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Abstract. A space of boundary values is constructed for minimal symmetric singular second-order dy-
namic operators on semi-infinite and infinite time scales in limit-point and limit-circle cases. A description
of all maximal dissipative, maximal accumulative, selfadjoint, and other extensions of such symmetric
operators is given in terms of boundary conditions.

1. Introduction and Preliminaries

The theory of extensions of symmetric operators is one of the main branches in operator theory closely
related to various fields of mathematics. Historically, J. von Neumann ([15]) pioneered the theory of
selfadjoint extensions of densely defined, closed symmetric operators. In operator theory there exists an
abstract scheme of constructing maximal dissipative (selfadjoint) extensions of symmetric operators that
are parametrized by contraction (unitary) operators (see [5, 7-9, 12, 14, 15-19]). However, regardless of
the general scheme, the problem of the description of the maximal dissipative (accumulative), selfadjoint,
and other extensions of a given symmetric operator via the boundary conditions is of considerable interest.
This problem is particularly interesting in the case of singular operators, because at the singular ends of the
interval under consideration the usual boundary conditions are in general meaningless (see [2, 3, 7, 8, 14,
18, 19]).

The study of dynamic equations on time scales is a new area of theoretical exploration in mathematics.
Time scale calculus allows us to study more general dynamic operators. In 1990, Hilger ([10]) introduced his
theory to unify some results obtained for differential and difference equations. Hilger’s results have been
developed by many authors (for example see [1, 4, 6, 11, 13, 20]). In this paper, we consider the minimal
symmetric singular second-order dynamic operators on semi-infinite and infinite time scales in limit-point
and limit-circle cases. We construct a space of boundary values and describe all maximal dissipative
(accumulative), selfadjoint and other extensions of minimal symmetric operators in terms of the boundary
conditions.

We consider the second-order (or Sturm-Liouville) dynamic expression

(τx)(t) =
1

r(t)
(−(p(t)x∆)∇ + q(t)x), t ∈ T+ := T ∩ [a,∞) , −∞ < a < +∞, (1.1)
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where T denotes a time scale which contains the forward jump of a and unbounded above ([4]). We assume
that p, q and r are real-valued, and p−1, q and r are locally ∇ integrable functions on T+, and r > 0 on T+

([4]). These conditions for p, q and r are minimal; note that there is no sign restriction on the coefficient p.
To pass from the expression (1.1) to operators, we introduce the Hilbert space L2

r (T+) consisting of all
complex valued functions x such that

∫
∞

a r(t) |x(t)|2 ∇t < +∞with the inner product (x, y) =
∫
∞

a r(t)x(t)y(t)∇t.
Denote byDmax the linear set of all functions x ∈ L2

r (T+) such that x is locally ∆ absolutely continuous
function on T+ and px∆ is locally ∇ absolutely continuous functions on T+ (see [6]), and τx ∈ L2

r (T+). The
expression x[∆] = px∆ will be called the first ∆ quasi-derivative of x. We define the maximal operator Lmax on
Dmax by the equality Lmaxx = τx. For each x, y ∈ Dmax we define the Wronski determinant (or Wronskian)
Wt(x, y) = x(t)y[∆](t) − x[∆](t)y(t), t ∈ T+.

For two arbitrary functions x, y ∈ Dmax, we have Green’s formula∫ t

a
r(ξ)(τx)(ξ))y(ξ)∇ξ −

∫ t

a
r(ξ)x(ξ)(τy)(ξ)∇ξ =

[
x, y

]
(t) −

[
x, y

]
(a), (1.2)

where
[
x, y

]
(t) := Wt(x, y). It is clear from (1.2) that limit

[
x, y

]
(∞) := limt→∞

[
x, y

]
(t) exists and is finite

for all x, y ∈ Dmax. For any function x ∈ Dmax, x (a) and x[∆] (a) can be defined by x(a) := limt→a+ x(t) and
x[∆] (a) := limt→a+ x[∆](t). These limits exist and are finite (since x is ∆ absolutely continuous and x[∆] is ∇
absolutely continuous functions on [a, c] ∩ T+, ∀c ∈ (a,∞)).

