Some Applications of the First-Order Differential Subordinations

Nak Eun Cho ${ }^{\text {a }}$, Hyo Jeong Lee ${ }^{\text {a }}$, Ji Hyang Park ${ }^{\text {a }}$, Rekha Srivastava ${ }^{\text {b }}$
${ }^{a}$ Department of Applied Mathematics, Pukyong National University, Busan 608-737, Republic of Korea
${ }^{b}$ Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada

Abstract

The object of the present paper is to give some applications of the first-order differential subordinations. We also extend and improve several previously known results.

1. Introduction

Let \mathcal{A} denote the class of all functions f which are analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\}
$$

and satisfy the usual normalization given by

$$
f(0)=f^{\prime}(0)-1=0 .
$$

If f and g are analytic in \mathbb{U}, then we say that the function f is subordinate to g if there exists a Schwarz function w analytic in \mathbb{U}, with

$$
w(0)=0 \quad \text { and } \quad|w(z)|<1 \quad(z \in \mathbb{U})
$$

such that

$$
f(z)=g(w(z)) \quad(z \in \mathbb{U})
$$

In such a case, we write

$$
f<g \quad \text { or } \quad f(z)<g(z) \quad(z \in \mathbb{U})
$$

Furthermore, if the function g is univalent in \mathbb{U}, then we have (cf. [5])

$$
f<g \quad \Longleftrightarrow \quad f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U})
$$

A function $f \in \mathbb{U}$ is said to be strongly starlike of order $\eta(0<\eta \leqq 1)$ if and only if

[^0]\[

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}<\left(\frac{1+z}{1-z}\right)^{\eta} \quad(z \in \mathbb{U}) \tag{1.1}
\end{equation*}
$$

\]

We note that the conditions (1.1) can be written by

$$
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\pi}{2} \eta \quad(z \in \mathbb{U})
$$

We denote by $\mathcal{S}[\eta]$ the subclass of \mathcal{A} consisting of all strongly starlike functions of order $\eta(0<\eta \leqq 1)$. We also note that $\mathcal{S}[1] \equiv \mathcal{S}^{*}$ is the well-known class of all normalized starlike functions in \mathbb{U}. The class $\mathcal{S}[\eta]$ and the related classes have been extensively studied by Mocanu [6] and Nunokawa [7].

If ψ is analytic in a domain $\mathbb{D} \subset \mathbb{C}^{2}, h$ is univalent in \mathbb{U} and p is analytic in \mathbb{U} with $\left(p(z), z p^{\prime}(z)\right) \in \mathbb{D}$ for $z \in \mathbb{U}$, then p is said to satisfy the first-order differential subordination if

$$
\begin{equation*}
\psi\left(p(z), z p^{\prime}(z)\right)<h(z)(z \in \mathbb{U}) . \tag{1.2}
\end{equation*}
$$

The univalent function q is said to be a dominant of the differential subordination (1.2) if $p<q$ for all p satisfying (1.2). If \tilde{q} is a dominant of (1.2) and $\tilde{q} \prec q$ for all dominants of (1.2), then \tilde{q} is said to be the best dominant of the differential subordination (1.2). The general theory of the first-order differential subordinations, with many interesting applications, especially in the theory of univalent functions, was developed by Miller and Mocanu ([4]; see also [5]). For several applications of the principle of differential subordinations in the investigations of various interesting subclasses of analytic and univalent functions, we refer the reader to the recent works [11], [12], [13], [14] and [15].

In the present paper, we propose to derive some applications of the first-order differential subordinations. We also extend and improve the results proven earlier by Cho and Kim [1], Miller et al. [3], and Nunokawa et al. [7, 8, 9, 10].

