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Abstract. Let H be a complex Hilbert space and let A be a bounded linear transformation on H . For a
complex-valued function f , which is analytic in a domainD of the complex plane containing the spectrum
of A, let f (A) denote the operator onH defined by means of the Riesz-Dunford integral. In the present paper,
several (presumably new) versions of Pick’s theorems are proved for f (A),where A is a dissipative operator
(or a proper contraction) and f is a suitable analytic function in the domainD.

1. Introduction and Definitions

LetH be a complex Hilbert space. Also let A be an operator (that is, a bounded linear transformation)
onH . For a complex-valued function f , which is analytic in a domainD of the complex plane containing
the spectrum σ(A) of A, let f (A) denote the operator onH defined, by the Riesz-Dunford integral, as follows
[2, p. 568]:

f (A) =
1

2πi

∫
C

f (z)(zI − A)−1 dz, (1)

where C is a positively-oriented simple closed rectifiable contour containing σ(A) in its interior domain Ω
and satisfying the condition C ∪Ω ⊂ D. Here, as usual, I stands for the identity operator onH . The limit
used in defining the integral in (1) is taken in the norm topology (that is, uniform topology) of operators on
H .

The real and imaginary parts of an operator A onH are denoted by<(A) and=(A), respectively, that is,

<(A) =
1
2

(A + A∗) and =(A) =
1
2i

(A − A∗).

If A and B are Hermitian operators onH , we denote by A = B to mean that A − B is a positive operator, that is,(
(A − B)x, x

)
= 0 (x ∈ H).
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The notation A > B indicates that A − B is positive and invertible. A contraction is an operator A onH with
||A|| 5 1; if ||A|| < 1, we say that A is a proper contraction (see, for details, [12, p. 76]). It can be readily verified
that A is a proper contraction if and only if I > A∗A. The operator A onH is called dissipative if =(A) = 0 (cf.
[11, p. 175]) and A is strictly dissipative if =(A) > 0 (cf. [10]).

In Geometric Function Theory, we deal with several subclasses of the class S of normalized univalent
functions on the open unit disk

U = {z : z ∈ C and |z| < 1}.

Such further subclasses of the class S as (for example) the classes of starlike functions, convex functions and
close-to-convex functions are widely and extensively investigated (cf. [3] and [18]; see also [17] and the
references cited therein). We now suppose that f is a member of one of such subclasses of the normalized
univalent function class S. Then it is reasonable to expect that its operator range

{ f (A) : ||A|| < 1}

inherits some of the geometric properties of the subset

{ f (z) : z ∈ U}

of the complex plane. Fan [4] proved the following result.

Theorem A (see Fan [4]). If f mapsU one-to-one onto a star-shaped region with respect to the origin of C, then

{ f (A) : ||A|| < 1}

is a starlike set in the sense that, if 0 < t < 1 and ||A|| < 1, then t f (A) = f (B) for some proper contraction B onH .

On the other hand, by means of a counter-example, Hwang [13] derived the following result.

Theorem B (see Hwang [13]). If f mapsU univalently onto a convex subset of C, then

{ f (A) : ||A|| < 1}

need not be a convex set.
In a series of papers on the above-mentioned theme, Fan (cf. [4] to [9]; see also [1]) investigated

various properties and characteristics of analytic functions of proper contractions, which include (among
other results) operator versions of the Schwarz lemma, subordination theorems, Julia theorem, Pick-Julia
theorem, Harnack’s inequalities, Wolff’s theorem, growth and distortion theorems, and so on. Mishra [14]
also proved a sharpened form of the Schwarz lemma and Harnack’s type inequalities for analytic functions
of proper contractions. His results were motivated by the celebrated works of von Neumann [15], Potapov
[16] and others. In the present sequel to some of these earlier investigations, we propose to prove a number
of new Pick’s theorems for dissipative operators.

2. A Set of Auxiliary Results

Let

Π = {z : z ∈ C and =(z) > 0}.

For any point z0 ∈ Π, the Möbius transformation:

ζ = Φz0 (z) =
z − z0

z − z0
(z ∈ Π) (2)
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maps Π univalently ontoU such that z = z0 corresponds to ζ = 0 and its inverse function is given by

z = φz0 (ζ) =
z0 − z0ζ

1 − ζ
(ζ ∈ U). (3)

We need the following results in our investigation.
Lemma 1. Let A be a strictly dissipative operator onH and z0 ∈ Π. Then

C = Φz0 (A)

is a proper contraction onH , where Φz0 is defined by (2). Furthermore, for every proper contraction C, the operator

A = φz0 (C)

is a strictly dissipative operator, where φz0 is defined by (3).

