Filomat 30:7 (2016), 1891–1898 DOI 10.2298/FIL1607891M

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Duality of Herz-Morrey Spaces of Variable Exponent

Yoshihiro Mizuta^a

^aDepartment of Mechanical Systems Engineering, Hiroshima Institute of Technology, 2-1-1 Miyake,Saeki-ku,Hiroshima 731-5193, Japan

Abstract. In this paper, we discuss the duality between the inner and outer Herz-Morrey spaces of variable exponent.

1. Introduction

Variable exponent function spaces are useful for discussing nonlinear partial differential equations with non-standard growth condition, in connection with the study of elasticity, fluid mechanics; see [20].

Let *G* be a bounded open set in \mathbb{R}^n , whose diameter is denoted by d_G . Let $\omega(\cdot, \cdot) : G \times (0, \infty) \to (0, \infty)$ be a uniformly almost monotone function on $G \times (0, \infty)$ satisfying the uniformly doubling condition. Following Samko [21], for $x_0 \in G$ and variable exponents $p(\cdot)$ and $q(\cdot)$, we consider the inner (small) Herz-Morrey space $\mathcal{H}_{\{x_0\}}^{p(\cdot),q(\cdot),\omega}(G)$ and the outer (complementary) Herz-Morrey space $\mathcal{H}_{\{x_0\}}^{p(\cdot),q(\cdot),\omega}(G)$ of variable exponent; see also [2], [4], [5], [6], [8], [13], [16], [20], etc. . Following Di Fratta-Fiorenza [10] and Gogatishvili-Mustafayev [11], [12], we study the associate spaces among those Herz-Morrey spaces, as extensions of [17], [18]. This also gives another characterizations of Morrey spaces by Adams-Xiao [1] (see also [12]).

2. Variable Exponent Lebesgue Spaces

Let μ be a nonnegative Borel measure on an open set $G \subset \mathbf{R}^n$. Consider a measurable function $p(\cdot)$ on G satisfying

(P0) $1 \le p(x) \le \infty$ for all $x \in G$;

 $p(\cdot)$ is referred to as a variable exponent. The variable Lebesgue space $L^{p(\cdot)}(G, \mu)$ is the family of all measurable functions f such that

$$\begin{split} \|f\|_{L^{p(\cdot)}(G,\mu)} &= \inf \left\{ \lambda > 0 : \int_{G_{p<\infty}} \left(\frac{|f(y)|}{\lambda} \right)^{p(y)} d\mu(y) \le 1 \right\} \\ &+ \|f\|_{L^{\infty}(G_{p=\infty},\mu)} < \infty, \end{split}$$

where $G_{p<\infty} = \{x \in G : p(x) < \infty\}$ and $G_{p=\infty} = \{x \in G : p(x) = \infty\}$. If μ is the Lebesgue measure on G, then we write $L^{p(\cdot)}(G)$, simply. For fundamental facts of the variable Lebesgue spaces, see [7] and [9].

Note here the following result:

²⁰¹⁰ Mathematics Subject Classification. Primary 46E30, 42B35

Keywords. Herz-Morrey space of variable exponent, Banach function space, associate space, duality

Received: 22 October 2014; Accepted: 16 April 2015

Communicated by Hari M. Srivastava

Email address: y.mizuta.5x@it-hiroshima.ac.jp (Yoshihiro Mizuta)

LEMMA 2.1. $L^{p(\cdot)}(G)$ is a Banach function space in the sense of Benett-Sharpley [3].

3. Herz-Morrey Spaces

We consider the family $\Omega(G)$ of all positive functions $\omega(\cdot, \cdot) : G \times (0, \infty) \to (0, \infty)$ satisfying the following conditions:

($\omega 0$) $\omega(x,0) = \lim_{r \to +0} \omega(x,r) = 0$ for all $x \in G$ or $\omega(x,0) = \infty$ for all $x \in G$;

(ω 1) $\omega(x, \cdot)$ is uniformly almost monotone on $(0, \infty)$, that is, there exists a constant $A_1 > 0$ such that $\omega(x, \cdot)$ is uniformly almost increasing on $(0, \infty)$, that is,

 $\omega(x, r) \le A_1 \omega(x, s)$ for all $x \in G$ and 0 < r < s

or $\omega(x, \cdot)$ is uniformly almost decreasing on $(0, \infty)$, that is,

$$\omega(x,s) \le A_1 \omega(x,r)$$
 for all $x \in G$ and $0 < r < s$;

(ω 2) $\omega(x, \cdot)$ is uniformly doubling on (0, ∞), that is, there exists a constant $A_2 > 1$ such that

$$A_2^{-1}\omega(x,r) \le \omega(x,2r) \le A_2\omega(x,r)$$
 for all $x \in G$ and $r > 0$;

and

(ω 3) there exists a constant $A_3 > 1$ such that

 $A_3^{-1} \le \omega(x, 1) \le A_3$ for all $x \in G$.

