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Generalized Analytic Fourier-Feynman Transforms with Respect to
Gaussian Processes on Function Space
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Abstract. In this article, we introduce a generalized analytic Fourier-Feynman transform and a multiple
generalized analytic Fourier-Feynman transform with respect to Gaussian processes on the function space
Ca,b[0,T] induced by generalized Brownian motion process. We derive a rotation formula for our multiple
generalized analytic Fourier-Feynman transform.

1. Introduction

Let C0[0,T] denote one-parameter Wiener space; that is, the space of all real-valued continuous functions
x on [0,T] with x(0) = 0. Let M denote the class of all Wiener measurable subsets of C0[0,T] and let mw
denote Wiener measure. Then (C0[0,T],M,mw) is a complete measure space.

The concept of the ‘analytic’ Feynman integral on the Wiener space C0[0,T] was initiated by Cameron
[2]. The foundation of the definition of the analytic Feynman integral also can be found in [1, 3]. There has
been a tremendous amount of papers on the analytic Feynman integral theory. Furthermore, the concept of
the analytic Fourier-Feynman transform on C0[0,T] has been developed in the literature. For an elementary
introduction of the analytic Feynman integral and the analytic Fourier-Feynman transform, see [14] and
the references cited therein.

The concepts of the analytic Zh-Wiener integral (the Wiener integral with respect to Gaussian paths
Zh) and the analytic Zh-Feynman integral (the analytic Feynman integral with respect to Gaussian paths
Zh) on C0[0,T] were introduced by Chung, Park and Skoug in [12], and further developed in [4, 10, 13].
In [4, 10, 12, 13], the Zh-Wiener integral is defined by the Wiener integral

∫
C0[0,T] F(Zh(x, ·))dmw(x) where

Zh(x, ·) is the Gaussian path given by the stochastic integralZh(x, t) =
∫ t

0 h(s)dx(s) with h ∈ L2[0,T].
On the other hand, in [5, 7–9], the authors studied a generalized analytic Fourier-Feynman transform

and a generalized integral transform on the very general function space Ca,b[0,T]. The function space
Ca,b[0,T], induced by generalized Brownian motion process, was introduced by J. Yeh [15, 16] and was used
extensively in [5–9, 11].
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In this article, we introduce the generalized analytic Zh-Feynman integral, the generalized analytic
Zh-Fourier-Feynman transform, and the multiple generalized analytic Fourier-Feynman transform with
respect to Gaussian paths on the function space Ca,b[0,T]. We also derive a rotation formula involving the
two transforms.

2. Preliminaries

In this section, we briefly list some of the preliminaries from [5, 7, 8, 15] that we will need to establish
the results in this paper.

Let a(t) be an absolutely continuous real-valued function on [0,T] with a(0) = 0, a′(t) ∈ L2[0,T], and
let b(t) be a strictly increasing, continuously differentiable real-valued function with b(0) = 0 and b′(t) > 0
for each t ∈ [0,T]. The generalized Brownian motion process Y determined by a(t) and b(t) is a Gaussian
process with mean function a(t) and covariance function r(s, t) = min{b(s), b(t)}. By Theorem 14.2 [16, p.187],
the probability measure µ induced by Y, taking a separable version, is supported by Ca,b[0,T] (which is
equivalent to the Banach space of continuous functions x on [0,T] with x(0) = 0 under the sup norm). Hence,
(Ca,b[0,T], B(Ca,b[0,T]),µ) is the function space induced by Y where B(Ca,b[0,T]) is the Borel σ-algebra of
Ca,b[0,T]. We then complete this function space to obtain (Ca,b[0,T],W(Ca,b[0,T]), µ) whereW(Ca,b[0,T]) is
the set of all Wiener measurable subsets of Ca,b[0,T].

We note that the coordinate process defined by et(x) = x(t) on Ca,b[0,T] × [0,T] is also the generalized
Brownian motion process determined by a(t) and b(t). The function space Ca,b[0,T] reduces to the classical
Wiener space C0[0,T], considered in papers [1–4, 10, 12, 13] if and only if a(t) ≡ 0 and b(t) = t for all t ∈ [0,T].
For more detailed studies about this function space Ca,b[0,T], see [5–9, 11, 15].

