
Filomat 30:6 (2016), 1625–1632
DOI 10.2298/FIL1606625D

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Graph invariants, based on the distances between the vertices of a graph, are widely used
in theoretical chemistry. Recently, Gutman, Feng and Yu (Transactions on Combinatorics, 01 (2012) 27-
40) introduced the degree resistance distance of a graph G, which is defined as DR(G) =

∑
{u,v}⊆V(G)[dG(u) +

dG(v)]RG(u, v), where dG(u) is the degree of vertex u of the graph G, and RG(u, v) denotes the resistance
distance between the vertices u and v of the graph G. Further, they characterized n-vertex unicyclic graphs
having minimum and second minimum degree resistance distance. In this paper, we characterize n-vertex
bicyclic graphs having maximum degree resistance distance.

1. Introduction

The graphs considered in this paper are finite, loopless and contain no multiple edges. Given a graph
G, let V(G) and E(G) be the vertex and edge sets of G, respectively. The ordinary distance dG(u, v) between
the vertices u and v of the graph G is the length of the shortest path between u and v.

The famous Wiener index W(G) is the sum of ordinary distances between all pairs of vertices, that is,
W(G) =

∑
{u,v}⊆V(G) dG(u, v). The Winner index is the oldest and one of the most popular molecular structure

descriptors [9, 10], well correlated with many physical and chemical properties of a variety of classes of
chemical compounds.

A modified version of the Wiener index is the degree distance defined as D(G) =
∑
{u,v}⊆V(G)(dG(u) +

dG(v))dG(u, v), where dG(u) is the degree of the vertex u of the graph G. The degree distance was also widely
studied [4, 5, 11, 15, 19]. Tomescu [15] determined the unicyclic and bicyclic graphs with minimum degree
distance. Yuan and An [19] determined the unicyclic graphs with maximum degree distance.

Sharpe [14] introduced a distance function named resistance distance, based on the theory of electrical
networks. They viewed G as an electric network N by replacing each edge of G with a unit resistor. The
resistance distance between the vertices u and v of the graph G, denoted by RG(u, v), is then defined to be
the effective resistance between the nodes u and v in N. This kind of distance between vertices of a graph
was eventually studied in detail [1–3, 12, 13, 16, 21].

If the ordinary distance is replaced by resistance distance in the expression for the Wiener index, we can
arrive at the Kirchhoff index K f (G) =

∑
{u,v}⊆V(G) RG(u, v), which also has been widely studied [6, 7, 17, 18, 20–

22].
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Similarly, if the ordinary distance is replaced by resistance distance in the expression for the degree
distance, Gutman, Feng and Yu [8] introduced the degree resistance distance:

DR(G) =
∑
{u,v}⊆V(G)(dG(u) + dG(v))RG(u, v).

They gave some properties of degree resistance distance and determined the unicyclic graphs with minimum
and second minimum degree resistance distance.

Bicyclic graphs are connected graphs in which the number of edges equals the number of vertices plus
one. In this paper we determine the bicyclic graphs having maximum degree resistance distance.

2. Preliminaries

It is important that RG(u, v) = RG(v,u), RG(u,u) = 0 and that dG(u, v) > RG(u, v) with equality if and only
if there is a unique path linking the vertices u and v. For a vertex v in G, we define K fv(G) =

∑
u∈G RG(u, v)

and Dv(G) =
∑

u∈G dG(u)RG(u, v).
By the definition of DR(G), we also have DR(G) =

∑
{u,v}⊆V(G)[dG(u)+dG(v)]RG(u, v) =

∑
v∈G dG(v)

∑
u∈G RG(u, v).

Lemma 2.1. [12] Let G be a graph, x be a cut vertex of G and let u, v be vertices belonging to different components
which arise upon deletion of x. Then RG(u, v) = RG(u, x) + RG(x, v).

For a graph G and its vertex v, let G− v be the graph obtained by removing v and all edges incident to v
from G.

Lemma 2.2. [6] Let G be a connected graph of order n, v be a pendant vertex of G and w be its neighbor. Then
K fv(G) = K fw(G − v) + n − 1.

Lemma 2.3. Let G be a bicyclic graph of order n, v be a pendant vertex of G and w be its neighbor. Then Dv(G) =
Dw(G − v) + 2n + 1.