In L2
r (T+), we consider the dense linear set D0 consisting of smooth, compactly supported functions

on T+. Denote by L0 the restriction of the operator Lmax toD0. It follows from (1.2) that L0 is symmetric.
Consequently, it admits closure which we denote by Lmin. The domain Dmin of Lmin consists of precisely
those vectors x ∈ Dmax satisfying the conditions

x (a) = x[∆] (a) = 0,
[
x, y

]
(∞) = 0, ∀y ∈ Dmax. (1.3)

The minimal operator Lmin is a closed, symmetric operator with deficiency indices (1, 1) or (2, 2), and
Lmax = L∗min (see [7-8, 11, 14, 18-20]).

We denote by ϕ(t) and ψ(t) the solutions (real-valued) of the equation

τx = 0, t ∈ T+ (1.4)

satisfying the initial conditions

ϕ(a) = 1, ϕ
[∆]

(a) = 0, ψ(a) = 0, ψ
[∆]

(a) = 1. (1.5)

The Wronskian of the two solutions of (1.4) does not depend on t, and the two solutions of this equation
are linearly independent if and only if their Wronskian is non-zero ([4]). It follows from the conditions (1.5)
and the constancy of the Wronskian that

Wt(ϕ,ψ) =Wa(ϕ,ψ) = 1 (t ∈ T+) . (1.6)

Consequently, ϕ and ψ form a fundamental system of solutions of (1.4).

2. Selfadjoint and Nonselfadjoint Extensions of the Symmetric Operator with One Singular End Point

(a) Let symmetric operator Lmin has deficiency indices (1, 1), so the case of limit-point occurs for
dynamic expression τ or Lmin. (see [7-8, 11, 14, 18-20]). Then [x, y](∞) = 0 for all x, y ∈ Dmin. The domain
Dmin of the symmetric operator Lmin consist of precisely those vectors x ∈ Dmin satisfying the conditions:
x(a) = x[∆] (a) = 0.

Recall that a linear operator S (with dense domain D(S)) acting in some Hilbert space H is called
dissipative (accumulative) if =(S f , f ) ≥ 0 (=(S f , f ) ≤ 0) for all f ∈ D(S) and maximal dissipative (maximal
accumulative) if it does not have a proper dissipative (accumulative) extension ([9]).
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An important role in the theory of extensions is played by the concept of the space of boundary values
of the symmetric operator. The triplet (H ,Γ1,Γ2), where H is a Hilbert space and Γ1 and Γ2 are linear
mappings ofD (A∗) intoH , is called (see [9, p.152]) a space of boundary values of a closed symmetric operator
A acting in a Hilbert space H with equal (finite or infinite) deficiency indices if

(i)
(
A∗ f , 1

)
H −

(
f ,A∗1

)
H =

(
Γ1 f ,Γ21

)
H
−

(
Γ2 f ,Γ11

)
H
,∀ f , 1 ∈ D (A∗), and

(ii) for every F1,F2 ∈ H , there exists a vector f ∈ D (A∗) such that Γ1 f = F1 and Γ2 f = F2.
We denote by Γ1 and Γ2 the linear mappings ofDmax into C defined by

Γ1x = −x(a), Γ2x = x[∆](a). (2.1)

Then we have
Theorem 2.1. The triplet (C,Γ1,Γ2) defined according to (2.1) is a space of boundary values of the operator Lmin.
Proof. The first requirement of the definition of a space of boundary values holds in view

(
Lmaxx, y

)
−(

x,Lmaxy
)
,= −[x, y](a)

(
∀x, y ∈ Dmax

)
and(

Γ1x,Γ2y
)
C −

(
Γ2x,Γ1y

)
C = −x (a) y

[∆]
(a) + x[∆] (a) y (a)

= −
[
x, y

]
(a) =

(
Lmaxx, y

)
−

(
x,Lmaxy

)
, ∀x, y ∈ Dmax.