A subset B of Ca,b[0,T] is said to be scale-invariant measurable provided ρB ∈ W(Ca,b[0,T]) for all ρ > 0,
and a scale-invariant measurable set N is said to be scale-invariant null provided µ(ρN) = 0 for all ρ > 0.
A property that holds except on a scale-invariant null set is said to hold scale-invariant almost everywhere
(s-a.e.). A functional F is said to be scale-invariant measurable provided F is defined on a scale-invariant
measurable set and F(ρ · ) isW(Ca,b[0,T])-measurable for every ρ > 0. If two functionals F and G are equal
s-a.e., we write F ≈ G.

Let L2
a,b[0,T] be the space of functions on [0,T] which are Lebesgue measurable and square integrable

with respect to the Lebesgue-Stieltjes measures on [0,T] induced by a(·) and b(·); i.e.,

L2
a,b[0,T] :=

{
v :

∫ T

0
v2(s)db(s) < +∞ and

∫ T

0
v2(s)d|a|(s) < +∞

}
where |a|(·) denotes the total variation function of the function a(·). Then L2

a,b[0,T] is a separable Hilbert
space with inner product defined by

(u, v)a,b :=
∫ T

0
u(t)v(t)dm|a|,b(t) ≡

∫ T

0
u(t)v(t)d[b(t) + |a|(t)],

where m|a|,b denotes the Lebesgue-Stieltjes measure induced by |a|(·) and b(·). Note that ‖u‖a,b ≡
√

(u,u)a,b = 0
if and only if u(t) = 0 a.e. on [0,T] and that all functions of bounded variation on [0,T] are elements of
L2

a,b[0,T]. Also note that if a(t) ≡ 0 and b(t) = t on [0,T], then L2
a,b[0,T] = L2[0,T]. In fact

(L2
a,b[0,T], ‖ · ‖a,b) ⊂ (L2

0,b[0,T], ‖ · ‖0,b) = (L2[0,T], ‖ · ‖2)

since the two norms ‖ · ‖0,b and ‖ · ‖2 are equivalent.
For each v ∈ L2

a,b[0,T], the Paley-Wiener-Zygmund (PWZ) stochastic integral 〈v, x〉 is given by the formula

〈v, x〉 := lim
n→∞

∫ T

0

n∑
j=1

(v, φ j)a,bφ j(t)dx(t)
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for µ-a.e. x ∈ Ca,b[0,T] where {φ j}
∞

j=1 is a complete orthonormal set of real-valued functions of bounded
variation on [0,T] such that (φ j, φk)a,b = δ jk, the Kronecker delta. If v is of bounded variation on [0,T], then

the PWZ stochastic integral 〈v, x〉 equals the Riemann-Stieltjes integral
∫ T

0 v(t)dx(t) for s-a.e. x ∈ Ca,b[0,T].
Furthermore, for each v ∈ L2

a,b[0,T], the PWZ stochastic integral 〈v, ·〉 : Ca,b[0,T]→ R is a Gaussian random

variable with mean
∫ T

0 v(t)da(t) =
∫ T

0 v(t)a′(t)dt and variance
∫ T

0 v2(t)db(t) =
∫ T

0 v2(t)b′(t)dt. For more details,
see [5, 7, 8].

3. Gaussian Processes

For any h ∈ L2
a,b[0,T] with ‖h‖a,b > 0, letZh(x, t) denote the PWZ stochastic integral

Zh(x, t) := 〈hχ[0,t], x〉, (3.1)

let βh(t) :=
∫ t

0 h2(u)db(u), and let γh(t) :=
∫ t

0 h(u)da(u). ThenZh : Ca,b[0,T] × [0,T]→ R is a Gaussian process
with mean function∫

Ca,b[0,T]
Zh(x, t)dµ(x) =

∫ t

0
h(u)da(u) = γh(t)

and covariance function∫
Ca,b[0,T]

(
Zh(x, s) − γh(s)

)(
Zh(x, t) − γh(t)

)
dµ(x) =

∫ min{s,t}

0
h2(u)db(u) = βh(min{s, t}).