Proof. From the definition, we have

Dv(G) =
∑
u∈G

dG(u)RG(u, v)

=
∑

u∈G−v

dG(u)RG(u, v) + dG(v)RG(v, v)

=
∑

u∈G−v

dG(u)[RG(u,w) + RG(w, v)] (By RG(v, v) = 0 and Lemma 2.1)

=
∑

u∈G−v

dG(u)RG(u,w) +
∑

u∈G−v

dG(u) (By RG(w, v) = 1)

=
∑

u∈G−v

dG−v(u)RG−v(u,w) + 2(n + 1) − 1 (By E(G) = n + 1 and dG(v) = 1)

= Dw(G − v) + 2n + 1.

This proof is complete.

Lemma 2.4. [6] Let G be a bicyclic graph of order n and v ∈ V(G). Then K fv(G) ≤ n2

2 −
n
2 −

15
4 .

The base of a bicyclic graph G, denoted by Ĝ, is the unique bicyclic subgraph of G containing no pendent
vertices, while G can be obtained from Ĝ by attaching trees to some vertices of Ĝ.

Definition 2.5. Let G be a bicyclic graph and v be a vertex in Ĝ. Let Gi, i ∈ I, be the components of G − v such that
G[V(Gi)

⋃
{v}] contains no cycles. The tree Tv(G) = G[(

⋃
i∈I

V(Gi))
⋃
{v}], rooted at v, is called the tree suspended at v.

Note that, if the index set I is empty, Tv(G) consists of only the single vertex v.
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Lemma 2.6. Let G be a bicyclic graph of order n and v ∈ V(G). Then Dv(G) ≤ n2 + 2n − 73
4 .

Proof. The only bicyclic graph G with 4 vertices is K4 − e, and a straightforward calculation shows that for
any vertex v ∈ V(G), Dv(G) ≤ 23/4 = 42 + 2 × 4 − 73/4.

We now distinguish the following two cases.
Case 1. The vertex v is a pendant vertex. Let w be its neighbor. We prove this case by induction on n.

Clearly G − v satisfies the induction hypothesis. By Lemma 2.3 we have

Dv(G) = Dw(G − v) + 2n + 1

≤ ((n − 1)2 + 2(n − 1) −
73
4

) + 2n + 1

= n2 + 2n −
73
4
.

Case 2. The vertex v isn’t a pendant vertex. We consider the following two subcases.
Subcase 1. The vertex v is not in any cycle of G.
In this subcase, G− v has at least two components. Let the components of G− v be A1, A2, · · · , Ak, k > 2.

Since v is not in any cycle, v has only one adjacent vertex, say ui, in each component Ai, 1 6 i 6 k.
Now, we construct a new bicyclic graph G1 = G−vu1+u1u2. We will prove that Dv(G) =

∑
w∈G dG(w)RG(w, v) <

Dv(G1) =
∑

w∈G1
dG1 (w)RG1 (w, v). Firstly, if w ∈

k⋃
i=2

V(Ai) \ {u2}, then dG1 (w) = dG(w) and RG1 (w, v) = RG(w, v).

Secondly, if w = u2, then dG1 (w) = dG(w) + 1 and RG1 (w, v) = RG(w, v) = 1. Finally, if w ∈ V(A1), then
dG1 (w) = dG(w) and RG1 (w, v) = RG(w, v) + 1. Thus, we have that Dv(G1) > Dv(G).

Recursively, we construct the bicyclic graph Gi = Gi−1−vui + uiui+1, 2 6 i 6 k−1. Similarly, we can prove
that Dv(G1) < Dv(G2) < · · · < Dv(Gk−1). In Gk−1, v is a pendant vertex, thus by Case 1 Dv(G) < Dv(Gk−1) =
n2 + 2n − 73

4 .
Subcase 2. The vertex v is a vertex in a cycle of G.

Let W = V(Ĝ), where Ĝ is the base of G. We need first to prove the following two claims:
Claim 1. For a vertex w ∈W, suppose that the tree Tw(G) suspended at w contains k > 2 vertices and is

not a path. The bicyclic graph G′ with n vertices is obtained by deleting all vertices in V(Tw(G)) \ {w} from
G and attaching one pendant path of order k − 1 to the vertex w. Then Dv(G) < Dv(G′).
Proof. Suppose that P is a longest path starting at w in Tw(G) and P ends at vertex w1. Since Tw(G) is not
a path, there exists another pendant vertex, say w2. And let w3 be the neighbor of w2. Construct a new
bicyclic graph G1 = G − w3w2 + w1w2, then

Dv(G1) −Dv(G) =

3∑
i=1

(dG1 (wi)RG1 (wi, v) − dG(wi)RG(wi, v))

= RG(w1, v) + (RG1 (w2, v) − RG(w2, v)) + (−RG(w3, v))
= (RG(w1,w) − RG(w3,w)) + (RG1 (w2,w) − RG(w2,w))
> 0.