The second requirement requirement of the definition of a space of boundary values will be proved as
to following
Lemma 2.2. For any complex numbers α and β there is a function x ∈ Dmax satisfying the boundary conditions

x (a) = α, x[∆] (a) = β. (2.2)

Proof. Let us denote byLmin,c (Lmax,c) the minimal symmetric (maximal) operator generated by τ on the set
[a, c] ∩ T+ (c ∈ T+). Let y be an arbitrary vector in L2

r (a, c) satisfying(
y, ϕ

)
= β,

(
y, ψ

)
= −α. (2.3)

There is such an y even among the linear combination of ϕ and ψ. Indeed, if we set y = c1ϕ + c2ψ, then
conditions (2.3) are a system of equations for constants c1 and c2 whose determinant is the Gram determinant
of the linearly independent functions ϕ and ψ and is therefore non-zero. Denote by x0 (t) the solution of
τ(x) = y (t) (t ∈ [a, c] ∩ T+) satisfying the initial conditions x0 (c) = 0, x[∆]

0 (c) = 0. We first observe that x0 (t) is
expressed by

x0 (t) =

∫ c

t

{
ϕ(t)ψ(ξ) − ϕ(ξ)ψ(t)

}
r(ξ)y(ξ)∇ξ.

Observing that ϕ,ψ ∈ L2
r (a, c), we have x0 ∈ L

2
r (a, c) and, moreover, x0 ∈ Dmax,c. Further, applying Green’s

formula (1.2) to x0 and ϕ, we obtain(
y, ϕ

)
= (τ(x0), ϕ) =

[
x0, ϕ

]
(c) −

[
x0, ϕ

]
(a) + (x0, τ

(
ϕ
)
).

But τ
(
ϕ
)

= 0, and thus (x0, τ
(
ϕ
)
) = 0. Moreover, since x0 (c) = 0, x[∆]

0 (c) = 0, we have

−
[
x0, ϕ

]
(a) = −x0 (a)ϕ

[∆]
(a) + x[∆]

0 (a)ϕ (a) = x[∆]
0 (a) = β.

Analogously,

−
(
y, ψ

)
= −

(
τ (x0) , ψ

)
= −

[
x0, ψ

]
(c) +

[
x0, ψ

]
(a) −

(
x0, τ

(
ψ
))

=
[
x0, ψ

]
(a) = x0 (a)ψ

[∆]
(a) − x[∆]

0 (a)ψ (a) = x0 (a) = α.
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Therefore

x0 (a) = α, x[∆]
0 (a) = β, x0 (c) = 0, x[∆]

0 (c) = 0. (2.4)

Now let us define the function

x(t) =

{
x0(t), a ≤ t ≤ c, t ∈ T+

0, c ≤ t < ∞, t ∈ T+.

It is clear that x ∈ Dmax, then lemma is proved. �
Using Theorem 2.1 and [9, Theorem 1.6] we can write the following theorem.

Theorem 2.3. Every maximal dissipative (accumulative) extension Lθ of Lmin is determined by the equality
Lθx = Lmaxx on the vectors x inDmax satisfying the boundary condition

x[∆] (a) − θx (a) = 0, (2.5)

where =θ ≥ 0 or θ = ∞ (=θ ≤ 0 or θ = ∞). Conversely, for an arbitrary number θ with =θ ≥ 0 or θ = ∞ (=θ ≤ 0
or θ = ∞), condition (2.5) determines a maximal dissipative (accumulative) extension of Lmin. The selfadjoint
extensions of Lmin are obtained precisely when =θ = 0 or θ = ∞. For θ = ∞, the corresponding boundary condition
has the form x (a) = 0.

(b) We assume that Lmin has deficiency indices (2, 2), so that the limit-circle case holds for the dynamic
expression τ or the operator Lmin (see [7-8, 11, 14, 18-20]). Since Lmin has deficiency indices (2, 2), ϕ,ψ ∈
L

2
r (T+) and, moreover, ϕ,ψ ∈ Dmax.

Lemma 2.4. For arbitrary functions x, y ∈ Dmax, we have the equality (the Plücker identity)[
x, y

]
(t) =

[
x, ϕ

]
(t)

[
y, ψ

]
(t) −

[
x, ψ

]
(t)

[
y, ϕ

]
(t), t ∈ T+∪{∞}. (2.6)

Proof. Since the functions ϕ and ψ are real-valued and since
[
ϕ,ψ

]
(t) = 1 (t ∈ T+∪{∞}) , one obtains[

x, ϕ
]

(t)
[
y, ψ

]
(t) −

[
x, ψ

]
(t)

[
y, ϕ

]
(t) = (xϕ[∆]

− x[∆]ϕ)(t)(yψ[∆]
− y[∆]ψ)(t)

−(xψ[∆]
− x[∆]ψ)(t)(yϕ[∆]

− y[∆]ϕ)(t) = (xϕ[∆]yψ[∆]
− xϕ[∆]y[∆]ψ − x[∆]ϕyψ[∆]

+x[∆]ϕy[∆]ψ − xψ[∆]yϕ[∆] + xψ[∆]y[∆]ϕ + x[∆]ψyϕ[∆]
− x[∆]ψy[∆]ϕ)(t)

= (−xy[∆]
+ x[∆]y)(t)(ϕ[∆]ψ − ϕψ[∆])(t) =

[
x, y

]
(t).