In addition, by [16, Theorem 21.1], Zh(·, t) is stochastically continuous in t on [0,T]. Of course if h(t) ≡ 1,
thenZ1(x, t) = x(t). Furthermore, if a(t) ≡ 0 and b(t) = t on [0,T], then the function space Ca,b[0,T] reduces
to the classical Wiener space C0[0,T] and the Gaussian process (3.1) with h(t) ≡ 1 is an ordinary Wiener
process.

For h1, h2 ∈ L2
a,b[0,T] with ‖h j‖a,b > 0, j ∈ {1, 2}, letZh1 andZh2 be the Gaussian processes given by (3.1)

with h replaced with h1 and h2 respectively. Then the process

Zh1,h2 : Ca,b[0,T] × Ca,b[0,T] × [0,T]→ R

given by

Zh1,h2 (x1, x2, t) := Zh1 (x1, t) +Zh2 (x2, t) (3.2)

is also a Gaussian process with mean mh1,h2 (t) = γh1 (t) + γh2 (t) and variance vh1,h2 (t) = βh1 (t) + βh2 (t). More
precisely, the covariance of the process Zh1,h2 is given by∫

C2
a,b[0,T]

(
Zh1,h2 (x1, x2, s) −mh1,h2 (s)

)(
Zh1,h2 (x1, x2, t) −mh1,h2 (t)

)
d(µ × µ)(x1, x2)

= βh1 (min{s, t}) + βh2 (min{s, t})
= vh1,h2 (min{s, t}).

Let h1 and h2 be elements of L2
a,b[0,T]. Then there exists a function s ∈ L2

a,b[0,T] such that

s2(t) = h2
1(t) + h2

2(t) (3.3)

for m|a|,b-a.e. t ∈ [0,T]. Note that the function ‘s’ satisfying (3.3) is not unique. We will use the symbol
s(h1, h2) for the functions ‘s’ that satisfy (3.3) above.
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We consider a stochastic process associated with the processZs(h1,h2). Define a process

Rh1,h2 : Ca,b[0,T] × [0,T]→ R

by

Rh1,h2 (x, t) := Zs(h1,h2)(x, t) +

∫ t

0

(
h1(u) + h2(u) − s(h1, h2)(u)

)
da(u). (3.4)

Then Rh1,h2 is a Gaussian process with mean∫
Ca,b[0,T]

Rh1,h2 (x, t)dµ(x)

=

∫
Ca,b[0,T]

Zs(h1,h2)(x, t)dµ(x) +

∫ t

0

(
h1(u) + h2(u) − s(h2, h2)(u)

)
da(u)

= γh1 (t) + γh2 (t) = mh1,h2 (t)

and covariance∫
Ca,b[0,T]

(
Rh1,h2 (x, s) −mh1,h2 (s)

)(
Rh1,h2 (x, t) −mh1,h2 (t)

)
dµ(x)

=

∫ min{s,t}

0
s2(h1, h2)(u)db(u) =

∫ min{s,t}

0

(
h2

1(u) + h2
2(u)

)
db(u)

= βh1 (min{s, t}) + βh2 (min{s, t})
= vh1,h2 (min{s, t}).

Also, Rs(h1,h2)(·, t) is stochastically continuous in t on [0,T].
From these facts, one can see that Zh1,h2 and Rh1,h2 have the same distribution and that for any random

variable F on Ca,b[0,T],∫
C2

a,b[0,T]
F
(
Zh1,h2 (x1, x2, ·)

)
d(µ × µ)(x1, x2) ∗=

∫
Ca,b[0,T]

F
(
Rh1,h2 (x, ·)

)
dµ(x), (3.5)

where by ∗
= we mean that if either side exists, both sides exist and equality holds.

Remark 3.1. In [11], the authors investigated a rotation property of the function space measure µ. The result is
summarized as follows: for a measurable functional F and every nonzero real p and q,∫

C2
a,b[0,T]

F(px1 + qx2)d(µ × µ)(x1, x2)

∗
=

∫
Ca,b[0,T]

F
(√

p2 + q2x +
(
p + q −

√
p2 + q2

)
a
)
dµ(x).