Following Samko [21], for $x_0 \in G$, variable exponents $p(\cdot), q(\cdot)$ and a weight $\omega \in \Omega(G)$, we consider the inner (small) Herz-Morrey space $\underline{\mathcal{H}}_{[x_0]}^{p(\cdot),q(\cdot),\omega}(G)$ consisting of all measurable functions f on G satisfying

 $||f||_{\underline{\mathcal{H}}^{p(\cdot),q(\cdot),\omega}_{(x_0)}(G)} = ||\omega(x_0,t)||f||_{L^{p(\cdot)}(B(x_0,t))}||_{L^{q(\cdot)}((0,d_G),dt/t)} < \infty;$

more precisely,

$$\|f\|_{\underline{\mathcal{H}}_{\{x_0\}}^{p(\cdot),q(\cdot),\omega}(G)} = \inf\left\{\lambda > 0: \int_0^{d_G} \left(\omega(x_0,t)\|f/\lambda\|_{L^{p(\cdot)}(B(x_0,t))}\right)^{q(t)} \frac{dt}{t}\right\}.$$

Set

$$\underline{\mathcal{H}}^{p(\cdot),q(\cdot),\omega}(G) = \bigcap_{x_0 \in G} \underline{\mathcal{H}}^{p(\cdot),q(\cdot),\omega}_{\{x_0\}}(G)$$

and

$$\mathcal{H}^{p(\cdot),q(\cdot),\eta}_{\widetilde{\mathcal{A}}}(G) = \sum_{x_0 \in G} \underline{\mathcal{H}}^{p(\cdot),q(\cdot),\eta}_{[x_0]}(G),$$

whose quasi-norms are defined by

$$|f||_{\underline{\mathcal{H}}^{p(\cdot),q(\cdot),\omega}(G)} = \sup_{x_0 \in G} ||f||_{\underline{\mathcal{H}}^{p(\cdot),q(\cdot),\omega}(G)}$$

and

1

$$\|f\|_{\mathcal{H}^{p(\cdot),q(\cdot),\omega}(G)} = \inf_{|f|=\sum_j |f_j|, \{x_j\}\subset G} \sum_j \|f_j\|_{\underline{\mathcal{H}}^{p(\cdot),q(\cdot),\omega}_{\{x_j\}}(G)'}$$

respectively.

We further consider the outer (complementary) Herz-Morrey space $\overline{\mathcal{H}}_{\{x_0\}}^{p(\cdot),\mu(\cdot),\omega}(G)$ consisting of all measurable functions *f* on *G* satisfying

$$\|f\|_{\overline{\mathcal{H}}_{(x_0)}^{p(\cdot),q(\cdot),\omega}(G)} = \|\omega(x_0,t)\|f\|_{L^{p(\cdot)}(G\setminus B(x_0,t))}\|_{L^{q(\cdot)}((0,d_G),dt/t)} < \infty.$$

Set

$$\overline{\mathcal{H}}^{p(\cdot),q(\cdot),\omega}(G) = \bigcap_{x_0 \in G} \overline{\mathcal{H}}^{p(\cdot),q(\cdot),\omega}_{\{x_0\}}(G)$$

and

$$\widetilde{\mathcal{H}}^{p(\cdot),q(\cdot),\omega}(G) = \sum_{x_0 \in G} \overline{\mathcal{H}}_{\{x_0\}}^{p(\cdot),q(\cdot),\omega}(G),$$

whose quasi-norms are defined by

$$\|f\|_{\overline{\mathcal{H}}^{p(\cdot),q(\cdot),\omega}(G)} = \sup_{x_0 \in G} \|f\|_{\overline{\mathcal{H}}^{p(\cdot),q(\cdot),\omega}(G)}_{[x_0]}(G)$$

and

$$\|f\|_{\widetilde{\mathcal{H}}^{p(\cdot),q(\cdot),\omega}(G)} = \inf_{|f|=\sum_{j}|f_{j}|,\{x_{j}\}\subset G}\sum_{j}\|f_{j}\|_{\widetilde{\mathcal{H}}^{p(\cdot),q(\cdot),\omega}_{\{x_{j}\}}(G)'}$$

respectively.