2. The First Main Result

In proving our results, we shall need the following lemma due to Miller and Mocanu [4].
Lemma. Let q be univalent in \mathbb{U} and let θ and φ be analytic in a domain \mathbb{D} containing $q(\mathbb{U})$ with

$$
q(\omega) \neq 0 \quad \text { when } \quad \omega \in q(\mathbb{U}) .
$$

Set

$$
Q(z)=z q^{\prime}(z) \varphi(q(z)), h(z)=\theta(q(z))+Q(z)
$$

and suppose that
(i) Q is starlike in \mathbb{U}
(ii) $\mathfrak{R}\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}=\mathfrak{R}\left\{\frac{\theta^{\prime}(q(z))}{\varphi(q(z))}+\frac{z Q^{\prime}(z)}{Q(z)}\right\}>0 \quad(z \in \mathbb{U})$.

If p is analytic in \mathbb{U} with

$$
p(0)=q(0), \quad p(\mathbb{U}) \subset \mathbb{D}
$$

and

$$
\begin{equation*}
\theta(p(z))+z p^{\prime}(z) \varphi(p(z))<\theta(q(z))+z q^{\prime}(z) \varphi(q(z)) \quad(z \in \mathbb{U}) \tag{2.1}
\end{equation*}
$$

then

$$
p(z)<q(z) \quad(z \in \mathbb{U})
$$

and q is the best dominant of (2.1).

With the help of the above Lemma, we now derive the following Theorem 1.
Theorem 1. Let p be nonzero analytic in \mathbb{U} with $p(0)=1$. If

$$
\begin{gather*}
\left|\arg \left(\beta p^{\gamma}(z)+\alpha z p^{\prime}(z) p^{\gamma-2}(z)\right)\right|<\frac{\pi}{2} \delta(\alpha, \beta, \gamma, \eta) \tag{2.2}\\
\quad(\alpha, \beta>0 ; 0 \leqq \gamma \leqq 1 ; 0<\eta \leqq 1 ; z \in \mathbb{U})
\end{gather*}
$$

where

$$
\begin{equation*}
\delta(\alpha, \beta, \gamma, \eta)=\eta \gamma+\frac{2}{\pi} \tan ^{-1}\left(\frac{\alpha \eta \cos \frac{\pi}{2} \eta}{\beta(1+\eta)^{\frac{1+\eta}{2}}(1-\eta)^{\frac{1-\eta}{2}}+\alpha \eta \sin \frac{\pi}{2} \eta}\right) \tag{2.3}
\end{equation*}
$$

then

$$
\begin{equation*}
|\arg p(z)|<\frac{\pi}{2} \eta \quad(z \in \mathbb{U}) \tag{2.4}
\end{equation*}
$$

Proof. Let

$$
q(z)=\left(\frac{1+z}{1-z}\right)^{\eta}, \quad \theta(\omega)=\beta \omega^{\gamma} \quad \text { and } \quad \varphi(\omega)=\alpha \omega^{\gamma-2}
$$

in the above Lemma. Then q is univalent(convex) in \mathbb{U} and

$$
\mathfrak{R}\{q(z)\}>0 \quad(z \in \mathbb{U}) \quad \text { and } \quad \varphi(\omega) \neq 0 \quad(\omega \in q(\mathbb{U}))
$$

It follows that

$$
Q(z)=z q^{\prime}(z) \varphi(q(z))=\frac{2 \alpha \eta z}{1-z^{2}}\left(\frac{1+z}{1-z}\right)^{\eta(\gamma-1)}
$$

and

$$
\begin{aligned}
h(z) & =\theta(q(z))+Q(z) \\
& =\beta\left(\frac{1+z}{1-z}\right)^{\eta \gamma}+\frac{2 \alpha \eta z}{1-z^{2}}\left(\frac{1+z}{1-z}\right)^{\eta(\gamma-1)}
\end{aligned}
$$