But, by the observation presented above, we also obtain an alternative result such that∫
C2

a,b[0,T]
F(px1 + qx2)d(µ × µ)(x1, x2)

∗
=

∫
Ca,b[0,T]

F
(
−

√
p2 + q2x +

(
p + q +

√
p2 + q2

)
a
)
dµ(x).
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4. A Rotation Theorem for Generalized Analytic Feynman Integrals with Respect to Gaussian Processes

Let C denote the set of complex numbers. Let C+ := {λ ∈ C : Re(λ) > 0} and let C̃+ := {λ ∈ C : λ ,
0 and Re(λ) ≥ 0}. Let G be a stochastically continuous Gaussian process on Ca,b[0,T]× [0,T]. We define the
G-function space integral (the function space integral with respect to the Gaussian processG) for functionals
F on Ca,b[0,T] by the formula

IG[F] ≡ IG,x[F(G(x, ·))] :=
∫

Ca,b[0,T]
F
(
G(x, ·)

)
dµ(x)

whenever the integral exists.
Let F be a C-valued scale-invariant measurable functional on Ca,b[0,T] such that

JF(G;λ) := IG,x[F(λ−1/2
G(x, ·))]

exists and is finite for all λ > 0. If there exists a function J∗F(G;λ) analytic on C+ such that J∗F(G;λ) = JF(G;λ)
for all λ > 0, then J∗F(G;λ) is defined to be the analyticG-function space integral (the analytic function space
integral with respect to the process G) of F over Ca,b[0,T] with parameter λ, and for λ ∈ C+ we write

Ianλ
G

[F] ≡ Ianλ
G,x [F(G(x, ·))] ≡

∫ anλ

Ca,b[0,T]
F
(
G(x, ·)

)
dµ(x) := J∗F(G;λ).

Let q be a nonzero real number and let Γq be a connected neighborhood of −iq in C̃+ such that Γq ∩ (0,+∞)
is an open interval. Let F be a measurable functional whose analytic G-function space integral exists for all
λ ∈ C+. If the following limit exists, we call it the generalized analytic G-Feynman integral (the generalized
analytic Feynman integral with respect to the process G) of F with parameter q and we write

Ianfq

G
[F] ≡ Ianfq

G,x [F(G(x, ·))] := lim
λ→−iq

Ianλ
G,x [F(G(x, ·))], (4.1)

where λ approaches −iq through values in Γq.
In the case of the generalized analytic Zh-Feynman integral, if we choose h ≡ 1 on [0,T], then the

definition of the generalized analytic Z1-Feynman integral agrees with the previous definitions of the
generalized analytic Feynman integral [5, 8, 9].

Now we will establish a rotation formula of our generalized analytic Feynman integral.

Lemma 4.1. Given h j ∈ L2
a,b[0,T], j ∈ {1, 2}, with ‖h j‖a,b > 0, letZh j be the Gaussian processes given by (3.1) with h

replaced with h j, and letRh1,h2 be the Gaussian process given by (3.4). Let F be a scale-invariant measurable functional
that the analytic function space integrals Ianλ

Zh1
[F], Ianλ

Zh2
[F] and Ianλ

Rh1 ,h2
[F] exist for every λ ∈ C+. Furthermore assume

that I
anλ2
Zh2 ,x2

[I
anλ1
Zh1 ,x1

[F(Zh1 (x1, ·) +Zh2 (x2, ·))]] exists for every (λ1, λ2) ∈ C+ × C+. Then for each λ ∈ C+,

Ianλ
Zh2 ,x2

[
Ianλ
Zh1 ,x1

[
F
(
Zh1 (x1, ·) +Zh2 (x2, ·)

)]]
= Ianλ
Rh1 ,h2 ,x

[
F
(
Rh1,h2 (x, ·)

)]
. (4.2)

Proof. In view of the definition of the analytic function space integral with respect to the Gaussian process,
we first note that the existences of the generalized analytic integrals