Proof. Let A be a strictly dissipative operator onH and z0 ∈ Π. We first note that

C = (A − z0I) (A − z0I)−1 .

The following verification shows that C is a proper contraction:

I − C∗C = I − (A∗ − z0I)−1(A∗ − z0I)(A − z0I)(A − z0I)−1

= (A∗ − z0I)−1
{(A∗ − z0I)(A − z0I) − (A∗ − z0I)(A − z0I)}(A − z0I)−1

= (z0 − z0)(A∗ − z0I)−1(A∗ − A)(A − z0I)−1

= 4=(z0)(A∗ − z0I)−1
=(A) (A − z0I)−1.

Since =(z0) > 0 and =(A) > 0, we get I − C∗C > 0. Equivalently, C is a proper contraction on H . This is
precisely the assertion of the first part of Lemma 1.

On the other hand, if C is a proper contraction onH , then we write

A = φz0 (C) = (z0I − z0C)(I − C)−1. (4)

We now observe that

A − A∗ = (z0I − z0C)(I − C)−1
− (I − C∗)−1(z0I − z0C∗)

= (I − C∗)−1
{(I − C∗)(z0I − z0C) − (z0I − z0C∗)(I − C)}(I − C)−1

= (I − C∗)−1
{(z0 − z0)(I − C∗C)}(I − C)−1.

Since =(z0) > 0 and I − C∗C > 0, we have =(A) > 0. The proof of Lemma 1 is thus completed.

The following result is an easy consequence of Lemma 1.
Lemma 2. Let A be a strictly dissipative operator on H and let z0 be a point in Π. Then A can be expressed in the
form:

A = φz0 (C)

for some proper contraction C onH , where φz0 is defined by (3). Moreover, every proper contraction C onH can be
written as follows:

C = Φz0 (A)

for some strictly dissipative operator A onH , where Φz0 is defined by (2).
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A classical result of von Neumann (cf. [15]; see also [4]) states that, if the complex-valued function f is
analytic in an open neighbourhood of the closed unit diskU,

f (U) ⊂ U

and A is a contraction of a Hilbert space, then

|| f (A)|| 5 1.

We shall need the following equivalent formulation of this result in our investigation.
Theorem 1 (cf. [4]). Let A be a proper contraction of a Hilbert space. Also let f be a complex-valued analytic function
in the open unit diskU. If

f (U ) ⊂ U,

then the following inequality:

|| f (A)|| < 1 (5)

holds true.
We shall also need the following version of the Schwarz lemma for operators.

Theorem 2 (cf. [4]). Let A be a proper contraction of a Hilbert space. Also let the function f : U −→ U be analytic
such that

f (0) = f ′(0) = · · · = f (n−1)(0) = 0 (n ∈N := {1, 2, 3, · · · }).

Then

(An)∗(An) = f (A)∗ f (A) (6)

and

||An
|| = || f (A)||. (7)

Strict inequality holds true in (6) if and only if (An)∗(An) > 0 and f is not of the form:

f (z) = ηzn (8)

for some constant η (|η| = 1). Equality occurs in (7) if and only if either An = 0 or f is of the form (8).

3. Analytic Functions of a Dissipative Operator

If f is a complex-valued analytic function on Π and A is a strictly dissipative operator onH , then f (A)
is well defined in the sense of the Riesz-Dunford integral (1). We first prove another equivalent version of
Theorem 1.
Theorem 3. Let A be a strictly dissipative operator on a Hilbert space H and let the function f : Π −→ Π be
analytic. Then f (A) is also a strictly dissipative operator.

Proof. Suppose that the function f : Π −→ Π is analytic and that z0 be a fixed point in Π. Then the composite
function:

1(ζ) = Φ f (z0) ◦ f ◦ ϕz0 (ζ) (ζ ∈ U) (9)

is analytic and maps U into U, where Φ f (z0) and ϕz0 are defined as in (2) and (3), respectively. We now let
A be a strictly dissipative operator onH . Then, by using Lemma 2, we write

A = ϕz0 (C)
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for some proper contraction C and

f (A) = f
(
ϕz0 (C)

)
. (10)

By an application of Theorem 1, we find that

S = 1(C) (11)

is a proper contraction onH . Moreover, using Lemma 1, we have

=

(
ϕ f (z0)(S)

)
> 0. (12)

We next observe that (9) can be rewritten in the equivalent form:

f
(
ϕz0 (ζ)

)
= ϕ f (z0)

(
1(ζ)

)
(ζ ∈ U). (13)

Therefore, by the Spectral Mapping Theorem, the equations (11) and (13), together, yield

ϕ f (z0)(S) = ϕ f (z0)

(
1(C)

)
= f

(
ϕz0 (C)

)
. (14)

If we combine (10) and (14), we get

f (A) = ϕ f (z0)(S). (15)

This last equation (15) and (12) show that f (A) is a strictly dissipative operator. The proof of Theorem 3 is
completed.