The lemma is proved. �
Theorem 2.5. The domain Dmin of the operator Lmin consists of precisely those functions f ∈ Dmax satisfying the
following boundary conditions

f (a) = f [∆](a) = 0,
[

f , ϕ
]

(∞) =
[

f , ψ
]

(∞) = 0. (2.7)

Proof. As noted above, the domainDmin of Lmin coincides with the set of all functions f ∈ Dmax, satisfying
(2.3). By virtue of Lemma 2.4, (2.3) is equivalent to

f (a) = f [∆](a) = 0,
[

f , ϕ
]

(∞)
[
1̄, ψ

]
(∞) −

[
f , ψ

]
(∞)

[
1̄, ϕ

]
(∞) = 0. (2.8)

Further
[
1̄, ψ

]
(∞) and

[
1̄, ϕ

]
(∞)

(
y ∈ Dmax

)
can be arbitrary, therefore equality (2.8) for all y ∈ Dmax is

possible if and only if the conditions (2.7) hold. The theorem is proved. �
We denote by Θ1 and Θ2 the linear mappings ofDmax into C2 defined by

Θ1 f =

(
− f (a)[

f , ϕ
]

(∞)

)
,Θ2 f =

(
f [∆](a)[
f , ψ

]
(∞)

)
. (2.9)

Then we have
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Theorem 2.6. The triplet
(
C2,Θ1,Θ2

)
defined according to (2.9) is a space of boundary values of the operator Lmin.

Proof. The first condition of the definition of a space of boundary values holds in view of (1.2) and Lemma
2.4: (

Θ1 f ,Θ21
)
C2 −

(
Θ2 f ,Θ11

)
C2 = − f (a) 1̄

[∆]
(a) + f [∆] (a) 1̄ (a))

+
[

f , ϕ
]

(∞)
[
1̄, ψ

]
(∞) −

[
f , ψ

]
(∞)

[
1̄, ϕ

]
(∞)

=
[

f , 1
]

(∞) −
[

f , 1
]

(a) =
(
Lmax f , 1

)
−

(
f ,Lmax1

)
, ∀ f , 1 ∈ Dmax.

The second condition will be proved as the following lemma.
Lemma 2.7. For any complex numbers α, β, γ and δ, there is a function x ∈ Dmax satisfying the boundary conditions

x (a) = α, x[∆] (a) = β,
[
x, ϕ

]
(∞) = γ,

[
x, ψ

]
(∞) = δ. (2.10)

Proof. Let z be an arbitrary vector in L2
r (T+) satisfying(

z, ϕ
)

= γ + β,
(
z, ψ

)
= δ − α. (2.11)

There is such an z even among the linear combination of ϕ and ψ. Indeed, if we set z = c1ϕ + c2ψ,
then conditions (2.11) are a system of equations for constants c1 and c2 whose determinant is the Gram
determinant of the linearly independent functions ϕ and ψ and is therefore nonzero.

Denote by x (t) the solution of τ(x) = z (t) (t ∈ T+) satisfying the initial conditions x (a) = α, x[∆](a) = β.
We claim that x is the desired function. We first observe that x (t) is expressed by

x (t) = αϕ (t) + βψ (t) +

∫ t

a

{
ϕ(t)ψ(ξ) − ϕ(ξ)ψ(t)

}
r(ξ)z(ξ)∇ξ.

Observing that ϕ,ψ ∈ L2
r (T+) , we have x ∈ L2

r (T+) and, moreover, x ∈ Dmax. Further, applying Green’s
formula (1.2) to x and ϕ, we obtain(

z, ϕ
)

= (τ(x), ϕ) =
[
x, ϕ

]
(∞) −

[
x, ϕ

]
(a) + (x, τ

(
ϕ
)
).