Ianλ
Zh1

[F], Ianλ
Zh2

[F], Ianλ
Rh1 ,h2

[F], and I
anλ2
Zh2 ,x2

[
I

anλ1
Zh1 ,x1

[
F
(
Zh1 (x1, ·) +Zh2 (x2, ·)

)]]
guarantee that the function space integrals

IZh1 ,x

[
F
(
λ−1/2

Zh1 (x, ·)
)]
, IZh2 ,x

[
F
(
λ−1/2

Zh2 (x, ·)
)]
, IRh1 ,h2 ,x

[
F
(
λ−1/2

Rh1,h2 (x, ·)
)]
,

IZh2 ,x2

[
IZh1 ,x1

[
F
(
λ−1/2

1 Zh1 (x1, ·) + λ−1/2
2 Zh2 (x2, ·)

)]]
, and IZh2 ,x2

[
I

anζ1
Zh1 ,x1

[
F
(
Zh1 (x1, ·) + ζ−1/2

2 Zh2 (x2, ·)
)]]
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all exist for any λ > 0, λ1 > 0, λ2 > 0, ζ1 ∈ C+, and ζ2 > 0.
Next, the existence of the analytic function space integral

J∗1(Zh1 ,Zh2 ;λ1, λ2) ≡ I
anλ2
Zh2 ,x2

[
I

anλ1
Zh1 ,x1

[
F
(
Zh1 (x1, ·) +Zh2 (x2, ·)

)]]
, (λ1, λ2) ∈ C+ × C+, (4.3)

also ensure that the analytic function space integral

J∗1(Zh1 ,Zh2 ;λ, λ) = Ianλ
Zh2 ,x2

[
Ianλ
Zh1 ,x1

[
F
(
Zh1 (x1, ·) +Zh2 (x2, ·)

)]]
is well-defined for all λ ∈ C+. In equation (4.3) above, J∗1(Zh1 ,Zh2 ;λ1, λ2) means the analytic function space
integral, which is the analytic continuation of the function space integral

IZh2 ,x2

[
I

anλ1
Zh1

[
F
(
Zh1 (x1, ·) + λ−1/2

2 Zh2 (x2, ·)
)]]
, (λ1, λ2) ∈ C+ × (0,+∞).

On the other hand, using the Fubini theorem, (3.2) and (3.5), it follows that for all λ > 0,

IZh2 ,x2

[
IZh1 ,x1

[
F
(
λ−1/2

Zh1 (x1, ·) + λ−1/2
Zh2 (x2, ·)

)]]
= IZh2 ,x2

[
IZh1 ,x1

[
F
(
λ−1/2[Zh1 (x1, ·) +Zh2 (x2, ·)]

)]]
= IZh2 ,x2

[
IZh1 ,x1

[
F
(
λ−1/2Zh1,h2 (x1, x2, ·)

)]]
= IRh1 ,h2 ,x

[
F
(
λ−1/2

Rh1,h2 (x, ·)
)]
.

We now use the analytic continuation to obtain our desired conclusion.

Remark 4.2. Let

Jλ1 (Zh2 ;λ2) := IZh2 ,x2

[
I

anλ1
Zh1 ,x1

[
F
(
Zh1 (x1, ·) + λ−1/2

2 Zh2 (x2, ·)
)]]
, (λ1, λ2) ∈ C+ × (0,+∞),

Jλ2 (Zh1 ;λ1) := IZh1 ,x1

[
I

anλ2
Zh2 ,x2

[
F
(
λ−1/2

1 Zh1 (x1, ·) +Zh2 (x2, ·)
)]]

= I
anλ2
Zh2 ,x2

[
IZh1 ,x1

[
F
(
λ−1/2

1 Zh1 (x1, ·) +Zh2 (x2, ·)
)]]
, (λ1, λ2) ∈ (0,+∞) × C+,

and

J(Zh1 ,Zh2 ;λ1, λ2) = IZh2 ,x2

[
IZh1 ,x1

[
F
(
λ−1/2

1 Zh1 (x1, ·) + λ−1/2
2 Zh2 (x2, ·)

)]]
, (λ1, λ2) ∈ (0,+∞) × (0,+∞).