For each pendant vertex which is not in the longest path starting at w of the current graph, we consecu-
tively use the process. At last, we obtain the bicyclic graph G′ and Dv(G) < Dv(G′).

Without loss of generality, let u be a vertex in W so that RG(u, v) = maxw∈W RG(w, v).
Claim 2. For a vertex w ∈W, suppose that the tree Tw(G) suspended at w contains k > 2 vertices and is

a path w1(w = w1)w2w3 · · ·wk. Construct a bicyclic graph G′ = G − ww2 + uw2, then Dv(G) 6 Dv(G′).
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Proof.

Dv(G′) −Dv(G) =

k∑
i=1

(dG′ (wi)RG′ (wi, v) − dG(wi)RG(wi, v))

+(dG′ (u)RG′ (u, v) − dG(u)RG(u, v))

= (−RG(w1, v)) +

k∑
i=2

dG(wi)(RG′ (wi, v) − RG(wi, v)) + RG(u, v)

= (RG(u, v) − RG(w, v)) +

k∑
i=2

dG(wi)(RG(u, v) − RG(w, v))

> 0.

Suppose that a bicyclic graph G′′ with n vertices is obtained from Ĝ by attaching a pendant path to the
vertex u. By consecutive application of Claim 1 and Claim 2, Dv(G) 6 Dv(G′′).

Let G1 be the bicyclic graphs with n vertices obtained from K4− e by attaching a pendant path to a vertex
of degree 2 in K4 − e. Let s1 be the unique pendant vertex of G1. If the graph G′′ has three vertices of degree
3, then it is easy to see that Dv(G′′) 6 Ds1 (G1). And

Ds1 (G1) = 2 × (1 + 2 + · · · + (n − 5)) + 3 × (n − 4)

+2 × 3 × (n − 4 +
5
8

) + 2 × (n − 3)

= n2 + 2n −
73
4
,

thus Dv(G) 6 n2 + 2n − 73
4 .

Let G2 be the bicyclic graphs with n vertices obtained from K4− e by attaching a pendant path to a vertex
of degree 3 in K4 − e. Let s2 be the unique pendant vertex of G2. If there are one vertex of degree 4 and one
vertex of degree 3 in G′′, then it is easy to see that Dv(G′′) 6 Ds2 (G2). And

Ds2 (G2) = 2 × (1 + 2 + · · · + (n − 5)) + 4 × (n − 4)

+2 × 2 × (n − 4 +
5
8

) + 3 × (n − 4 +
1
2

)

= n2 + 2n − 20,

thus Dv(G) 6 n2 + 2n − 20 < n2 + 2n − 73
4 .

The proof is complete.

Lemma 2.7. Let G be a bicyclic graph, v be a pendant vertex of G and w be its neighbor. Then DR(G) = DR(G− v) +
Dw(G − v) + 2K fw(G − v) + 3n.



J. F. Du, J. H. Tu / Filomat 30:6 (2016), 1625–1632 1629

Proof. From the definition, we have

DR(G) =
∑
u∈G

dG(u)
∑
x∈G

RG(u, x)

=
∑

u∈G−v

dG(u)
∑
x∈G

RG(u, x) + dG(v)
∑
x∈G

RG(v, x)

=
∑

u∈G−v

dG(u)(
∑

x∈G−v

RG(u, x) + RG(u, v)) + K fv(G)

=
∑

u∈G−v

dG(u)(
∑

x∈G−v

RG−v(u, x) + RG(u, v)) + K fv(G)

=
∑

u∈G−v

dG(u)
∑

x∈G−v

RG−v(u, x) +
∑

u∈G−v

dG(u)RG(u, v) + K fv(G)

=
∑

u∈G−v

dG−v(u)
∑

x∈G−v

RG−v(u, x) +
∑

x∈G−v

RG−v(w, x) +
∑

u∈G−v

dG(u)RG(u, v) + K fv(G)

= DR(G − v) + K fw(G − v) +
∑

u∈G−v

dG(u)RG(u, v) + K fv(G)

= DR(G − v) + K fw(G − v) +
∑

u∈G−v

dG(u)(RG(u,w) + RG(w, v)) + K fv(G)

= DR(G − v) + K fw(G − v) +
∑

u∈G−v

dG−v(u)RG−v(u,w) +
∑

u∈G−v

dG(u) + K fv(G)

= DR(G − v) + K fw(G − v) + Dw(G − v) + 2(n + 1) − 1 + K fw(G − v) + n − 1
= DR(G − v) + Dw(G − v) + 2K fw(G − v) + 3n.