But τ
(
ϕ
)

= 0, and thus (x, τ
(
ϕ
)
) = 0. Moreover, since x (a) = α, x[∆] (a) = β, we have[

x, ϕ
]

(a) = x (a)ϕ
[∆]

(a) − x[∆] (a)ϕ (a) = −β.

Therefore,(
z, ϕ

)
=

[
x, ϕ

]
(∞) + β. (2.12)

Then, from (2.11) and (2.12), we obtain
[
x, ϕ

]
(∞) = γ.

Analogously,(
z, ψ

)
=

(
τ (x) , ψ

)
=

[
x, ψ

]
(∞) −

[
x, ψ

]
(a) +

(
x, τ

(
ψ
))

=
[
x, ψ

]
(∞) − α. (2.13)

Then, from (2.11) and (2.13), we obtain
[
x, ψ

]
(∞) = δ. Lemma 2.7 is proved and consequently, so is Theorem

2.6. �
Using Theorem 2.6 and [9, Theorem 1.6], we can state the following theorem.

Theorem 2.8. For any contraction K inC2 the restriction of the operatorL to the set of functions f ∈ Dmax satisfying
the boundary condition

(K − I) Θ1 f + i (K + I) Θ2 f = 0 (2.14)

or

(K − I) Θ1 f − i (K + I) Θ2 f = 0 (2.15)
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is, respectively, a maximal dissipative or a maximal accumulative extension of the operator Lmin. Conversely, every
maximal dissipative (accumulative) extension of Lmin is the restriction of Lmax to the set of vectors f ∈ Dmax
satisfying (2.14) ((2.15)), and the contraction K is uniquely determined by the extensions. These conditions define a
selfadjoint extension if and only if K is unitary. In the latter case (2.14) and (2.15) are, equivalent to the condition
(cos A) Θ1 f − (sin A) Θ2 f = 0, where A is a Hermitian matrix in C2. The general form of the dissipative and
accumulative extensions of the operator Lmin is given by the conditions

K
(
Θ1 f + iΘ2 f

)
= Θ1 f − iΘ2 f ,Θ1 f + iΘ2 f ∈ D (K) (2.16)

K
(
Θ1 f − iΘ2 f

)
= Θ1 f + iΘ2 f ,Θ1 f − iΘ2 f ∈ D (K) (2.17)

respectively, where K is a linear operator inC2 with
∥∥∥K f

∥∥∥ ≤ ∥∥∥ f
∥∥∥ , f ∈ D (K). The general form of symmetric extensions

is given by the formulae (2.16) and (2.17), where K is an isometric operator.
In particular, the boundary conditions ( f ∈ Dmax)

f [∆] (a) − h1 f (a) = 0, (2.18)[
f , ϕ

]
(∞) − h2

[
f , ψ

]
(∞) = 0 (2.19)

with =h1 ≥ 0 or h1 = ∞, and =h2 ≥ 0 or h2 = ∞ (=h1 ≤ 0 or h1 = ∞, and =h2 ≤ 0 or h2 = ∞) describe all
maximal dissipative (maximal accumulative) extensions of Lmin with separated boundary conditions. The selfadjoint
extensions of Lmin are obtained precisely when =h1 = 0 or h1 = ∞, and =h2 = 0 or h2 = ∞. Here for h1 = ∞
(h2 = ∞), condition (2.18) ((2.19)) should be replaced by f (a) = 0

([
f , ψ

]
(∞) = 0

)
.

3. Selfadjoint and Nonselfadjoint Extensions of the symmetric Operator with Two Singular End Points

We consider the second-order dynamic expression

(τx)(t) =
1

r(t)
(−(p(t)x∆)∇ + q(t)x), t ∈ T := T ∩ (−∞,∞), (3.1)

where T denotes a time scale unbounded above and below. We assume that p, q and r are real-valued, and
p−1, q and r are locally ∇ integrable functions on T, and r > 0 on T.

