − d(d − 1)

= δ(F(1... j, 2...d,n)) − d(d − 1),

which completes our proof.

Remark 3.9. Note that for d = 1 and n + 1 ≤ 2s−1
≤ n + j + 1 we have cup(F(1... j, 2,n)) = δ(F(1... j, 2,n)), which is

a special case of Theorem 3.1.3 from [9].

4. A Gröbner Basis for the Cohomology Algebra H∗(F(1... j, 2...d, n);Z2)

Let n ≥ 3. By Borel’s description (see [3]), the cohomology algebra H∗(F(1... j, 2...d,n);Z2) is isomorphic to
a quotient algebra Z2[x1, . . . , x j, y1,1, y1,2, . . . , yd,1, yd,2]/I j,d,n. Here xi ∈ H1(F(1... j, 2...d,n);Z2), i = 1, j, are the
Stiefel-Whitney classes of the canonical line bundles over F(1... j, 2...d,n); yi,l ∈ Hl(F(1... j, 2...d,n);Z2), i = 1, d,
l = 1, 2, are the Stiefel-Whitney classes of the canonical two-dimensional vector bundles over F(1... j, 2...d,n);
I j,d,n is the ideal of Z2[x1, . . . , x j, y1,1, y1,2, . . . , yd,1, yd,2] generated by the dual classes zn+1, zn+2,. . . , zn+ j+2d.
The following identity holds:

1 + z1 + z2 + · · · =

j∏
i=1

(1 + xi)−1
d∏

i=1

(1 + yi,1 + yi,2)−1.
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Although this description is simple enough, concrete calculations in the cohomology is often very
difficult to perform (see for example [8, 12]). In this paper we show that having a Gröbner basis for the
ideal I j,d,n can be very useful for cup-length calculations (see also [10]).

Recently, Gröbner bases for the ideals I j,d,n were obtained in [11]. In this section we restate those results
from [11] that are going to be used in this paper. We note that in order to understand and use these results
one does not need to be familiar with the theory of Gröbner bases.

By [11] the ideal I j,d,n is generated by G = G1 ∪ G2, where the sets G1 and G2 are defined as follows.
Let G1 = {1m | 1 ≤ m ≤ j}, where

1m =
∑

l+r1+···+rd=n+m

hl(xm, . . . , x j)y1,r1
· · · yd,rd

,

and the sum is taken over all (d+1)-tuples R = (l, r1, . . . , rd) of nonnegative integers, such that l+r1 + · · ·+rd =
n + m. Also, for 1 ≤ m ≤ j, hl(xm, . . . , x j) denotes the complete homogenous symmetric polynomial of degree
l in the variables xm, . . . , x j.

Let G2 = {1m,r | 1 ≤ m ≤ d, 0 ≤ r ≤ n + j + 2m − 1}, where

1m,r =
∑

rm+···+rd=n+ j+2m−1

1
(rm−1)
m,r ym+1,rm+1

· · · yd,rd
,

and the sum is taken over all (d − m + 1)-tuples (rm, . . . , rd) such that rm ≥ −1, ri ≥ 0, for i = m + 1, d, and
rm + · · · + rd = n + j + 2m − 1.

Here, for 1 ≤ m ≤ d, −2 ≤ N ≤ n + j + 2m − 2, and r ≥ 0:

• ym,r =
∑

a+2b=r

(
a + b

a

)
ya

m,1yb
m,2;

• 1
(N)
m,r =

∑
a+2b=N+1+r

(
a + b − r

a

)
ya

m,1yb
m,2;

where the sum is taken over all (a, b) ∈N2
0 that satisfy the appropriate equality.

In this paper we mostly use elements from the set G1 (elements from the set G2 are only used in
Proposition 5.6). Obviously, in H∗(F(1... j, 2...d,n);Z2) one has 1m = 0, for 1 ≤ m ≤ j, and 1m,r = 0, for
1 ≤ m ≤ d, 0 ≤ r ≤ n + j + 2m − 1.

In the remainder of this paper H∗(F(1... j, 2...d,n);Z2) will simply be denoted by H∗. Also, for a polynomial
p ∈ Z2[x1, . . . , x j, y1,1, y2,1, . . . , yd,1, yd,2], we will denote the class of p in H∗ by the same letter.