Also, let J∗λ1
(Zh2 ;λ2), λ2 ∈ C+, denote the analytic continuation of Jλ1 (Zh2 ;λ2), let J∗λ2

(Zh1 ;λ1), λ1 ∈ C+, denote
the analytic continuation of Jλ2 (Zh1 ;λ1), and let J∗∗(Zh1 ,Zh2 ; ·, ·) denote the analytic continuation on C+ ×C+ of the
function J(Zh1 ,Zh2 ; ·, ·). Clearly, J∗λ1

(Zh2 ;λ2) = J∗1(Zh1 ,Zh2 ;λ1, λ2) where J∗1(Zh1 ,Zh2 ; ·, ·) is the analytic function
on C+ × C+ given in (4.3) above.

From the assumptions in Lemma 4.1, one can see that the three analytic function space integrals J∗λ1
(Zh2 ;λ2),

J∗λ2
(Zh2 ;λ2), and J∗∗(Zh1 ,Zh2 ;λ1, λ2) all exist, and

J∗λ1
(Zh2 ;λ2) = J∗λ2

(Zh1 ;λ1) = J∗∗(Zh1 ,Zh2 ;λ1, λ2)

for all (λ1, λ2) ∈ C+ × C+.

Theorem 4.3. LetZh1 ,Zh2 , Rh1,h2 , and F be as in Lemma 4.1. Then for a real q ∈ R \ {0},

Ianfq

Zh2 ,x2

[
Ianfq

Zh1 ,x1

[
F
(
Zh1 (x1, ·) +Zh2 (x2, ·)

)]]
∗
= Ianfq

Rh1 ,h2 ,x

[
F
(
Rh1,h2 (x, ·)

)]
. (4.4)
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Proof. To obtain equation (4.4), one may establish that

lim
λ1,λ2→−iq
λ1,λ2∈Γ

I
anλ2
Zh2 ,x2

[
I

anλ1
Zh1 ,x1

[
F
(
Zh1 (x1, ·) +Zh2 (x2, ·)

)]]
= Ianfq

Rh1 ,h2 ,x

[
F
(
Rh1,h2 (x, ·)

)]
.

But, as shown in the proof of Lemma 4.1, the assumption that the analytic function space integrals Ianλ
Zh1

[F],

Ianλ
Zh2

[F], and Ianλ
Rh1 ,h2

[F] exist for every λ ∈ C+, and the analytic function space integral I
anλ2
Zh2 ,x2

[I
anλ1
Zh1 ,x1

[F(Zh1 (x1, ·)+

Zh2 (x2, ·))]] exists for every (λ1, λ2) ∈ C+ ×C+, says the fact that Ianλ
Rh1 ,h2

[F] is analytic on C+, as a function of λ,

and I
anλ2
Zh2 ,x2

[I
anλ1
Zh1 ,x1

[F(Zh1 (x1, ·) +Zh2 (x2, ·))]] is analytic on C+ ×C+, as a function of (λ1, λ2). Thus, to establish
equation (4.4), it will suffice to show that

lim
λ→−iq
λ∈Γ

Ianλ
Zh2 ,x2

[
Ianλ
Zh1 ,x1

[
F
(
Zh1 (x1, ·) +Zh2 (x2, ·)

)]]
= Ianfq

Rh1 ,h2 ,x

[
F
(
Rh1,h2 (x, ·)

)]
.

Using equation (4.2) and the analytic continuation, we obtain the desired result.