Denote by Dmax the linear set of all vectors x ∈ L2
r (T) such that x is locally ∆ absolutely continuous

function on T and px∆ is locally ∇ absolutely continuous functions on T ([6]), and τx ∈ L2
r (T). We define

the maximal operator Lmax onDmax by the equality Lmaxx = τ(x).
For two arbitrary vectors x, y ∈ Dmax we have Green’s formula(
Lmaxx, y

)
−

(
x,Lmaxy

)
=

[
x, y

]
(∞) −

[
x, y

]
(−∞). (3.2)

In L2
r (T) , we consider the dense linear setD0 consisting of smooth, compactly supported functions on

T. Denote by L0 the restrictions of the operator Lmax to D0. It follows from (3.2) that L0 is symmetric.
Consequently, it admits closure which is denoted by Lmin. The domain of minimal operator Lmin consists of
precisely those vectors x ∈ Dmax satisfying the conditions[

x, y
]

(∞) −
[
x, y

]
(−∞) = 0, ∀y ∈ Dmax. (3.3)

The operator Lmin is a symmetric operator with deficiency indices (0, 0), (1, 1) or (2, 2) and Lmax = L∗min
(see [7-8, 11, 14, 18-20]). For deficiency indices (0, 0) the operator Lmin is selfadjoint, that is, L∗min = Lmin =
Lmax.

Let symmetric operator Lmin has deficiency indices (m,m) (1 ≤ m ≤ 2). We denote by L−min and L−min
the minimal symmetric operators generated by the expression τ on the intervals (−∞, c] ∩ T and [c,∞) ∩ T
(c ∈ T), respectively. We know ([7, 8, 14, 18]) that the defect number def Lmin of the operator Lmin is
determined by the formula de fLmin = de fL+

min + de fL−min−2. From this we have de fL+
min + de fL−min = 2 + m.

If we put m+ := de fL+
min, m− := de fL−min, then we obtain 1 ≤ m+ ≤ 2, 1 ≤ m− ≤ 2.
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We say thatLmin has deficiency indices (m,m) at −∞ (respectively, at∞), where 1 ≤ m ≤ 2 if the operator
L
−

min (respectivelyL+
min) has deficiency indices (m,m). IfLmin has deficiency indices (1, 1) at −∞ (at∞) then[

x, y
]

(−∞) = 0 (
[
x, y

]
(∞) = 0) for all x, y ∈ Dmax.

We denote by φ and χ the solutions of equation τx = 0 when t ∈ T satisfying the conditions

φ (c) = 1, φ[∆] (c) = 0, χ (c) = 0, χ[∆] (c) = 1 (c ∈ T). (3.4)

Lemma 2.4 clearly remains in force also for the x, y ∈ Dmax (t ∈ T∪{−∞,∞}). Therefore, the next theorem
can be proved in the same way as in the case of the two singular end points.
Theorem 3.1. If Lmin has deficiency indices (2, 2), then its domain Dmin consists of precisely those x ∈ Dmax
satisfying the boundary conditions[

x, φ
]

(−∞) = [x, χ] (−∞) =
[
x, φ

]
(∞) =

[
φ, χ

]
(∞) = 0.

But if Lmin has deficiency indices (2, 2) at −∞ (at ∞) and (1, 1) at ∞ (at −∞), then Dmin consists of all the
functions x ∈ Dmax satisfying the boundary conditions[

x, φ
]

(−∞) = [x, χ] (−∞) = 0 (
[
x, φ

]
(∞) = [x, χ] (∞) = 0).

(a) We assume the symmetric operator Lmin has deficiency indices (2, 2). We consider the following
linear maps ofDmax into C2

Φ1x =

(
[x, χ] (−∞)[
x, φ

]
(∞)

)
, Φ2x =

( [
x, φ

]
(−∞)

[x, χ] (∞)

)
. (3.5)

Then we have
Theorem 3.2. The triplet

(
C2,Φ1,Φ2

)
defined according to (3.5) is a space of boundary values of the operator Lmin.

Proof. The first condition of the definition of a space of boundary values holds in view of (3.2) and Lemma
2.4 (for t ∈ T∪{−∞,∞}):(

Φ1x,Φ2y
)
C2 −

(
Φ2x,Φ1y

)
C2 = [x, χ] (−∞)

[
y, φ

]
(−∞)

−

[
x, φ

]
(−∞)

[
y, χ

]
(−∞) +

[
x, φ

]
(∞)

[
y, χ

]
(∞) − [x, χ] (∞)

[
y, φ

]
(∞)

=
[
x, y

]
(∞) −

[
x, y

]
(−∞) =

(
Lmaxx, y

)
−

(
x,Lmaxy

) (
∀ x, y ∈ Dmax

)
.