Therefore, we have

$$
\mathfrak{R}\left\{\frac{z Q^{\prime}(z)}{Q(z)}\right\}=\mathfrak{R}\left\{\frac{1+z^{2}+2 \eta(\gamma-1) z}{1-z^{2}}\right\}>0 \quad(z \in \mathbb{U})
$$

which implies that Q is starlike in \mathbb{U} and

$$
\mathfrak{R}\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}=\Re\left\{\frac{\beta}{\alpha} q(z)+\frac{z Q^{\prime}(z)}{Q(z)}\right\}>0 .
$$

We note that $h(0)=\beta$ and

$$
\begin{align*}
h\left(\mathrm{e}^{i \theta}\right) & =\left(i \cot \frac{\theta}{2}\right)^{\eta \gamma}\left(\beta+i \frac{\alpha \eta}{\sin \theta}\left(i \cot \frac{\theta}{2}\right)^{-\eta}\right) \\
& =\left|\cot \frac{\theta}{2}\right|^{\eta \gamma} \mathrm{e}^{ \pm \frac{\pi}{2} \eta \gamma}\left(\beta+i \frac{\alpha \eta}{\sin \theta\left|\cot \frac{\theta}{2}\right|^{\eta \mathrm{e}^{ \pm \frac{\pi}{2} \eta}}}\right) \tag{2.5}
\end{align*}
$$

where we take " + " for $0<\theta<\pi$, and " - " for $-\pi<\theta<0$. From the previous relation (2.5), we can see that the real and the imaginary part of $h\left(\mathrm{e}^{i \theta}\right)$ is an even and odd function of θ, respectively. Without loss of generality, we suppose that $0<\theta<\pi$. Then we get

$$
\begin{aligned}
\arg h\left(\mathrm{e}^{i \theta}\right) & =\frac{\pi}{2} \eta \gamma+\arg \left(\beta+\frac{\alpha \eta \mathrm{e}^{i \frac{\pi}{2}(1-\eta)}}{\sin \theta\left|\cot \frac{\theta}{2}\right|^{\eta}}\right) \\
& =\frac{\pi}{2} \eta \gamma+\arg \left(\beta+\alpha \eta \mathrm{e}^{i \frac{\pi}{2}(1-\eta)} \frac{t^{2}+1}{2 t^{\eta+1}}\right),
\end{aligned}
$$

where

$$
t=\cot \frac{\theta}{2} \quad(0<t<\infty)
$$

Since the function

$$
g(t)=\frac{t^{2}+1}{2 t^{\eta+1}} \quad(0<t<\infty)
$$

has the minimum value at

$$
t_{0}=\left(\frac{1+\eta}{1-\eta}\right)^{1 / 2}
$$

we have

$$
\begin{aligned}
\arg h\left(\mathrm{e}^{i \theta}\right) & \geqq \frac{\pi}{2} \eta \gamma+\tan ^{-1}\left(\frac{\alpha \eta \cos \frac{\pi}{2} \eta}{\beta(1+\eta)^{\frac{1+\eta}{2}}(1-\eta)^{\frac{1-\eta}{2}}+\alpha \eta \sin \frac{\pi}{2} \eta}\right) \\
& =\frac{\pi}{2} \delta(\alpha, \beta, \gamma, \eta),
\end{aligned}
$$

where $\delta(\beta, \alpha, \gamma, \eta)$ is given by (2.3). Therefore, we conclude that the condition (2.2) implies

$$
\beta p^{\gamma}(z)+\alpha z p^{\prime}(z) p^{\gamma-2}(z)<h(z) \quad(z \in \mathbb{U})
$$