This proves the result.

Lemma 2.8. [8] Let G be a connected graph with a cut-vertex v such that G1 and G2 are two connected subgraphs of
G having v as the only common vertex and V(G1)

⋃
V(G2) = V(G). Let n1 = |V(G1)|, n2 = |V(G2)|, m1 = |E(G1)|

and m2 = |E(G2)|. Then

DR(G) = DR(G1) + DR(G2) + 2m2K fv(G1) + 2m1K fv(G2) + (n2 − 1)Dv(G1) + (n1 − 1)Dv(G2).

Lemma 2.9. [8] For the cycle Ck and v ∈ Ck, K f (Ck) = k3
−k

12 , DR(Ck) = k3
−k
3 , K fv(Ck) = k2

−1
6 and Dv(Ck) = k2

−1
3 .

Lemma 2.10. Let H be connected graph of order h > 2 and Ck be a cycle of order k ≥ 4. Let F be the graph of order k
obtained from C3 by attaching one pendant path of order k − 3 to one vertex of C3. Further suppose G1 is the graph
obtained from H and Ck by identifying one vertex in H and one vertex in Ck; G2 is the graph obtained from H and F
by identifying one vertex in H and the pendant vertex in F. Then we have DR(G1) < DR(G2).

Proof. Suppose V(H)
⋂

V(Ck) = V(H)
⋂

V(F) = v, |E(H)| = m. By Lemma 2.8 we have

DR(G1) = DR(H) + DR(Ck) + 2kK fv(H) + 2mK fv(Ck) + (k − 1)Dv(H) + (h − 1)Dv(Ck).

DR(G2) = DR(H) + DR(F) + 2kK fv(H) + 2mK fv(F) + (k − 1)Dv(H) + (h − 1)Dv(F).

Therefore,

DR(G1) −DR(G2) = DR(Ck) −DR(F) + 2m[K fv(Ck) − K fv(F)] + (h − 1)[Dv(Ck) −Dv(F)].
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We can get the following results by straightforward calculating:

K f (F) =
1
6

(k3
− 11k + 18).

DR(F) = 4K f (F) + [
2
3

+
2
3

+ 1 + 2 + · · · + (k − 3)]

−[1 + 2 + · · · + (k − 3) + (k − 3 +
2
3

) + (k − 3 +
2
3

)]

=
2
3

(k3
− 14k + 27).

K fv(F) =
1
6

(3k2
− 3k − 10).

Dv(F) = 2K f (F) + k − 3 =
1
3

(3k2
− 2k − 19).

Then,

DR(Ck) −DR(F) =
k3
− k
3
−

2
3

(k3
− 14k + 27) = −

1
3

k3 + 9k − 18 < 0.

K fv(Ck) − K fv(F) =
k2
− 1
6
−

1
6

(3k2
− 3k − 10) = −

1
3

k2 +
1
2

k +
3
2
< 0.

Dv(Ck) −Dv(F) =
k2
− 1
3
−

1
3

(3k2
− 2k − 19) = −

2
3

k2 +
2
3

k + 6 < 0.

Therefore DR(G1) −DR(G2) < 0. We get finally that DR(G1) < DR(G2).

3. Main Results

In this section, we give the bicyclic graphs of order at least 6 with maximum degree resistance distance.

Let G be a bicyclic graph. We consider first the base Ĝ of G. It is well known that there are the following
three kinds of bicyclic graphs containing no pendant vertices:

Let B(p, q) be the bicyclic graph obtained from two vertex-disjoint cycles Cp and Cq by identifying vertices
u of Cp and v of Cq.

Let B(p, l, q) be the bicyclic graph obtained from two vertex-disjoint cycles Cp and Cq by joining vertices
u of Cp and v of Cq by a new path uu1u2 · · · ul−1v with length l (l ≥ 1).

Let B(Pk,Pl,Pm), 1 ≤ m ≤ min{k, l} be the bicyclic graph obtained from three pairwise internal disjoint
paths from a vertex x to a vertex y. These three paths are xv1v2 · · · vk−1y with length k, xu1u2 · · · ul−1y with
length l, and xw1w2 · · ·wm−1y with length m.