Proposition 4.1 ([11]). The set

B j,d,n =


j∏

i=1

xai
i

d∏
i=1

yb′i
i,1yb′′i

i,2 : ai ≤ n + i − 1, i = 1, j, b′i + b′′i ≤ n + j + 2i − 2, i = 1, d


is a vector space basis for H∗.

For a polynomial p ∈ Z2[x1, . . . , x j, y1,1, y1,2, . . . , yd,1, yd,2], and 1 ≤ i ≤ j, we denote p ≺ xi if p does not
contain the variables x1, . . . , xi. For a polynomial p ∈ Z2[x1, . . . , x j, y1,1, y1,2, . . . , yd,1, yd,2], and 1 ≤ i ≤ d, we
denote p ≺ yi,2 if p does not contain the variables x1, . . . , x j, y1,1, y1,2, . . . , yi,1, yi,2.

Proposition 4.2 ([11]). (1) Let 1 ≤ i ≤ j, 0 ≤ a1 < a2 < · · · < ak ≤ n + i − 1, and p1, p2, . . . , pk be polynomials such

that pl ≺ xi, for l = 1, k. Then
k∑

l=1

xal
i pl = 0 in H∗ if and only if pl = 0 in H∗, for l = 1, k.
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(2) Let 1 ≤ i ≤ d, (b1, c1), . . . , (bk, ck) be distinct pairs of nonnegative integers such that bl + cl ≤ n + j + 2l − 2,

for l = 1, k, and p1, . . . , pk be polynomials such that pl ≺ yi,2, for l = 1, k. Then
k∑

l=1

ybl
i,1ycl

i,2pl = 0 in H∗ if and only if

pl = 0 in H∗, for l = 1, k.

Proposition 4.3 ([11]). Let al ≥ 0, l = 1, j, and bl, cl ≥ 0, l = 1, d. If

i)
j∑

l=i+1

al +

d∑
l=1

(bl + 2cl) >
j∑

l=i+1

(n + l − 1) +

d∑
l=1

(2n + 2 j + 4l − 4), for some 0 ≤ i ≤ j, or

ii)
d∑

l=i+1

(bl + 2cl) >
d∑

l=i+1

(2n + 2 j + 4l − 4), for some 0 ≤ i ≤ d,

then
j∏

l=1

xal
l

d∏
l=1

ybl
l,1ycl

l,2 = 0 in H∗ .

Proposition 4.4 ([11]). Let 1 ≤ m ≤ d and M = n + j + 2m− 2. If p and q are polynomials in the variables ym,1 and
ym,2, such that the corresponding classes are equal in H∗(F(2,M);Z2), then p = q + r in H∗(F(1... j, 2...d,n);Z2), where
r is a polynomial in the variables ym,1, ym,2, . . . , yd,1, yd,2, such that each monomial of r has at least one of the variables
ym+1,1, ym+1,2, . . . , yd,1, yd,2 in positive degree.

5. Applications of Gröbner Bases for Cup-length Calculation

We start this section with the case d = 0, by reproving Proposition 3.2.

Proof of Proposition 3.2. Note that δ(F(1... j,n)) =
( j

2

)
+ nj, so cup(F(1... j,n)) ≤

( j
2

)
+ nj. Additionally, by

Proposition 4.1, xn
1xn+1

2 · · · xn+ j−1
j , 0 in H∗, and therefore the other inequality also holds. �

So, in the remainder of this section we may assume that d ≥ 1.
The following lemma is a direct consequence of Proposition 4.4 and Proposition 5 from [4].

Lemma 5.1. Let 1 ≤ m ≤ d. Then in H∗ the following hold

i) y2s(m)
−2

m,1 yn+ j+2m−1−2s(m)−1

m,2 = yn+ j+2m−2
m,2 + p;

ii) for l ≥ 2s(m)
− 1, yl

m,1 = q;

where p and q are polynomials in the variables ym,1, ym,2, . . . , yd,1, yd,2, such that each monomial of p and q is in B j,d,n
and the degree of at least one of the variables ym+1,1, ym+1,2, . . . , yd,1, yd,2 in each monomial is positive.