Remark 1. The statements of Theorem 1 and Theorem 3 are equivalent. In fact, we have seen in the proof
of Theorem 3 that Theorem 1 implies Theorem 3. In order to see that the converse also holds true, we
assume that the function f : U −→ U is analytic and that A is a proper contraction on a Hilbert space H .
We suppose also that z0 ∈ Π. Then, by using Lemma 2, we write

A = Φz0 (C)

for some strictly dissipative operator C onH . We now let the function 1 be defined by

1(z) = ϕz0 ◦ f
(
Φz0 (z)

)
(z ∈ Π).

Then 1 : Π −→ Π is analytic. Moreover, we have

1(C) = ϕz0

(
f
(
Φz0 (C)

))
= ϕz0

(
f (A)

)
or, equivalently,

f (A) = Φz0 (1(C)).

Thus, by applying Theorem 3 to the function 1, we find that 1(C) is a strictly dissipative operator. Therefore,
by Lemma 1, we conclude that

f (A) = Φz0

(
1(C)

)
is a proper contraction as desired.
Remark 2. By suitably modifying the proof of Theorem 3, the following two equivalent forms of Theorem
1 can also be proved.
I. Suppose that the function f : U −→ Π is analytic. If A is a proper contraction, then f (A) is a strictly dissipative
operator.
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II. Suppose that the function f : Π −→ U is analytic. If A is a strictly dissipative operator, then f (A) is a proper
contraction.

We next state and prove the following operator versions of Pick’s theorem, which are associated with
strictly dissipative operators.
Theorem 4. Let A be a strictly dissipative operator on a Hilbert space H and let z0 be a point in Π. Suppose also
that the function f : Π −→ Π be analytic. Then

(A∗ − z0I)−1 (A∗ − z0I) (A − z0I) (A − z0I)−1

=
(

f (A)∗ − f (z0)I
)−1 (

f (A)∗ − f (z0)I
) (

f (A) − f (z0)I
) (

f (A) − f (z0))I
)−1

(16)

and ∣∣∣∣∣∣(A − z0I) (A − z0I)−1
∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣( f (A) − f (z0)I

) (
f (A) − ( f (z0)I

)−1∣∣∣∣∣∣∣∣ . (17)

Strict inequality occurs in (16) if and only if

(A∗ − z0I)(A − z0I) > 0 (18)

and f is not of the form:

f (z) = ϕz1

(
ηΦz0 (z)

)
(19)

for some complex constant η (|η| = 1), some z1 ∈ Π and for the functions Φz0 and ϕz1 defined as in (2) and (3),
respectively. Equality occurs in (17) if and only if A = z0I or f is of the form (19).

Proof. Let the function 1 be defined by (9). We express 1 in the following equivalent form:

1(Φz0 (z)) = Φ f (z0)( f (z)) (z ∈ Π), (20)

where Φz0 is defined by (2). We now let A be a strictly dissipative operator on H . A direct application of
Lemma 1 shows that the operator

C = Φz0 (A) = (A − z0I)(A − z0I)−1 (21)

is a proper contraction. Furthermore, 1(C) is well defined in the sense of the Riesz-Dunford integral (1). Also,
by the Spectral Mapping Theorem, we have

1(C) = 1(Φz0 (A)). (22)

Similarly, by using Theorem 3, we see that

Q = f (A)

is a strictly dissipative operator and that

Φ f (z0)(Q) = Φ f (z0)

(
f (A)

)
=

(
f (A) − f (z0)I

) (
f (A) − f (z0)I

)−1
. (23)

On the other hand, the equation (20) yields

1
(
Φz0 (A)

)
= Φ f (z0)

(
f (A)

)
.

This, together with (22) and (23), would show that

1(C) =
(

f (A) − f (z0)I
) (

f (A) − f (z0)I
)−1

. (24)
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Since the function 1 defined by (9) satisfies the conditions of the Schwarz lemma, by using Theorem 2, we
get

C∗ C = 1(C)∗
(
1(C)

)
(25)

and

||C|| = ||1(C)||. (26)

Lastly, upon replacing the operator C by the expression given by (21) and the operator 1(C) by the expression
given by (24) in the above inequalities (25) and (26), we get (16) and (17), respectively. The sharpness of
(16) and (17) also follows from Theorem 2. The proof of Theorem 4 is thus completed.