Then, by the above Lemma, we have

$$
p(z)<\left(\frac{1+z}{1-z}\right)^{\eta} \quad(z \in \mathbb{U})
$$

or, equivalently,

$$
|\arg p(z)|<\frac{\pi}{2} \eta \quad(z \in \mathbb{U})
$$

This completes the proof of Theorem 1.
Remark 1. If we take $\gamma=1$ in Theorem 1, then it is noted that $p(z) \neq 0$ for $z \in \mathbb{U}$. In fact, if p has a zero $z_{0} \in \mathbb{U}$ of order m, then we may write

$$
p(z)=\left(z-z_{0}\right)^{m} p_{1}(z) \quad(m \in \mathbb{N}=\{1,2,3, \cdots\})
$$

where p_{1} is analytic in \mathbb{U} with $p_{1}\left(z_{0}\right) \neq 0$. Then

$$
\begin{equation*}
\beta p(z)+\alpha \frac{z p^{\prime}(z)}{p(z)}=\beta p(z)+\alpha \frac{z p_{1}^{\prime}(z)}{p_{1}(z)}+\frac{\alpha m z}{z-z_{0}} . \tag{2.6}
\end{equation*}
$$

Thus, choosing $z \rightarrow z_{0}$, suitably the argument of the right-hand of (2.6) can take any value between 0 and 2π, which contradicts the hypothesis (2.2).

3. Further Results and Their Applications

If we take

$$
\alpha=\beta=1 \quad \text { and } \quad p(z)=\frac{z f^{\prime}(z)}{f(z)} \quad(z \in \mathbb{U})
$$

in Theorem 1, we have the following result.
Corollary 1. Let $f \in \mathcal{A}$ with $z f(z) / f(z) \neq 0$ in \mathbb{U}. If

$$
\begin{gathered}
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\gamma-1}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right|<\frac{\pi}{2} \delta(1,1, \gamma, \eta) \\
(0 \leqq \gamma \leqq 1 ; 0<\eta \leqq 1 ; z \in \mathbb{U})
\end{gathered}
$$

where $\delta(1,1 \gamma, \eta)$ is given by (2.3) with $\alpha=\beta=1$, then $f \in \mathcal{S}[\eta]$.
Taking $\gamma=1$ in Theorem 1, we have the following result by Nunokawa and Owa [8].
Corollary 2. Let p be analytic in \mathbb{U} with $p(0)=1$. If

$$
\left|\arg \left(\beta p(z)+\alpha \frac{z p^{\prime}(z)}{p(z)}\right)\right|<\frac{\pi}{2} \delta \quad(\alpha, \beta>0 ; 0<\delta \leqq 1 ; z \in \mathbb{U})
$$

then

$$
|\arg p(z)|<\frac{\pi \delta}{2} \quad(z \in \mathbb{U})
$$

Remark 2. For $\alpha=\beta=\delta=1$, Corollary 2 is the result obtained by Miller et al. [3].
Applying Theorem 1, we have the following result by Cho and Kim [1].
Corollary 3. If

$$
\begin{gathered}
\left|\arg \left\{\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{\phi(f(z))}\right)+\beta\left(\frac{z(\phi(f(z)))^{\prime}}{\phi(f(z))}\right)\right\}\right|<\frac{\pi}{2} \delta(\alpha, \beta, 1, \eta) \\
(\alpha, \beta>0 ; 0<\eta \leqq 1 ; z \in \mathbb{U})
\end{gathered}
$$

where $\phi(\omega)$ is analytic in $f(\mathbb{U}), \phi(0)=\phi^{\prime}(0)-1=0, \phi(\omega) \neq 0$ in $f(\mathbb{U}) \backslash\{0\}$ and $\delta(\alpha, \beta, 1, \eta)$ is given by (2.3) with $\gamma=1$, then

$$
\left|\arg \frac{z f^{\prime}(z)}{\phi(f(z))}\right|<\frac{\pi}{2} \eta \quad(z \in \mathbb{U})
$$

Proof. Letting

$$
p(z)=\frac{z f^{\prime}(z)}{\phi(f(z))} \quad(z \in \mathbb{U})
$$

we see that

$$
\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{\phi(f(z))}\right)+\beta\left(\frac{z(\phi(f(z)))^{\prime}}{\phi(f(z))}\right)=\beta p(z)+\alpha \frac{z p^{\prime}(z)}{p(z)} .
$$

Therefore, by using Theorem 1 with $\gamma=1$, we have Corollary 3.