As a consequence of Lemma 5.1 we have the following lemma, which will be used throughout this
section.

Lemma 5.2. In H∗ the following identities hold for 1 ≤ i ≤ d.

i)
d∏

t=i

y2s(t)
−2

t,1 yn+ j+2t−1−2s(t)−1

t,2 =

d∏
t=i

yn+ j+2t−2
t,2 .

ii) If l ≥ 2s(i)
− 1, then yl

i,1

d∏
t=i+1

y2s(t)
−2

t,1 yn+ j+2t−1−2s(t)−1

t,2 = 0.
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Proof. i) We proceed by reverse induction on i. For i = d, the lemma follows from Lemma 5.1. So, let us
assume that it holds for i ≥ 2 and prove it for i − 1.

By Lemma 5.1, y2s(i−1)
−2

i−1,1 yn+ j+2i−3−2s(i−1)−1

i−1,2 = yn+ j+2i−4
i−1,2 + p, where p is a polynomial in the variables yi−1,1,

yi−1,2,. . . , yd,1, yd,2, such that each monomial of p is in B j,d,n and the degree of at least one of the variables yi,1,

yi,2,. . . , yd,1, yd,2 in each monomial is positive. Therefore, by Proposition 4.3, p
d∏

t=i

y2s(t)
−2

t,1 yn+ j+2t−1−2s(t)−1

t,2 = 0,

i.e., by inductive hypothesis,
d∏

t=i−1

y2s(t)
−2

t,1 yn+ j+2t−1−2s(t)−1

t,2 =

d∏
t=i−1

yn+ j+2t−2
t,2 .

ii) By Lemma 5.1, yl
i−1,1 = q, such that each monomial of q is in B j,d,n and the degree of at least

one of the variables yi,1, yi,2, . . . , yd,1, yd,2 in each monomial is positive. Therefore, by Proposition 4.3

q
d∏

t=i

y2s(t)−2

t,1 yn+ j+2t−1−2s(t)−1

t,2 = 0, which completes our proof.

As a consequence of the previous lemma, we obtain new proofs of Propositions 3.4 and 3.5.

Proof of Proposition 3.4. Since s(i) = s, for 1 ≤ i ≤ d, by Lemma 5.2,

cup(F(2...d,n)) ≥ (2s
− 2)d +

d∑
i=1

(n + 2i − 1 − 2s−1) = d(n + d + 2s−1
− 2).

On the other hand, since ht(yi,1) = 2s
− 2, for 1 ≤ i ≤ d, by Lemma 2.2,

cup(F(2...d,n)) ≤ (2s
− 2)d +

2nd + 4
(d

2
)
− (2s

− 2)d
2

 = d(n + d + 2s−1
− 2),

which completes our proof. �

Proof of Proposition 3.5. By Lemma 5.2 and Proposition 4.1 we have

j∏
t=1

xn+t−1
t

d∏
t=1

y2s(t)
−2

t,1 yn+ j+2t−1−2s(t)−1

t,2 , 0.

It is easy to check that the degree of this monomial is equal to the expression on the right hand side of the
desired inequality. �

For 1 ≤ k ≤ d, let ek =
∑

1≤i1<···<ik≤d

yi1,2 · · · yik ,2 be the k-th elementary symmetric polynomial in the variables

yi,2, for i = 1, d (e0 = 1 and ek = 0 for k > d), and hk the complete symmetric homogenous polynomial in
variables yi,2, for i = 1, d (h0 = 1). Note that mod 2, for k ≥ 0, the following identity holds

min{d,k}∑
i=0

eihk−i = 0. (4)

Lemma 5.3. Let 1 ≤ i ≤ j, m = b n+i
2 c, and α = n + i− 2m. In H∗ the following identities hold for 0 ≤ t ≤ m− 1 and