The second condition will be proved as the following lemma.
Lemma 3.3. For any complex numbers α, β, γ and δ, there is a function x ∈ Dmax satisfying[

x, φ
]

(−∞) = α, [x, χ] (−∞) = β,
[
x, φ

]
(∞) = γ, [x, χ] (∞) = δ. (3.6)

Proof. The operators L+
min and L−min have deficiency indices (2, 2). By Lemma 2.7, there is a function

x+ ∈ D
+
max (whereD+

max denotes the domain of a corresponding maximal operatorL+
max = (L+

min)∗) satisfying
the conditions

x+ (c) = γ0, x
[∆]

+ (c) = γ1, ∀γ0, γ1 ∈ C, (3.7)[
x+, φ

]
(∞) = γ, [x+, χ] (∞) = δ. (3.8)

By Lemma 2.7, there is a function x− ∈ D−max (whereD−max denotes the domain of a corresponding maximal
operator L−max = (L−min)∗) satisfying the conditions

x− (c) = γ0, x
[∆]

−
(c) = γ1, (3.9)
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x−, φ

]
(−∞) = α, [x−, χ] (−∞) = β. (3.10)

Now we let

x (t) =

{
x− (t) , −∞ < t ≤ c, t ∈ T,
x+ (t) , c ≤ t < ∞, t ∈ T.

The conditions (3.8) and (3.9) then ensure that the functions x and x[∆]
are continuous at the point t = c.

Hence, x ∈ Dmax and the conditions (3.6) are satisfied. Lemma 3.3 and Theorem 3.2 is proved. �
Using Theorem 3.2 and [9, Theorem 1.6] we can state the following theorem.

Theorem 3.4. For any contraction S in C2 the restriction of the operator Lmax to the set of vectors 1 ∈ Dmax
satisfying the boundary condition

(S − I) Φ11 + i (S + I) Φ21 = 0 (3.11)

or

(S − I) Φ11 − i (S + I) Φ21 = 0 (3.12)

is, respectively, a maximal dissipative or a maximal accumulative extension of the operator Lmin. Conversely, every
maximal dissipative (accumulative) extension of Lmin is the restriction of Lmax to the set of vectors 1 ∈ Dmax
satisfying (3.11) ((3.12)), and the contraction S is uniquely determined by the extension. These conditions define a
selfadjoint extension if and only if S is unitary. In the latter case, (3.11) and (3.12) are equivalent to the condition
(cos A) Φ11−(sin A) Φ21 = 0,where A is a Hermitian matrix inC2. The general form of dissipative and accumulative
extensions of the operator Lmin is given by the conditions

S
(
Φ11 + iΦ21

)
= Φ11 − iΦ21, Φ11 + iΦ21 ∈ D (S) (3.13)

S
(
Φ11 − iΦ21

)
= Φ11 + iΦ21, Φ11 − iΦ21 ∈ D (S) (3.14)

respectively, where S is a linear operator inC2 with
∥∥∥S f

∥∥∥ ≤ ∥∥∥ f
∥∥∥ , f ∈ D (S). The general form of symmetric extensions

is given by the formulae (3.13) and (3.14), where S is an isometric operator.
In particular, the boundary conditions (1 ∈ Dmax)[
1, χ

]
(−∞) − θ1

[
1, φ

]
(−∞) = 0 (3.15)[

1, φ
]

(∞) − θ2
[
1, χ

]
(∞) = 0 (3.16)

with =θ1 ≥ 0 or θ1 = ∞, and =θ2 ≥ 0 or θ2 = ∞ (=θ1 ≤ 0 or θ1 = ∞, and =θ2 ≤ 0 or θ2 = ∞) describe all
maximal dissipative (maximal accumulative) extensions of Lmin with separated boundary conditions. The selfadjoint
extensions of Lmin are obtained precisely when =θ1 = 0 or θ1 = ∞, and =θ2 = 0 or θ2 = ∞. Here for θ1 = ∞

(θ2 = ∞), condition (3.15) ((3.16)) should be replaced by
[
1, φ

]
(−∞) = 0

([
1, χ

]
(∞) = 0

)
.

