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Abstract. We define an elliptic extension of the Genocchi polynomials and obtain the sums of products
for the elliptic Genocchi polynomials. The formulas of sums of products for the Genocchi polynomials are
also derived.

1. Introduction

The classical Genocchi polynomials Gn(x) are defined by means of the following generating function
(see, e.g., [16, 18, 19])

2zexz

ez + 1
=

∞∑
n=0

Gn(x)
zn

n!
(|z| < π). (1)

Let Gn = Gn(0) be the Genocchi numbers, G2n+1 = 0 (n ≥ 1), which several valuations are

G0 = 0,G1 = 1,G2 = −1,G4 = 1,G6 = −3,G8 = 17,G10 = −155,G12 = 2073.

We define n-th Genocchi functions as follows:

Ĝn(x) := Gn(x) (0 ≤ x < 1,n ∈N0), Ĝn(x + 1) = −Ĝn(x), (2)

which is called the periodic Genocchi polynomials. Any x ∈ R, r ∈ Z, we have

Ĝn(x) = (−1)[x]Gn({x}), Ĝn(x + r) = (−1)rĜn(x), (3)
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where {x} denotes the fractional part of x; [x] denotes the greatest integer not exceeding x.
The generalized Bernoulli polynomials B(α)

n (x) and the generalized Euler polynomials E(α)
n (x), each of

degree n in x as well as in α, for a real or complex parameter α, are defined by means of the following
generating functions (see, for details, [14, p. 25-32] and [20, p. 59-66]):( z

ez − 1

)α
exz =

∞∑
n=0

B(α)
n (x)

zn

n!
(|z| < 2π; 1α := 1) (4)

and ( 2
ez + 1

)α
exz =

∞∑
n=0

E(α)
n (x)

zn

n!
(|z| < π; 1α := 1) (5)

respectively. The classical Bernoulli polynomials Bn (x) and Euler polynomials En (x), for α = 1 in (4) and
(5), are respectively defined by

zexz

ez − 1
=

∞∑
n=0

Bn(x)
zn

n!
(|z| < 2π), (6)

2exz

ez + 1
=

∞∑
n=0

En(x)
zn

n!
(|z| < π). (7)

Obviously, the classical Bernoulli number Bn := Bn(0) and Euler number En := 2nEn

(
1
2

)
(n ∈ N), where

N0 =N ∪ {0}, N = {1, 2, . . .}.
Let SN(n; x1, . . . , xN) denotes sums of products for the Bernoulli polynomials as follows:

SN(n; x1, . . . , xN) =
∑

j1 ,..., jN≥0
j1+···+ jN=n

(
n

j1, . . . , jN

)
B j1 (x1) · · ·B jN (xN), (8)

which summation takes place over all positive or zero integers ji ≥ 0 such that j1 + j2 + · · · + jN = n, where(
n

j1, . . . , jN

)
:=

n!
j1! . . . jN!

denote the multinomial coefficients.
By (4), (6) and (8), we can find the following relation:

B(N)
k (y) = SN(k; x1, . . . , xN), (9)

when y = x1 + · · · + xN.
Dilcher obtained the following formula.

Theorem 1 ([3, p. 31, Lemma 4]). Let x1, . . . , xN, y be complex numbers with y = x1 + · · ·+ xN, for n ≥ N we have

SN(n; x1, . . . , xN) = (−1)N−1N
(

n
N

) N−1∑
k=0

(−1)k
(
N − 1

k

)
B(N)

k (y)
Bn−k(y)
n − k

.

Recently, Ivashkevich [10] and Machide [12] introduced the following elliptic extensions for the clcssical
Bernoulli and Euler polynomials, i.e., so-called elliptic Bernoulli functions and elliptic Euler functions are
defined by means of the following generating functions respectively:

1
2πi

∑
e

e(−µx′ − νx)
ξ + µτ + ν

=

∞∑
n=0

Bn(x′, x; τ)
(2πiξ)n−1

n!
(10)
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and

−
1
πi

∑
e

e(−µx′ − νx − x/2)
ξ + µτ + ν + 1/2

=

∞∑
n=0

En(x′, x; τ)
(2πiξ)n

n!
, (11)

(x′, x ∈ R; τ ∈ H := {τ ∈ C,=τ > 0}; ξ ∈ C, µ, ν ∈ Z)

where symbol
∑

e
denotes the Eisenstein summation ([23, p. 14]) defined by

∑
e

=
∑

e
ν

∑e
µ

 = lim
N→∞

N∑
ν=−N

 lim
M→∞

M∑
µ=−M

 . (12)

Let N be a positive integer and n be a nonnegative integer. We set ~xi = (x′i , xi) for i = 1, . . .N. Let
SτN(n; ~x1, . . . , ~xN) and TτN(n; ~x1, . . . , ~xN) denote the sums of products of elliptic Bernoulli functions and elliptic
Euler functions respectively.