β ∈ {0, 1}

xn+i+2t+β
i = xβi

m−t∑
r=1

xn+i−2r
i

r−1∑
l=max{0,r+t−d}

hler+t−l + xα+β
i

t−1∑
r=0

x2r
i

min{r,d+r−t}∑
l=0

hm−let+l−r + p,

where p is a polynomial such that for each monomial of p at least one of the variables xi+1, . . . , x j, y1,1, y2,1, . . . , yd,1
has a positive degree.
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Proof. First, note that yi,k = yk/2
i,2 + pk, if k is even, and yi,k = pk, if k is odd, where pk is a polynomial in

the variables yi,1 and yi,2, such that yi,1 is in positive degree in each monomial of pk (see [11, Remark 1]).
Therefore, in H∗ the following holds

0 = 1i = xn+i
i +

b
n+i

2 c∑
r=1

xn+i−2r
i

∑
r1+···+rd=r

yr1
1,2 · · · y

rd
d,2 + p̃ = xn+i

i +

b
n+i

2 c∑
r=1

xn+i−2r
i hr + p̃, (5)

where p̃ is such that for each monomial of p̃ at least one of the variables xi+1, . . . , x j, y1,1, y2,1, . . . , yd,1 has a
positive degree. Multiplying the last identity by xβi , and using (4), we obtain the identity from the lemma
for t = 0.

We proceed by induction on t ≥ 1. By the inductive hypothesis, identities (4) and (5), and since et+1 = 0
for t ≥ d, in H∗ the following holds

xn+i+2t+2+β
i = xβi

m−t∑
r=1

xn+i−2r+2
i

r−1∑
l=max{0,r+t−d}

hler+t−l + xα+β
i

t−1∑
r=0

x2r+2
i

min{r,d+r−t}∑
l=0

hm−let+l−r + x2
i p

= xβi xn+i
i et+1 + xβi

m−t−1∑
r=1

xn+i−2r
i

r∑
l=max{0,r+1+t−d}

hler+1+t−l + xα+β
i

t∑
r=1

x2r
i

min{r−1,d+r−1−t}∑
l=0

hm−let+l−(r−1) + x2
i p

= xβi

m−t−1∑
r=1

xn+i−2r
i hret+1 + xβi

m∑
r=m−t

x2(m−r)+α
i hret+1 + xβi et+1p̃

+ xβi

m−t−1∑
r=1

xn+i−2r
i

r∑
l=max{0,r+1+t−d}

hler+1+t−l + xα+β
i

t∑
r=1

x2r
i

min{r−1,d+r−1−t}∑
l=0

hm−let+1+l−r + x2
i p

= xβi

m−t−1∑
r=1

xn+i−2r
i hret+1 + xβi

m−t−1∑
r=1

xn+i−2r
i

r∑
l=max{0,r+1+t−d}

hler+1+t−l

+ xβi

t∑
r=0

xα+2r
i hm−ret+1 + xα+β

i

t∑
r=1

x2r
i

min{r−1,d+r−1−t}∑
l=0

hm−let+1+l−r + xβi et+1p̃ + x2
i p

= xβi

m−t−1∑
r=1

xn+i−2r
i

r−1∑
l=max{0,r+1+t−d}

hler+1+t−l + xα+β
i

t∑
r=0

x2r
i

min{r,d+r−1−t}∑
l=0

hm−let+1+l−r + xβi et+1p̃ + x2
i p,

where p and p̃ are polynomials such that for each monomial of p and p̃ at least one of the variables
xi+1, . . . , x j, y1,1, y2,1, . . . , yd,1 has a positive degree. This also holds for x2

i p + xβi et+1p̃, so the proof is com-
pleted.

Remark 5.4. Note that for t ≥ d the first double sum in the equality for xn+i+2t+β
i is equal to zero, since it is empty.

Also, looking at the proof, it is easy to conclude that the lemma holds for every t ≥ 0. Since the purpose of this lemma
is to represent xn+i+2t+β in the additive basis B j,d,n, we omitted the case t ≥ m.