(b) We now letL−min has deficiency indices (1, 1) andL+
min has deficiency indices (2, 2). The operatorLmin

has deficiency indices (1, 1). Then
[
x, y

]
(−∞) = 0 for all x, y ∈ Dmax and(

Lmaxx, y
)
−

(
x,Lmaxy

)
=

[
x, y

]
(∞), ∀x, y ∈ Dmax. (3.17)

We consider the following linear maps ofDmax into C

Ψ1x =
[
x, φ

]
(∞), Ψ2x = [x, χ] (∞). (3.18)

Then we have
Theorem 3.5. The triplet (C,Ψ1,Ψ2) defined according to (3.18) is a space of boundary values of the operator Lmin.
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Proof. The first condition of the definition of a space of boundary values holds in view of (3.17) and Lemma
2.4: (

Ψ1x,Ψ2y
)
C −

(
Ψ2x,Ψ1y

)
C =

[
x, φ

]
(∞)

[
y, χ

]
(∞) − [x, χ] (∞)

[
y, φ

]
(∞)

=
[
x, y

]
(∞) =

(
Lmaxx, y

)
−

(
x,Lmaxy

) (
∀x, y ∈ Dmax

)
.

The second condition will be proved as the following lemma.
Lemma 3.6. For any complex numbers α, β, there is a function x ∈ Dmax satisfying

[
x, φ

]
(∞) = α, [x, χ] (∞) = β.

Proof. The operatorL+
min has deficiency indices (2.2). By Lemma 2.5, there is a function x+ ∈ D

+
max satisfying

the conditions

x+ (c) = 0, x[∆]
+ (c) = 0,

[
x+, φ

]
(∞) = α, [x+, χ] (∞) = β. (3.19)

Now we let

x (t) =

{
0, −∞ < t ≤ c, t ∈ T,
x+ (t) , c ≤ t < ∞, t ∈ T.

Then we have x ∈ Dmax and
[
x, φ

]
(∞) = α, [x, χ] (∞) = β. The Lemma 3.6 and Theorem 3.5 is proved. �

Using Theorem 3.5 and [9, Theorem 1.6] we can state the following theorem.
Theorem 3.7. Every maximal dissipative (accumulative) extensions Lω of Lmin is determined by the equality
Lωx = Lmaxx of the vectors x inDmax satisfying the boundary conditions[

x, φ
]

(∞) − ω [x, χ] (∞) = 0, (3.20)

where =ω ≥ 0 or ω = ∞ (=ω ≤ 0 or ω = ∞). Conversely, for an arbitrary number ω with =ω ≥ 0 or ω = ∞
(=ω ≤ 0 or ω = ∞) , condition (3.20) determines a maximal dissipative (accumulative) extension of Lmin. The
selfadjoint extension of Lmin are obtained precisely when =ω = 0 or ω = ∞.

(c) We now letL−min has deficiency indices (2, 2) andL+
min has deficiency indices (1, 1). The operatorLmin

has deficiency indices (1, 1). Then
[
x, y

]
(∞) = 0 for all x, y ∈ Dmax and(

Lmaxx, y
)
−

(
x,Lmaxy

)
= −

[
x, y

]
(−∞), ∀x, y ∈ Dmax. (3.21)

We consider the following linear maps ofDmax into C

Υ1x = [x, χ] (−∞), Υ2x =
[
x, φ

]
(−∞). (3.22)

Then, the next two theorem can be proved in the same way as in the case (b).
Theorem 3.8. The triplet (C,Υ1,Υ2) defined according to (3.22) is a space of boundary values of the operator Lmin.
Theorem 3.9. Every maximal dissipative (accumulative) extension Lϑ of Lmin is determined by the equality
Lϑx = Lmaxx on the vectors x inDmax satisfying the boundary condition

[x, χ] (−∞) − ϑ
[
x, φ

]
(−∞) = 0, (3.23)

where =ϑ ≥ 0 or ϑ = ∞ (=ϑ ≤ 0 or ϑ = ∞). Conversely, for an arbitrary number ϑ with =ϑ ≥ 0 or ϑ =
∞ (=ϑ ≤ 0 or ϑ = ∞) , condition (3.23) determines a maximal dissipative (accumulative) extension of Lmin. The
selfadjoint extensions of Lmin are obtained precisely when =ϑ = 0 or ϑ = ∞.
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