If we set

$$
\beta=1, \quad \phi(\omega)=\omega \quad \text { and } \quad p(z)=\frac{z f^{\prime}(z)}{f(z)} \quad(z \in \mathbb{U})
$$

in Corollary 3, we have the following result.
Corollary 4. Let $f \in \mathcal{A}$. If

$$
\begin{gathered}
\left|\arg \left(\alpha\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}+(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\pi}{2} \delta(\alpha, 1,1, \eta) \\
(\alpha>0 ; 0<\eta \leqq 1 ; z \in \mathbb{U})
\end{gathered}
$$

where $\delta(\alpha, 1,1, \eta)$ is given by (2.3) with $\beta=\gamma=1$. Then $f \in \mathcal{S}[\eta]$.
Remark 3. For $\alpha=1$, Corollary 4 is the result obtained by Nunokawa [7] and Nunokawa and Thomas [10].

If we take

$$
\gamma=1 \quad \text { and } \quad p(z)=\frac{f(z)}{z} \quad(z \in \mathbb{U})
$$

in Theorem 1, we have the the following Corollary 5.
Corollary 5. Let $f \in \mathcal{A}$. If

$$
\begin{gathered}
\left|\arg \left(\beta \frac{z f^{\prime}(z)}{f(z)}+\alpha\left\{\frac{z f^{\prime}(z)}{f(z)}-1\right\}\right)\right|<\frac{\pi}{2} \delta(\alpha, \beta, 1, \eta) \\
(\alpha, \beta>0 ; 0<\eta \leqq 1 ; z \in \mathbb{U})
\end{gathered}
$$

then

$$
\left|\arg \frac{f(z)}{z}\right|<\frac{\pi}{2} \eta \quad(z \in \mathbb{U})
$$

where $\delta(\alpha, \beta, 1, \eta)$ is given by (2.3) with $\gamma=1$.
Next, applying the above Lemma, we prove the following Theorem 2 below.
Theorem 2. Let p be nonzero analytic in \mathbb{U} with $p(0)=1$. If

$$
\begin{gather*}
\left|\arg \left(\beta p^{\gamma}(z)+\alpha z p^{\prime}(z) p^{\gamma-1}(z)\right)\right|<\frac{\pi}{2} \delta(\alpha, \beta, \eta, \gamma) \tag{3.1}\\
(\alpha, \beta>0 ; \gamma \geqq 0 ; 0<\eta \leqq 1 ; z \in \mathbb{U})
\end{gather*}
$$

where $\delta(\alpha, \beta, \eta, \gamma)(0<\delta(\alpha, \beta, \eta, \gamma)<1)$ is the solution of the equation:

$$
\begin{equation*}
\delta(\alpha, \beta, \eta, \gamma)=\gamma \eta+\frac{2}{\pi} \tan ^{-1} \frac{\alpha \eta}{\beta} \tag{3.2}
\end{equation*}
$$

then

$$
|\arg p(z)|<\frac{\pi}{2} \eta \quad(z \in \mathbb{U})
$$

Proof. Let

$$
q(z)=\left(\frac{1+z}{1-z}\right)^{\eta}, \quad \theta(\omega)=\beta \omega^{\gamma} \quad \text { and } \quad \varphi(\omega)=\alpha \omega^{\gamma-1}
$$

in the above Lemma. Then q is univalent(convex) in \mathbb{U} and

$$
\mathfrak{R}\{q(z)\}>0 \quad(z \in \mathbb{U})
$$

Further, θ and φ are analytic in $q(\mathbb{U})$ and

$$
\varphi(\omega) \neq 0 \quad(\omega \in q(\mathbb{U}))
$$

Set

$$
Q(z)=z q^{\prime}(z) \varphi(q(z))=\left(\frac{1+z}{1-z}\right)^{\eta \gamma} \frac{2 \alpha \eta z}{1-z^{2}}
$$

and

$$
h(z)=\theta(q(z))+Q(z)=\left(\frac{1+z}{1-z}\right)^{\eta \gamma}\left(\beta+\frac{2 \alpha \eta z}{1-z^{2}}\right)
$$