Proof of Proposition 3.6. i) Let m = b n+1
2 c and α = n + 1− 2m. Note that 2d ≤ 2s

− (n + 1) ≤ n + 1, and therefore
d − 1 ≤ m − 1. Now, by Lemma 5.3

xn+2d
1 =

m−d+1∑
r=1

xn+2−2r
1

r−1∑
l=max{0,r−1}

hler+d−1−l + xα1

d−2∑
r=0

x2r+1
1

min{r,r+1}∑
l=0

hm−led−1+l−r + p

=

m−d+1∑
r=1

xn+2−2r
1 hr−1ed + xαi

d−2∑
r=0

x2r+1
1

r∑
l=0

hm−led−1+l−r + p,
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where p is a polynomial such that for each monomial of p at least one of the variables y1,1, y2,1, . . . , yd,1 has a
positive degree. Note that 2(d−2)+1+α < n, so in the second sum the degree of x1 is less than n. Therefore,
by Proposition 2.3, Corollary 4.3 and Lemma 5.3,

xn+2d
1

d∏
i=1

y2s
−2

i,1 yn+2i−2s−1
−1

i,2 = xn
1ed

d∏
i=1

y2s
−2

i,1 yn+2i−2s−1
−1

i,2 = xn
1

d∏
i=1

y2s
−2

i,1 yn+2i−2s−1

i,2 ,

which is nonzero by Lemma 5.2. Note that this monomial is in the maximal dimension, and degrees of the
first Stiefel-Whitney classes of this monomial are equal to their heights. So, by Lemma 2.2, this monomial
gives the cup-length, i.e., cup(F(1, 2...d,n)) = n + d(n + d + 2s−1).

ii) Similarly as in the first part of the proof we will prove that the class

xn+2d
1 xn+1+2d

2

d∏
i=1

y2s
−2

i,1 yn+2i−1−2s−1

i,2 (6)

is nonzero. Let m′ = b n+1
2 c, m′′ = b n+2

2 c, α
′ = n + 1− 2m′ and α′′ = n + 1− 2m′′. Note that 2d ≤ 2s

− (n + 2) ≤ n,
i.e., d − 1 ≤ m′ − 1 ≤ m′′ − 1. Therefore, as in part i), we have

xn+2d
1 =

m′−d+1∑
r=1

xn+2−2r
1 hr−1ed + xα

′

i

d−2∑
r=0

x2r+1
1

r∑
l=0

hm−led−1+l−r + p′,

where p′ is a polynomial such that for each monomial of p′ at least one of the variables x2, y1,1, y2,1, . . . , yd,1
has a positive degree. Note that 2(d − 2) + 1 + α′ < n, so in the second sum the degree of x1 is less than n.
So, by Corollary 4.3 and Proposition 2.3, the classxα

′

i

d−2∑
r=0

x2r+1
1

r∑
l=0

hm−led−1+l−r + p′
 xn+1+2d

2

d∏
i=1

y2s
−2

i,1 yn+2i−1−2s−1

i,2

iz zero, and therefore the class in (6) is equal to

xn
1edxn+1+2d

2

d∏
i=1

y2s
−2

i,1 yn+2i−1−2s−1

i,2 = xn
1xn+1+2d

2

d∏
i=1

y2s
−2

i,1 yn+2i−2s−1

i,2 .

Similarly as in the previous part of the proof, this term is by Lemma 5.3, Proposition 2.3 and Corollary 4.3
equal to

xn
1xn+1

2 ed

d∏
i=1

y2s
−2

i,1 yn+2i−2s−1

i,2 = xn
1xn+1

2

d∏
i=1

y2s
−2

i,1 yn+2i+1−2s−1

i,2 ,

which is by Lemma 5.2 nonzero. Now, the total degree of the class in (6) is 2n + 1 + d(n + d + 2s−1 + 1), which
is equal to β(F(1, 1, 2...d,n)). �

Proof of Proposition 3.8. Let 1 = n + j + 1 − 2s−1. It is enough to prove that in H∗

j−1∏
i=1

xn+i−1
i

j∏
i= j−1+1

xn+i+2d−1
i

d∏
i=1

y2s
−2

i,1

d∏
i=1

y2i−2
i,2 , 0,

since the degree of this class is equal to δ(F(1... j, 2...d,n))− d(d− 1). This can be done similarly as in the proof
of the previous proposition. We omit the detailed proof since it is too technical. �

In the following proposition we present an infinite family of real flag manifolds F(1... j, 2...d,n) for which
β(F(1... j, 2...d,n)) is well-defined and the cup-length is smaller than min{δ, β}, where δ = δ(F(1... j, 2...d,n)) and
β = β(F(1... j, 2...d,n)).