Then note that

$$\overline{\mathcal{H}}_{\{x_0\}}^{p(\cdot),q(\cdot),\omega}(G) \supset L^{p(\cdot)}(G) \qquad \text{when } \|\omega(x_0,\cdot)\|_{L^{q(\cdot)}((0,d_G),dt/t)} < \infty$$

and

$$\overline{\mathcal{H}}^{p(\cdot),q(\cdot),\omega}(G) = L^p(G) \qquad \text{when } \|\omega(x,\cdot)\|_{L^{q(\cdot)}((0,d_G),dt/t)} < \infty \text{ for all } x \in G$$

Further,

$$\overline{\mathcal{H}}_{\{x_0\}}^{p(\cdot),q(\cdot),\omega}(G) = \{0\} \qquad \text{when } \|\omega(x_0,\cdot)\|_{L^{q(\cdot)}((0,d_G),dt/t)} = \infty.$$

Is is worth to see the following facts.

LEMMA 3.1. Both $\underline{\mathcal{H}}_{\{x_0\}}^{p(\cdot),q(\cdot),\omega}(G)$ and $\overline{\mathcal{H}}_{\{x_0\}}^{p(\cdot),q(\cdot),\omega}(G)$ are Banach function spaces in the sense of Benett-Sharpley [3].

Lемма 3.2. *For* x_0 ∈ *G*,

 $\underline{\mathcal{H}}_{[x_0]}^{p(\cdot),\infty,\omega}(G) \subset \underline{\mathcal{H}}_{[x_0]}^{p(\cdot),q(\cdot),\omega}(G) \qquad and \qquad \overline{\mathcal{H}}_{[x_0]}^{p(\cdot),\infty,\omega}(G) \subset \overline{\mathcal{H}}_{[x_0]}^{p(\cdot),q(\cdot),\omega}(G).$

Throughout this note, let *C* denote various positive constants independent of the variables in question. We now show that the Herz-Morrey spaces coincide with those with a constant exponent *q* if $q(\cdot)$ is Hölder continuous at the origin.

(Q)
$$|q(t) - q(0)| \le \frac{c_q}{\log(1 + t^{-1})}$$
 for $0 < t < d_G$.

Then

$$\underline{\mathcal{H}}_{\{x_0\}}^{p(\cdot),q(\cdot),\omega}(G) = \underline{\mathcal{H}}_{\{x_0\}}^{p(\cdot),q(0),\omega}(G) \quad for all \ x_0 \in G$$

and

$$\underline{\mathcal{H}}^{p(\cdot),q(\cdot),\omega}(G) = \underline{\mathcal{H}}^{p(\cdot),q(0),\omega}(G).$$

The same is true for $\overline{\mathcal{H}}_{\{x_0\}}^{p(\cdot),q(\cdot),\omega}(G)$.

Proof. Let *f* be a nonnegative measurable function on *G* satisfying

$$\|f\|_{\underline{\mathcal{H}}^{p(\cdot),q(\cdot),\omega}_{\{x_0\}}} \leq 1.$$

Then

$$\int_0^{d_G} \left(\omega(x_0, t) ||f||_{L^{p(\cdot)}(B(x_0, t))} \right)^{q(t)} dt/t \le 1.$$

We have

$$\omega(x_0, t) \|f\|_{L^{p(\cdot)}(B(x_0, t))} \le C$$

for $0 < t < d_G$. Take a > 0. Then condition (Q) gives

$$\left(\omega(x_0,t)||f||_{L^{p(\cdot)}(B(x_0,t))}\right)^{q(0)} \le C\left(\omega(x_0,t)||f||_{L^{p(\cdot)}(B(x_0,t))}\right)^{q(t)} + t^{aq(0)},$$

which gives

$$\int_0^{d_G} \left(\omega(x_0, t) ||f||_{L^{p(\cdot)}(B(x_0, t))} \right)^{q(0)} dt/t \le C.$$

Thus it follows that

$$\|f\|_{\underline{\mathcal{H}}^{p(\cdot),q(0),\omega}_{\{x_0\}}} \leq C,$$

which implies that

$$\mathcal{H}^{p(\cdot),q(\cdot),\omega}(G) \subset \mathcal{H}^{p(\cdot),q(0),\omega}(G).$$

The converse can be treated similarly. \Box

We consider the grand Lebesgue space $L^{p}(G)$ consisting of measurable functions f on G such that

$$\sup_{0<\varepsilon< p-1}\varepsilon\int_G|f(y)|^{p-\varepsilon}dy<\infty.$$

Grand Lebesgue spaces were introduced in [14] for the study of Jacobian, which is useful for the theory of partial differential equations (see [15]).