Then we can see easily that the conditions (i) and (ii) of the above Lemma are satisfied. We also note that $h(0)=\beta$ and

$$
\begin{align*}
h\left(\mathrm{e}^{i \theta}\right) & =\left(\frac{1+\mathrm{e}^{i \theta}}{1-\mathrm{e}^{i \theta}}\right)^{\eta \gamma}\left(\beta+\frac{2 \alpha \eta \mathrm{e}^{i \theta}}{1-\mathrm{e}^{2 i \theta}}\right) \\
& =\left(i \cot \frac{\theta}{2}\right)^{\eta \gamma}\left(\beta+i \frac{\alpha \eta}{\sin \theta}\right) \tag{3.3}\\
& =\left|\cot \frac{\theta}{2}\right| \mathrm{e}^{ \pm \frac{\pi \eta}{2}}\left(\beta+i \frac{\alpha \eta}{\sin \theta}\right)
\end{align*}
$$

where we take " + " for $0<\theta<\pi$, and " - " for $-\pi<\theta<0$. From the previous relation (3.3), we can see that the real and imaginary part of $h\left(\mathrm{e}^{i \theta}\right)$ is an even and odd function of θ, respectively. Without loss of generality, we suppose that $0<\theta<\pi$. Hence, from (3.3), we have

$$
\begin{aligned}
\arg h\left(\mathrm{e}^{\mathrm{i} \theta}\right) & =\frac{\pi}{2} \eta \gamma+\arg \left(\beta+i \frac{\alpha \eta}{\sin \theta}\right) \\
& =\frac{\pi}{2} \eta \gamma+\tan ^{-1} \frac{\alpha \eta}{\beta \sin \theta} \\
& \geqq \frac{\pi}{2} \eta \gamma+\tan ^{-1} \frac{\alpha \eta}{\beta} \\
& =\frac{\pi}{2} \delta(\alpha, \beta, \eta, \gamma)
\end{aligned}
$$

where $\delta(\alpha, \beta, \eta, \gamma)$ is the solution of the equation given by (3.2). Therefore, we conclude that the condition (3.1) implies that

$$
\beta p^{\gamma}(z)+\alpha z p^{\prime}(z) p^{\gamma-1}(z)<h(z) \quad(z \in \mathbb{U})
$$

Then, by the above Lemma, we have

$$
p(z)<\left(\frac{1+z}{1-z}\right)^{\eta} \quad(z \in \mathbb{U})
$$

or equivalently,

$$
|\arg p(z)|<\frac{\pi}{2} \eta \quad(z \in \mathbb{U})
$$

This completes the proof of Theorem 2.

Remark 4. If we take $\gamma=0$ in Theorem 2, then we also note that $p(z) \neq 0$ in \mathbb{U} as done in Remark 1 .
Taking

$$
\alpha=1 \quad \text { and } \quad \gamma=0
$$

in Theorem 2, we have the following result by Nunokawa et al. [9].
Corollary 6. Let p be analytic in \mathbb{U} with $p(0)=1$. If

$$
\left|\arg \left(\beta+\frac{z p^{\prime}(z)}{p(z)}\right)\right|<\tan ^{-1} \frac{\eta}{\beta} \quad(\beta>0 ; 0<\eta \leqq 1 ; z \in \mathbb{U})
$$

then

$$
|\arg p(z)|<\frac{\pi}{2} \eta \quad(z \in \mathbb{U})
$$

Letting

$$
\beta=1 \quad \text { and } \quad p(z)=\frac{f(z)}{z} \quad(z \in \mathbb{U})
$$

in Corollary 6, we have the following result.
Corollary 7. Let $f \in \mathcal{A}$. If

$$
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\tan ^{-1} \eta \quad(0<\eta \leq 1 ; z \in \mathbb{U})
$$

then

$$
\left|\arg \frac{f(z)}{z}\right|<\frac{\pi}{2} \eta \quad(z \in \mathbb{U})
$$