It is easy to check that if
( j

2

)
≤ 2d(n + d − 2s−1), then β(F(1... j, 2...d,n)) is well-defined and one has β ≤ δ.
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Proposition 5.5. Let j, d,n ∈ N be such that
(

j
2

)
is even, 6 ≤

(
j
2

)
≤ 2d(n + d − 2s−1),

⌊
j
2

⌋
+ d ≤

⌊n + 1
2

⌋
, and let

δ = δ(F(1... j, 2...d,n)) and β = β(F(1... j, 2...d,n)). Then cup(F(1... j, 2...d,n)) < β ≤ δ.

Proof. Let
j∏

i=1

xai
i

d∏
i=1

ybi
i,1yci

i,2 be a nonzero monomial for which
j∑

i=1

ai +

d∑
i=1

(bi + ci) = D is maximum. Let us

assume that D ≥ β, i.e., by Lemma 2.2, that cup(F(1... j, 2...d,n)) = β. By Lemma 2.3, ai ≤ n + j + 2d− 1, i = 1, j,

bi ≤ 2s
− 2, i = 1, d, and by Corollary 4.3,

j∑
i=1

ai +

d∑
i=1

(bi + 2ci) ≤ δ. If S = j(n + j + 2d − 1) + d(2s
− 2), then by

adding the previously obtained inequalities we have

2S + 2
⌊
δ − S

2

⌋
= 2β = 2

j∑
i=1

ai + 2
d∑

i=1

(bi + ci) ≤ S + δ. (7)

Since δ and S are even, (7) is in fact equality, and therefore ai = n + j + 2d− 1, i = 1, j, and bi = 2s
− 2, i = 1, d.

So,

j∏
i=1

xn+ j+2d−1
i

d∏
i=1

y2s
−2

i,1 yci
i,2 , 0. (8)

Let m = b n+1
2 c, α = n + 1 − 2m, t = b

j
2 c + d − 1, β = j + 2d − 2 − 2t. Since t ≤ m − 1, we can use Lemma 5.3

to represent xn+ j+2d−1
1 . Note that the first double sum in this representation is zero (since the inner sum is

empty), and therefore the class in (8) is equal toxα+β
1

t−1∑
r=0

x2r
1

d+r−t∑
l=0

hm−led+l−r + p

 j∏
i=2

xn+ j+2d−1
i

d∏
i=2

y2s
−2

i,1 ybi
i,2,

where p is such that for each monomial of p at least one of the variables x2, . . . , x j, y1,1, y2,1, . . . , yd,1 has a
positive degree. Since, by Proposition 2.3,

p
j∏

i=2

xn+ j+2d−1
i

d∏
i=1

y2s
−2

i,1 ybi
i,2 = 0,

and, by Proposition 4.3,

x2r+α
1

j∏
i=1

xn+ j+2d−1
i

d∏
i=2

y2s
−2

i,1 ybi
i,2 = 0,

for r < n−1
2 , the class in (8) is equal to zero, which is a contradiction.

We conclude this section with the following proposition, which extends Example 3.3.3 from [9].

Proposition 5.6. For s ≥ 3 we have cup(F(1, 2, 2, 2s−1
− 2)) = δ(F(1, 2, 2, 2s−1

− 2)) − 1.

Proof. Let N = 2s−1
− 1. First, let us represent the class t = y2N

2,1 y2,2 in the additive basis B = B1,2,N−1 from
Proposition 4.1. Note that the dimension of t is 2N + 2. Therefore, by Proposition 4.2, and since the only
classes of B in the variables y2,1, y2,2 and dimension 2N+2 are yN+1

2,2 and y2
2,1yN

2,2, we have t = αyN+1
2,2 +βy2

2,1yN
2,2,
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for some α, β ∈ {0, 1}. Note that the height of y2,1 is equal to 2N, and therefore ty2,1 = 0 = αy2,1yN+1
2,2 +βy3

2,1yN
2,2.