PROPOSITION 3.4. Set $\omega(x, r) = r^{\nu}$ with $\nu > 0$. If $q = np/(n + \nu) > 1$, then

$$\overline{\mathcal{H}}_{\{x_0\}}^{p,\infty,\omega}(G) \subset L^{q)}(G).$$

Proof. Let *f* be a nonnegative measurable function on *G* such that

 $t^{\nu} ||f||_{L^{p}(G \setminus B(x_{0},t))} \le 1$ for $0 < t < d_{G}$.

Then for $a > n(1 - (q - \varepsilon)/p)$ and $\varepsilon > 0$ we have

$$\begin{split} \int_{G} f(y)^{q-\varepsilon} \, dy &= \int_{G} f(y)^{q-\varepsilon} \left(a |x_{0} - y|^{-a} \int_{0}^{|x_{0} - y|} t^{a-1} \, dt \right) \, dy \\ &= a \int_{0}^{d_{G}} t^{a-1} \left(\int_{G \setminus B(x_{0},t)} |x_{0} - y|^{-a} f(y)^{q-\varepsilon} \, dy \right) \, dt \\ &\leq a \int_{0}^{d_{G}} t^{a-1} \left(\int_{G \setminus B(x_{0},t)} f(y)^{p} \, dy \right)^{(q-\varepsilon)/p} \\ &\qquad \times \left(\int_{G \setminus B(x_{0},t)} |x_{0} - y|^{-a/(1-(q-\varepsilon)/p)} \, dy \right)^{1-(q-\varepsilon)/p} \, dt \\ &\leq C \int_{0}^{d_{G}} t^{a-1} t^{-\nu(q-\varepsilon)} t^{-a+n(1-(q-\varepsilon)/p)} \, dt \\ &\leq C \int_{0}^{d_{G}} t^{(\nu+n/p)\varepsilon-1} \, dt \\ &\leq C \varepsilon^{-1}, \end{split}$$

so that

$$\varepsilon \int_G f(y)^{q-\varepsilon} \, dy \le C,$$

as required. \Box

Remark 3.5. The same conclusion as Proposition 3.4 is true for the variable Herz-Morrey space $\overline{\mathcal{H}}_{\{x_0\}}^{p(\cdot),\infty,\omega}(G)$ if $p(\cdot)$ satisfies

(P2) $p(\cdot)$ is log-Hölder continuous in *G*; that is, there is $c_p > 0$ such that

$$|p(x) - p(y)| \le \frac{c_p}{\log(1 + |x - y|^{-1})}$$
 for $x, y \in G$.

This can also be extended to the logarithmic weight case as in [17, Theorem 10.1] and [18, Theorem 8.1].

4. Associate Spaces

Let *X* be a function space consisting of measurable functions on *G*, with norm $\|\cdot\|_X$. Then *X'* denotes the associate space of *X* consisting of all measurable functions *f* on *G* such that

$$||f||_{X'} \equiv \sup_{\{g:||g||_X \le 1\}} \int_G f(x)g(x) \, dx < \infty;$$

see Benett-Sharpley [3]; the usual dual space of X is denoted by X^* .

1895

Note here that

$$\left(L^{p(\cdot)}(G)\right)' = L^{p'(\cdot)}(G).$$

and

$$\left(L^{p(\cdot)}(G)\right)^* = L^{p'(\cdot)}(G).$$

when $1 < p^- \le p^+ \le \infty$.

5. Duality of Herz-Morrey Spaces

Now we are ready to show the duality of Herz-Morrey spaces as extensions of [17] and [18].