Making

$$
\alpha=\beta=1 \quad \text { and } \quad p(z)=\frac{f(z)}{z} \quad(z \in \mathbb{U})
$$

in Theorem 2, we have the following corollary.
Corollary 8. Let $f \in \mathcal{A}$. If

$$
\left|\arg \frac{z f^{\prime}(z) f^{\gamma-1}(z)}{z^{\gamma}}\right|<\frac{\pi}{2} \delta(\eta, \gamma) \quad(\gamma \geqq 0 ; 0<\eta \leqq 1 ; z \in \mathbb{U}),
$$

where $\delta(\eta, \gamma)(0<\delta(\eta, \gamma)<1)$ is the solution of the equation:

$$
\begin{equation*}
\delta(\eta, \gamma)=\eta \gamma+\frac{2}{\pi} \tan ^{-1} \eta \tag{3.4}
\end{equation*}
$$

then

$$
\left|\arg \frac{f(z)}{z}\right|<\frac{\pi}{2} \eta \quad(z \in \mathbb{U})
$$

Remark 5. If we take

$$
\gamma=2 \quad \text { and } \quad \delta(\eta, 2)=1
$$

in Corollary 8, then we have the result obtained by Lee and Nunokawa [2].
Taking $\gamma=1$ in Corollary 8, we have the following result.
Corollary 9. Let $f \in \mathcal{A}$. If

$$
\left|\arg f^{\prime}(z)\right|<\frac{\pi}{2} \delta(\eta) \quad(0<\eta \leqq 1 ; z \in \mathbb{U})
$$

where $\delta(\eta)$ is the solution $\delta(\eta, 1)$ of the equation given by (3.4) with $\gamma=1$, then

$$
\left|\arg \frac{f(z)}{z}\right|<\frac{\pi}{2} \eta \quad(z \in \mathbb{U})
$$

Applying Corollary 9, we have the following result immediately.
Corollary 10. Let $f \in \mathcal{A}$. If

$$
\left|\arg f^{\prime}(z)\right|<\frac{\pi}{2} \delta(\eta) \quad(0<\eta \leqq 1 ; \in \mathbb{U})
$$

where $\delta(\eta)$ is given by Corollary 9 , then

$$
\left|\arg F^{\prime}(z)\right|<\frac{\pi}{2} \eta \quad(z \in \mathbb{U})
$$

where F is defined by

$$
F(z)=\int_{0}^{z} \frac{f(t)}{t} d t \quad(z \in \mathbb{U})
$$

Furthermore, from Theorem 2, we have the following result.
Corollary 11 Let $f \in \mathcal{A}$. If

$$
\left|\arg \frac{z f^{\prime}(z) f^{\gamma-1}(z)}{z^{\gamma}}\right|<\frac{\pi}{2} \delta(\eta, \gamma, c) \quad(0<\eta \leqq 1 ; c>-\gamma ; \gamma>0 ; z \in \mathbb{U})
$$

where $\delta(\eta, \gamma, c)(0<\delta(\alpha, \gamma, c)<1)$ is the solution of the equation:

$$
\delta(\eta, \gamma, c)=\eta \gamma+\frac{2}{\pi} \tan ^{-1} \frac{\eta}{c+\gamma}
$$

then

$$
\left|\arg \frac{z F^{\prime}(z) F^{\gamma-1}(z)}{z^{\gamma}}\right|<\frac{\pi}{2} \eta \quad(z \in \mathbb{U})
$$

where F is the integral operator defined by

$$
F(z)=\left(\frac{c+\gamma}{z^{c}} \int_{0}^{z} t^{c-1} f^{\gamma}(t) d t\right)^{1 / \gamma} \quad(z \in \mathbb{U})
$$