At the same time,

0 = 12,N =
∑

a+2b=2N+3

ya
2,1yb

2,2 =

(
3
3

)
y3

2,1yN
2,2 +

(
2
1

)
y2,1yN+1

2,2 = y3
2,1yN

2,2,

and therefore, since y2,1yN
2,2 ∈ B, we have α = 0. Finally, since t , 0, we conclude that β = 1, i.e.,

y2N
2,1 y2,2 = y2

2,1yN
2,2. By symmetry y2N

1,1 y1,2 = y2
1,1yN

1,2.
Now, let us prove that cup(F(1, 2, 2,N − 1)) , δ(F(1, 2, 2, 2s−1

− 2)). Since δ(F(1, 2, 2,N − 1)) = 5N + 3,
ht(x1) = N + 3, ht(y1,1) = ht(y2,1) = 2N, this is equivalent to proving that the class u = xN+3

1 y2N
1,1 y2N

2,1 iz zero.
By Lemma 5.3, we have

xN+3
1 = xN−1

1 y1,2y2,2 + p′,

where p′ is a polynomial such that each monomial of p′ contains y1,1 or y2,1, or the degree of x1 in it is less
than N − 1. So, by Propositions 2.3 and 4.3, p′y2N

1,1 y2N
2,1 = 0, and therefore

u = xN−1
1 y2N

1,1 y1,2y2N
2,1 y2,2 = xN−1

1 y2
1,1yN+1

1,2 y2
2,1yN+1

2,2 .

Now, 0 = 11,N+1 = y2
1,1yN

1,2 + yN+1
1,2 + yN

1,2y2,2 + p′′, where p′′ is a polynomial such that each monomial of p′′

contains y2,1, or the degree of y2,2 in it is at least 2. So, by Propositions 2.3 and 4.3, we have p′′y2N
2,1 y2,2 = 0,

and therefore u = xN−1
1 (yN+1

1,2 + yN
1,2y2,2)y2

2,1yN+1
2,2 . Finally, 0 = 11,N+3 = yN+1

1,2 + yN
1,2y2,2 + p′′′, where p′′′ is a

polynomial such that each monomial of p′′′ contains y2,1, or the degree of y2,2 in it is at least 2. Again, by
Propositions 2.3 and 4.3, we have p′′′y2N

2,1 y2,2 = 0, and therefore u = 0.
To finish the proof it is enough to prove that the class v = xN+1

1 y2N
1,1 y2N

2,1 y2,2 is nonzero. By Lemma 5.3, we
have

xN+1
1 = xN−1

1 (y1,2 + y2,2) + q′,

where q′ is a polynomial such that each monomial of q′ contains y1,1 or y2,1, or the degree of x1 is less than
N − 1. By Propositions 2.3 and 4.3, q′y2N

1,1 y2N
2,1 y2,2 = 0, and therefore

v = xN−1
1 (y1,2 + y2,2)y2N

1,1 y2N
2,1 y2,2 = xN−1

1 y2N
1,1 y1,2y2N

2,1 y2,2 + xN−1
1 y2N

1,1 y2N
2,1 y2

2,2.

As in the first part of the proof one has xN−1
1 y2N

1,1 y1,2y2N
2,1 y2,2 = 0. Additionally, by Lemma 5.1, xN−1

1 y2N
1,1 y2N

2,1 y2
2,2 =

xN−1
1 yN

1,2yN+2
2,2 , 0, and therefore v , 0, which completes our proof.

6. Concluding Remarks

In this paper we presented two techniques for cup-length calculations, and provided a number of
examples that show that both of them can be very useful for these calculations. Of course, both of them
have their advantages and shortcomings, so depending on the situation in question, one technique can be
more efficient than the other.

The method of fiberings is very effective and elegant, and often requires very little calculation. The
”only” deficiency of this method is that it only provides us with a lower bound for the cup-length, and
often with a ”bad” one. On the other hand, using Gröbner basis one can obtain both upper and lower
bounds for the cup-length, but in order to do so, often a lot of calculation is required. Unfortunately, when
dealing with a general flag manifold of a given type, these calculations can become too involved to give us
any result. Of course, having a Gröbner basis for a concrete flag manifold means that all calculations can be
done using well-known algorithms (see [1]), i.e., using a computer, and therefore the cup-length can also
be computed.
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