THEOREM 5.1. Let $x_0 \in G$. Suppose there exist constants a, b, Q > 0 such that

(ω 4.1) $t^a \omega(x_0, t)$ is quasi-increasing, that is,

 $\sup_{0 < s < t} s^a \omega(x_0, s) \le Q t^a \omega(x_0, t); and$

(ω 4.2) $t^b \omega(x_0, t)$ is quasi-decreasing, that is,

$$\sup_{t < s < d_G} s^b \omega(x_0, s) \le Q t^b \omega(x_0, t)$$

for all $0 < t < d_G$. Set $\eta(x, r) = \omega(x, r)^{-1}$. Then for a constant exponent $1 \le q \le \infty$

$$\left(\underline{\mathcal{H}}_{\{x_0\}}^{p(\cdot),q,\omega}(G)\right)' = \overline{\mathcal{H}}_{\{x_0\}}^{p'(\cdot),q',\eta}(G)$$

and

$$\left(\overline{\mathcal{H}}_{\{x_0\}}^{p'(\cdot),q',\eta}(G)\right)' = \underline{\mathcal{H}}_{\{x_0\}}^{p(\cdot),q,\omega}(G).$$

With the aid of Lemma 3.3, Theorem 5.1 gives the following result.

COROLLARY 5.2. Let $x_0 \in G$ and ω, η be as in Theorem 5.1. If $1 < p^- \le p^+ < \infty$, $1 < q^- \le q^+ < \infty$ and $q(\cdot)$ is log-Hölder at 0, then

$$\left(\underline{\mathcal{H}}_{\{x_0\}}^{p(\cdot),q(\cdot),\omega}(G)\right)^* = \overline{\mathcal{H}}_{\{x_0\}}^{p'(\cdot),q'(\cdot),\eta}(G)$$

and

$$\left(\overline{\mathcal{H}}_{\{x_0\}}^{p'(\cdot),q'(\cdot),\eta}(G)\right)^* = \underline{\mathcal{H}}_{\{x_0\}}^{p(\cdot),q(\cdot),\omega}(G).$$

EXAMPLE 5.3. The typical examples of ω and η are

$$\omega(x_0, t) = \eta(x_0, t)^{-1} = t^{-\varepsilon}$$

for $\varepsilon > 0$.

In necessary modifications of the proof of Theorem 5.1, we can treat logarithmic weights in the following manner.

THEOREM 5.4. Let $x_0 \in G$. Set $\omega(x_0, t) = \left(\log \frac{2d_G}{t}\right)^{\varepsilon}$ and $\eta(x_0, t) = \left(\log \frac{2d_G}{t}\right)^{-1-\varepsilon}$ for $\varepsilon > -1/q$. Then for a constant exponent $1 \le q \le \infty$

$$\left(\underline{\mathcal{H}}_{\{x_0\}}^{p(\cdot),q,\omega}(G)\right)' = \overline{\mathcal{H}}_{\{x_0\}}^{p'(\cdot),q',\eta}(G)$$

and

$$\left(\overline{\mathcal{H}}_{\{x_0\}}^{p'(\cdot),q',\eta}(G)\right)' = \underline{\mathcal{H}}_{\{x_0\}}^{p(\cdot),q,\omega}(G).$$

COROLLARY 5.5. Let ω and η be as in Theorem 5.1. Then

$$\left(\widetilde{\mathcal{H}}^{p'(\cdot),q',\eta}(G)\right)' = \underline{\mathcal{H}}^{p'(\cdot),q',\eta}(G).$$

Remark 5.6. Let ω and η be as in Theorem 5.1. Then

$$\left(\mathcal{H}^{p(\cdot),q,\omega}_{\sim}(G)\right)' = \left(L^{p(\cdot)}(G)\right)' = L^{p'(\cdot)}(G) = \overline{\mathcal{H}}^{p'(\cdot),q',\eta}(G).$$

For a proof of Theorem 5.1, we have to prepare the following lemmas; see more precisely the proofs in [17] and [18].

LEMMA 5.7. Let $1 < q \le \infty$ and $x_0 \in G$. Suppose there exist constants b > 0, Q > 1 such that

$$(\omega 4.1) \int_{0}^{d_{G}} \eta(x_{0}, t)^{q'} \frac{dt}{t} < \infty; and$$

$$(\omega 4.2) \int_{t}^{2d_{G}} s^{-b} \omega(x_{0}, s)^{-q'} \frac{ds}{s} \le Qt^{-b} \eta(x_{0}, t)^{q'} \quad \text{for all } 0 < t < d_{G}.$$

Then there exists a constant C > 0 such that

$$\int_{G} |f(x)g(x)| dx \leq C ||f||_{\underline{\mathcal{H}}_{[x_0]}^{p(\cdot),q,\omega}(G)} ||g||_{\overline{\mathcal{H}}_{[x_0]}^{p'(\cdot),q',\eta}(G)}$$

for all measurable functions f and g on G.