Henceforth we use the notation µw (w ∈ U) to denote the disk automorphism given by

µw(z) =
w − z
1 − wz

(z,w ∈ U). (27)

It can be readily verified that µw is its own inverse. In fact, if

τ = µw(z),

then z = µw(τ). Furthermore, if
ηµw(z) = τ (|η| = 1),

then z = µw(ητ).
Theorem 5. Let the function f : U −→ Π be analytic and let w ∈ U. Suppose also that A is a proper contraction on
a Hilbert spaceH . Then

(I − wA∗)−1 (A∗ − wI) (A − wI) (I − wA)−1

=
(

f (A)∗ − f (w)I
)−1 (

f (A)∗ − f (w)I
) (

f (A) − f (w)I
) (

f (A) − f (w)I
)−1

(28)

and

|| (A − wI) (I − wA)−1
|| =

∣∣∣∣∣∣∣∣( f (A) − f (w)I
) (

f (A) − f (w)I
)−1∣∣∣∣∣∣∣∣ . (29)

Strict inequality holds true in (28) if and only if

(A∗ − wI)(A − wI) > 0 (30)

and f is not of the form:

f (z) = ϕz1

(
ηµw(z)

)
, (31)

where η is a complex constant with |η| = 1, z1 ∈ Π, w ∈ U and the function ϕz1 and µw are defined by (3) and (27),
respectively. Equality occurs in (29) if and only if A = z0I or f is of the form (31).

Proof. Let the function f : U −→ Π be analytic and let w ∈ U. Suppose that A is a proper contraction onH .
Then µw(A) = C is a proper contraction. Conversely, we have µw(C) = A. The following complex-valued
composite function:

1 = Φ f (w) ◦ f ◦ µw,

where Φ f (w) and µw are defined by (2) and (27), respectively, satisfies the conditions of the Schwarz lemma.
Therefore, by applying Theorem 2 to the function 1, we have

C∗C = 1(C)∗1(C) (32)
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and

||C|| = ||1(C)|| (33)

for every proper contraction C onH . Thus, by setting C = µw(A), we have

1(C) = Φ f (w) ◦ f (A) =
(

f (A) − f (w)I
)(

f (A) − f (w)I
)−1
.

Upon replacing the operator C by µw(A) and the operator 1(C) by(
f (A) − f (w)I

)(
f (A) − f (w)I

)−1

in the inequalities (32) and (33), we get (28) and (29), respectively. The assertions about sharpness also
follow from Theorem 2. The proof of Theorem 5 is completed.

Theorem 6. Let the function f : Π −→ U be analytic and let z0 ∈ Π. Suppose also that A is a strictly dissipative
operator onH . Then

(A∗ − z0I)−1 (A∗ − z0I) (A − z0I) (A − z0I)−1

=
(
I − f (z0) f (A)∗

)−1 (
f (A)∗ − f (z0)I

) (
f (A) − f (z0)I

) (
I − f (z0) f (A)

)−1
(34)

and ∣∣∣∣∣∣(A − z0I) (A − z0I)−1
∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣( f (A) − f (z0)I

) (
I − f (z0) f (A)

)−1∣∣∣∣∣∣∣∣ . (35)

Strict inequality holds true in (34) if and only if

(A∗ − z0I)(A − z0I) > 0

and f is not of the form:

f (z) = µz1

(
ηΦz0 (z)

)
, (36)

where η is a complex number with |η| = 1, z0 ∈ Π and z1 ∈ U, and Φz0 and µw are defined by (2) and (27), respectively.
Equality occurs in (35) if and only if A = z0I or f is of the form (36).

Proof. The proof of Theorem 6 is similar to that of Theorem 5. In this case, we consider the function 1 given
by

1 = µ f (z0) ◦ f ◦ ϕz0 ,

where z0 ∈ Π, µ f (z0) and ϕz0 are defined by (27) and (3), respectively. We now suppose that A is a strictly
dissipative operator onH . Then, by Lemma 2, we have

A = ϕz0 (C)

for some proper contraction C onH . Moreover, we have

1(C) =
(

f (A) − f (z0)I
) (

I − f (z0) f (A)
)−1

and

C = (A − z0I)(I − z0I)−1.

Thus, by applying Theorem 2 to 1(C), we get (34) and (35), respectively. The assertions about sharpness
also follow from Theorem 2. The proof of Theorem 6 is completed.

Remark 3. The works by Fan [4] and by Ando and Fan [1] contain several other versions of Pick’s theorems
for operators.
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