Proof. It follows from the definition of F that

$$
c F^{\gamma}(z)+\gamma z F^{\prime}(z) F^{\gamma-1}(z)=(c+\gamma) f^{\gamma}(z)
$$

Let

$$
p(z)=\frac{z F^{\prime}(z) F^{\gamma-1}(z)}{z^{\gamma}} \quad(z \in \mathbb{U})
$$

Then, after a simple calculation, we find that

$$
(c+\gamma) p(z)+z p^{\prime}(z)=(c+\gamma) \frac{z f^{\prime}(z) f^{\gamma-1}(z)}{z^{\gamma}}
$$

Hence, by applying Theorem 2, we have Corollary 11.

References

[1] N. E. Cho and J. A Kim, On a sufficient condition and an angular estimation for ϕ-like functions, Taiwanese J. Math. 2 (1998) 397-403.
[2] S. K. Lee and M. Nunokawa, On angular estimate of $f(z) / z$ certain analytic functions, Math. Japon. 45 (1997) 47-49.
[3] S. S. Miller, P. T. Mocanu and M. O. Reade, All alpha-convex functions are starlike, Rev. Roumaine Math. Pures Appl. 17 (1972) 1395-1397.
[4] S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordinations, Michigan Math. J. 32 (1985) 185-195.
[5] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, No. 225, Marcel Dekker Incorporated, New York and Basel 2000.
[6] P. T. Mocanu, Alpha-convex integral operators and strongly starlike functions, Studia Univ. Babeş-Bolyai Math. 34 (1989) 18-24.
[7] M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993) 234-237.
[8] M. Nunokawa and S. Owa, On certain differential subordinations, Pan Amer. Math. J. 3 (1993) 35-38.
[9] M. Nunokawa, S. Owa, H. Saitoh and S. Fukui, Arguments of certain analytic functions, Chinese J. Math. 23 (1995) 41-48.
[10] M. Nunokawa and D. K. Thomas, On convex and starlike functions in a sector, J. Austral. Math. Soc. Ser. A 60 (1996) 363-368.
[11] H. Shiraishi, S. Owa, T. Hayami, K. Kuroki and H. M. Srivastava, Starlike problems for certain analytic functions concerned with subordinations, Pan Amer. Math. J. 21 (2011) 63-77.
[12] H. M. Srivastava and S. S. Eker, Some applications of a subordination theorem for a class of analytic functions, Appl. Math. Lett. 21 (2008) 394-399.
[13] H. M. Srivastava, D.-G. Yang and N-E. Xu, Subordinations for multivalent analytic functions associated with the Dziok-Srivastava operator, Integral Transforms Spec. Funct. 20 (2009) 581-606.
[14] Q.-H. Xu, C.-B. Lv, N.-C. Luo and H. M. Srivastava, Sharp coefficient estimates for a certain general class of spirallike functions by means of differential subordination, Filomat 27 (2013) 1351-1356.
[15] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, Some applications of differential subordination and the Dziok-Srivastava convolution operator, Appl. Math. Comput. 230 (2014) 496-508.

[^0]: 2010 Mathematics Subject Classification. Primary 30C80; Secondary 30C45
 Keywords. Analytic functions; Differential subordination; Univalent functions; Strongly starlike function
 Received: 21 April 2014; Accepted: 12 Jun 2014
 Communicated by Hari M. Srivastava
 This work was supported by a Research Grant of Pukyong National University(2016 year).
 Email addresses: necho@pknu. ac.kr (Nak Eun Cho), hjlj.lee@gmail.com (Hyo Jeong Lee), jihyang1022@naver.com (Ji Hyang Park), rekhas@math.uvic.ca (Rekha Srivastava)