Lemma 3.1. Let Bn be the bicyclic graph of order n obtained from two vertex-disjoint triangles C1
3 and C2

3 by joining
vertices u of C1

3 and v of C2
3 by a path uu1u2 · · · un−6v, i.e., Bn � B(3,n−5, 3). Then DR(Bn) = 1

3 (2n3 +3n2
−57n+88).

Proof. It is known that [20] K f (Bn) =
∑
{x,y}⊆V(Bn) RBn (x, y) = 1

6 (n3
− 21n + 36). Any vertex in V(Bn) \ {u, v} has
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degree 2 and dBn (u) = dBn (v) = 3. So we have

DR(Bn) =
∑

{x,y}⊆V(Bn)

(dBn (x) + dBn (y))RBn (x, y)

= 4K f (Bn) +
∑
x∈Bn

RBn (x,u) +
∑
x∈Bn

RBn (x, v)

= 4 ×
1
6

(n3
− 21n + 36) + 2 × [

2
3

+
2
3

+ 1 + 2 + · · · + n − 5

+(n − 5 +
2
3

) + (n − 5 +
2
3

)]

=
2
3

(n3
− 21n + 36) + 2 × [

4
3

+
(1 + n − 5)(n − 5)

2
+ 2n − 10 +

4
3

]

=
1
3

(2n3 + 3n2
− 57n + 88).

This proves the result.

Theorem 3.2. Let G be a bicyclic graph of order n > 6. Then DR(G) 6 1
3 (2n3 + 3n2

− 57n + 88). The equality holds
if and only if G � Bn.

Proof. A straightforward calculation shows that for all bicyclic graphs G with 6 vertices, DR(G) 6 286/3 =
1
3 (2 × 63 + 3 × 62

− 57 × 6 + 88) , and equality holds if and only if G � B6.
Now, we distinguish the following cases.
Case 1. G has a pendant vertex. We prove this case by induction. Let v be a pendant vertex of G and w

be its neighbor. Clearly G − v satisfies the induction hypothesis, and

DR(G) = DR(G − v) + Dw(G − v) + 2K fw(G − v) + 3n (By Lemma 2.7)

≤
1
3

(2(n − 1)3 + 3(n − 1)2
− 57(n − 1) + 88) + ((n − 1)2 + 2(n − 1) −

73
4

)

+2(
(n − 1)2

2
−

(n − 1)
2
−

15
4

) + 3n (By Lemma 2.6 and Lemma 2.4)

=
1
3

(2n3 + 3n2
− 57n + 71

3
4

)

<
1
3

(2n3 + 3n2
− 57n + 88) = DR(Bn) (By Lemma 3.1).

Case 2. G has no pendant vertex. There are only three types of bicyclic graphs with no pendant vertices,
and we consider the following three subcases.

Subcase 1. G is of form B(p, q). By Lemma 2.10, we have that DR(G) 6 DR(Bn). The equality holds if and
only if G � Bn.

Subcase 2. G is of form B(p, l, q). By Lemma 2.10, we have that DR(G) 6 DR(Bn). The equality holds if
and only if G � Bn.

Subcase 3. G is of form B(Pk,Pl,Pm), i.e., G can be obtained from three pairwise internal disjoint paths
from a vertex x to a vertex y. G has n vertices; any vertex in V(G) \ {x, y} has degree 2 and dG(x) = dG(y) = 3.
It is well known that [6] K f (G) ≤ 1

8 n3, then

DR(G) =
∑

{u,v}⊆V(G)

[dG(u) + dG(v)]RG(u, v)

= 4K f (G) +
∑
w∈G

RG(w, x) +
∑
w∈G

RG(w, y)

≤ 4 ·
1
8

n3 + 2(
n2

2
−

n
2
−

15
4

) (By Lemma 2.4)

=
1
2

(n3 + 2n2
− 2n − 15).
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If n ≥ 10, then 1
2 (n3 + 2n2

− 2n − 15) < DR(Bn). We have calculated all DR(G) which G are of form
B(Pk,Pl,Pm) when n = 6, 7, 8, 9, and found that DR(G) < 1

3 (2n3 + 3n2
− 57n + 88) for all n = 6, 7, 8, 9.

The proof is complete.
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[22] B. Zhou, N. Trinajstić, The Kirchhoff index and matching number, Int. J. Quantum Chem. 109 (2009) 2978–2981.