LEMMA 5.8. Let $x_0 \in G$ and $1 < q \le \infty$. Suppose there exist a > 0 and Q > 0 such that

(
$$\omega 4.3$$
) $\int_0^t s^{-a} \eta(x_0, s)^{q'} \frac{ds}{s} \le Q t^{-a} \omega(x_0, t)^{-q'}$ for all $0 < t < d_G$.

Set $X = \underline{\mathcal{H}}_{[x_0]}^{p(\cdot),q,\omega}(G)$. Then there exists a constant C > 0 such that

$$||g||_{\overline{\mathcal{H}}_{[x_0]}^{p'(\cdot),q',\eta}(G)} \leq C \sup_{f} \int_{G} |f(x)g(x)| dx = C ||g||_{X}$$

for all measurable functions g on G, where the supremum is taken over all measurable functions f on G such that $||f||_X \le 1$.

It is worth to note that conditions (ω 4.1) – (ω 4.3) holds if and only if ω satisfies all the conditions in Theorem 5.1.

1897

References

- [1] D. R. Adams and J. Xiao, Morrey spaces in harmonic analysis, Ark. Mat. 50 (2012), no. 2, 201–230.
- [2] A. Almeida and D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. Appl. **394** (2012), no. 2, 781–795.
- [3] C. Bennet R. Sharpley, Interpolations of operators, Pure and Apl. Math., 129, Academic Press, New York, 1988.
- [4] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev and R. Ch. Mustafayev, Boundedness of the fractional maximal operator in local Morrey-type spaces, Complex Var. Elliptic Equ. 55 (2010), no. 8-10, 739–758.
- [5] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev and R. Ch. Mustafayev, Boundedness of the Riesz potential in local Morrey-type spaces, Potential Anal. **35** (2011), no. 1, 67–87.
- [6] C. Capone and A. Fiorenza, On small Lebesgue spaces. J. Funct. Spaces Appl. 3 (2005), no. 1, 73-89.
- [7] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces. Foundations and harmonic analysis. Applied and Numerical Harmonic Analysis. Birkhauser/Springer, Heidelberg, 2013.
- [8] H. S. Chung, J. G. Choi and S. Chang, Conditional integral transforms with related topics on function space, Filomat 26 (2012), no. 6, 11511162.
- [9] L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011.
- [10] G. Di Fratta and A. Fiorenza, A direct approach to the duality of grand and small Lebesgue spaces, Nonlinear Anal. 70 (2009), no. 7, 2582–2592.
- [11] A. Gogatishvili and R. Ch. Mustafayev, Dual spaces of local Morrey-type spaces, Czechoslovak Math. J. 61 (136) (2011), no. 3, 609–622.
- [12] A. Gogatishvili and R. Ch. Mustafayev, New pre-dual space of Morrey space. J. Math. Anal. Appl. **397** (2013), no. 2, 678–692.
- [13] V. S. Guliyev, J. J. Hasanov and S. G. Samko, Maximal, potential and singular operators in the local "complementary" variable exponent Morrey type spaces, J. Math. Anal. Appl. 401 (2013), no. 1, 72–84.
- [14] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal. 119 (1992), 129–143.
- [15] T. Iwaniec and C. Sbordone, Riesz Transforms and elliptic pde's with VMO coefficients, J. Analyse Math. 74 (1998), 183–212.
- [16] M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J. 40 (2010), no. 3, 343–355.
- [17] Y. Mizuta and T. Ohno, Sobolev's theorem and duality for Herz-Morrey spaces of variable exponent, Ann. Acad. Sci. Fenn. Math. 39 (2014), 389 – 416.
- [18] Y. Mizuta and T. Ohno, Herz-Morrey spaces of variable exponent, Riesz potential operator and duality, Complex Var. Elliptic Equ. 60 (2015), no. 2, 211240.
- [19] Y. Ren, New criteria for generalized weighted composition operators from mixed norm spaces into Zygmund-type space, Filomat 26 (2012), no. 6, 11711178.
- [20] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000.
- [21] S. Samko, Variable exponent Herz spaces. Mediterr. J. Math. 10 (2013), no. 4, 2007 2025.