5. Multiple Generalized Analytic Fourier-Feynman Transform with Respect to Gaussian Processes

We begin this section with the definitions of the generalized analytic Fourier-Feynman transform with
respect to Gaussian process and the multiple generalized analytic Fourier-Feynman transform with respect
to Gaussian processes of functionals on Ca,b[0,T]. Let F be a scale-invariant measurable functional on
Ca,b[0,T] and let G be a stochastically continuous Gaussian process on Ca,b[0,T] × [0,T]. For λ ∈ C+ and
y ∈ Ca,b[0,T], let

Tλ,G(F)(y) := Ianλ
G,x

[
F
(
y +G(x, ·)

)]
(5.1)

denote the analytic function space transform of F. Let q be a nonzero real number and let Γq be a connected
neighborhood of −iq in C̃+ such that Γq ∩ (0,+∞) is an open interval. We define the L1 generalized analytic
Fourier-Feynman transform with respect to the process G, T(1)

q,G(F) of F, by the formula (if it exists)

T(1)
q,G(F)(y) := lim

λ→−iq
λ∈Γ

Tλ,G(F)(y) (5.2)

for s-a.e. y ∈ Ca,b[0,T].
We note that T(1)

q,G(F) is defined only s-a.e.. We also note that if T(1)
q,G(F) exists and if F ≈ G, then T(1)

q,G(G)

exists and T(1)
q,G(G) ≈ T(1)

q,G(F). From equations (5.1), (5.2), and (4.1), it follows that

T(1)
q,G(F)(y) ∗= Ianfq

G
[F(y + ·)] (5.3)

for s-a.e. y ∈ Ca,b[0,T].
Next, letG j, j ∈ {1, . . . ,n}, be stochastically continuous Gaussian processes on Ca,b[0,T]× [0,T]. For λ > 0

and y ∈ Ca,b[0,T], define a transformMλ,(G1,...,Gn)(F)(y) as follows:

Mλ,(G1,...,Gn)(F)(y)

:=
∫

Cn
a,b[0,T]

F
(
y + λ−1/2

n∑
j=1

G j(x j, ·)
)
dµn(x1, . . . , xn)

≡ IGn,xn

[
IGn−1,xn−1

[
· · ·

[
IG1,x1

[
F
(
y + λ−1/2

n∑
j=1

G j(x j, ·)
)]]
· · ·

]]
.
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LetMλ,(G1,...,Gn)(F)(y) also denote an analytic extension ofMλ,(G1,...,Gn)(F)(y) as a function of λ ∈ C+. Given
q ∈ R\ {0} and a connected neighborhood Γq of −iq in C̃+ such that Γq∩ (0,+∞) is an open interval, we define
the L1 multiple generalized analytic Fourier-Feynman transforms with respect to the Gaussian processes
(G1, . . . ,Gn),M(1)

q,(G1,...,Gn)(F) of F, by the formula (if it exists)

M
(1)
q,(G1,...,Gn)(F)(y) := lim

λ→−iq
λ∈Γ

Mλ,(G1,...,Gn)(F)(y) (5.4)

for s-a.e. y ∈ Ca,b[0,T].
Clearly, we have thatMλ,(G)(F) = Tλ,G(F) for all λ ∈ C+, andM(1)

q,(G)(F) = T(1)
q,G(F) for any nonzero real q if

the transforms exist.

Theorem 5.1. Let Zh1 , Zh2 , and Rh1,h2 be as in Lemma 4.1. Let F be a scale-invariant measurable functional that
the analytic transforms

Tλ,Zh1
(F)(y) ≡ Ianλ

Zh1
[F(y + ·)], Tλ,Zh2

(F)(y) ≡ Ianλ
Zh2

[F(y + ·)], and Tλ,Rh1 ,h2
(F)(y) ≡ Ianλ

Rh1 ,h2
[F(y + ·)]

exist for every λ ∈ C+ and s-a.e. y ∈ Ca,b[0,T]. Furthermore assume that the analytic function space integral

I
anλ2
Zh2 ,x2

[
I

anλ1
Zh1 ,x1

[
F
(
y +Zh1 (x1, ·) +Zh2 (x2, ·)

)]]
exists for every (λ1, λ2) ∈ C+ × C+ and s-a.e. y ∈ Ca,b[0,T]. Then for a real q ∈ R \ {0},

M
(1)
q,(Zh1 ,Zh2 )(F)(y) ∗= T(1)

q,Rh1 ,h2
(F)(y)

for s-a.e. y ∈ Ca,b[0,T].

Proof. First, proceedings as in the proofs of Lemma 4.1 and Theorem 4.3, we conclude that

Ianfq

Zh2 ,x2

[
Ianfq

Zh1 ,x1

[
F
(
y +Zh1 (x1, ·) +Zh2 (x2, ·)

)]]
∗
= Ianfq

Rh1 ,h2 ,x

[
F
(
y + Rh1,h2 (x, ·)

)]
. (5.5)

for s-a.e. y ∈ Ca,b[0,T]. Next, in view of equation (5.4) and under the assumption, it follows that for s-a.e.
y ∈ Ca,b[0,T],

M
(1)
q,(Zh1 ,Zh2 )(F)(y) = lim

λ→−iq
λ∈Γ

Mλ,(Zh1 ,Zh2 )(F)(y)

= lim
λ→−iq
λ∈Γ

Ianλ
Zh2 ,x2

[
Ianλ
Zh1 ,x1

[
F
(
y + λ−1/2[Zh1 (x1, ·) +Zh2 (x2, ·)]

)]]
= lim
λ1,λ2→−iq
λ1,λ2∈Γ

I
anλ2
Zh2 ,x2

[
I

anλ1
Zh1 ,x1

[
F
(
y + λ−1/2

1 Zh1 (x1, ·) + λ−1/2
2 Zh2 (x2, ·)

)]]
= Ianfq

Zh2 ,x2

[
Ianfq

Zh1 ,x1

[
F
(
y +Zh1 (x1, ·) +Zh2 (x2, ·)

)]]
.

(5.6)

Finally using equations (5.6), (5.5), and (5.3) withG replaced withRh1,h2 , it follows that for s-a.e. y ∈ Ca,b[0,T],

M
(1)
q,(Zh1 ,Zh2 )(F)(y) ∗= T(1)

q,Rh1 ,h2
(F)(y),

as desired.

The following theorem follows by the use of mathematical induction.
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Theorem 5.2. Given h j ∈ L2
a,b[0,T], j ∈ {1, . . . ,n}, with ‖h j‖a,b > 0, letZh j be the Gaussian processes given by (3.1)

with h replaced with h j, and let Rh1,...,hn : Ca,b[0,T] × [0,T]→ R be the Gaussian process given by

Rh1,...,hn (x, t) := Zs(h1,...,hn)(x, t) +

∫ t

0

[ n∑
j=1

h j(u) − s(h1, . . . , hn)(u)
]
da(u),

where s(h1, . . . , hn) is an element of L2
a,b[0,T] which satisfies the condition

s2(h1, . . . , hn) =

n∑
j=1

h2
j

for m|a|,b-a.e. on [0,T]. Let F be a scale-invariant measurable functional that the analytic function space transforms
Tλ,Zhj

(F)(y) ≡ Ianλ
Zhj

[F(y + ·)], j ∈ {1, . . . ,n}, and Tλ,Rh1 ,...,hn
(F)(y) ≡ Ianλ

Rh1 ,...,hn
[F] exist for every λ ∈ C+ and s-a.e.

y ∈ Ca,b[0,T]. Furthermore assume that the analytic function space integral

Ianλn
Zhn ,xn

[
· · ·

[
I

anλ1
Zh1 ,x1

[
F
(
y +

n∑
j=1

Zh j (x j, ·)
)]]
· · ·

]
exists for every (λ1, . . . , λn) ∈ Cn

+ and s-a.e. y ∈ Ca,b[0,T]. Then, for a real q ∈ R \ {0} and s-a.e. y ∈ Ca,b[0,T],

M
(1)
q,(Zh1 ,...,Zhn )(F)(y) ∗= T(1)

q,Rh1 ,...,hn
(F)(y).

We note that the hypotheses (and hence the conclusions) of Lemma 4.1, Theorems 4.3, 5.1, and 5.2 above
are indeed satisfied by many large classes of functionals. These classes of functionals include:

(a) The Banach algebra S(L2
a,b[0,T]) defined by Chang and Skoug in [8].

(b) Various spaces of functionals of the form

F(x) = f (〈α1, x〉, . . . , 〈αn, x〉)

for appropriate f as discussed in [5, 7, 9].
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