SτN(n; ~x1, . . . , ~xN) =
∑

j1 ,..., jN≥0
j1+···+ jN=n

(
n

j1, . . . , jN

)
B j1 (x′1, x1; τ) · · ·B jN (x′N, xN; τ)

and

TτN(n; ~x1, . . . , ~xN) =
∑

j1 ,..., jN≥0
j1+···+ jN=n

(
n

j1, . . . , jN

)
E j1 (x′1, x1; τ) · · ·E jN (x′N, xN; τ).

Machide obtained the following results.

Theorem 2 ([12, p. 824, Theorem 2 and p. 830, Theorem 15]). Let n be an integer with n ≥ N. For any i =
1, 2, . . . ,N, let x′i and xi be real numbers with x′i < Z. Set

~xi = (x′i , xi) (i = 1, 2, . . . ,N), (y′, y) = (x′1 + · · · + x′N, x1 + · · · + xN).

Suppose that y′ < Z, we have

SτN(n; ~x1, . . . , ~xN) = (−1)N−1N
(

n
N

) N−1∑
k=0

(−1)k
(
N − 1

k

)
SτN(k; ~x1, . . . , ~xN)

Bn−k(y′, y; τ)
n − k

, (13)

TτN(n; ~x1, . . . , ~xN) =
2N−1

(N − 1)!

N−1∑
k=0

(−1)k
(
N − 1

k

)
SτN(k; ~x1, . . . , ~xN)En+N−1−k(y′, y; τ). (14)

Theorem 3 ([12, p. 825, Lemma 4]). We have

(i) Let x1, . . . , xN be real numbers and x′1, . . . , x
′

N be complex numbers with x′1, . . . , x
′

N < Z. Set ~xi = (x′i , xi) for
i = 1, . . .N. If 0 ≤ x1, . . . , xN < 1, we have

lim
x′1→−i∞

· · · lim
x′N→−i∞

lim
τ→i∞

SτN(n; ~x1, . . . , ~xN) = SN(n; x1, . . . , xN). (15)

(ii) Set ~xi = ( 1
2 , 0) for i = 1, . . . ,N − 1, ~xN = (x′N, 0), we have

The coefficient of (x′N)0(= 1) of lim
τ→i∞

SτN(n; ~x1, . . . , ~xN) = SN(n), (16)

where

SN(n) =
∑

j1 ,..., jN≥0
j1+···+ jN=n

(
2n

2 j1, . . . , 2 jN

)
B2 j1 · · ·B2 jN .
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In the recent past a lot of papers appeared providing the sums of products for the special numbers and
polynomilas and the related investigations; see [4–7, 9, 15, 17, 18, 21, 22] and the references therein.

In this paper, we define the elliptic Genocchi functions by means of the Eisenstein summation and
Jacobi’s theta functions. We research the sums of products for the elliptic Genocchi functions. Some
formulas of sums of products for the Genocchi polynomials and related results are also obtained.

2. The Definitions for the Elliptic Genocchi Functions

In this section we give formula for sums of products of elliptic Genocchi functions. Thereout we derive
the corresponding formulas for sums of products of the Genocchi polynomials and numbers.

We will use some standard notations: H := {τ ∈ C,=τ > 0}, e(t) := exp(2πit), q = e(τ), z = e(ξ),w = e(x).
The classical Jacobi’s theta functions [14, p. 371] are

ϑ1(x; τ) =
∑
n∈Z

e
(

1
2

(
n +

1
2

)2

τ +
(
n +

1
2

) (
x +

1
2

))
(17)

ϑ2(x; τ) = i
∑
n∈Z

(−1)ne
(

1
2

(
n +

1
2

)2

τ +
(
n +

1
2

) (
x +

1
2

))
(18)

Obviously, we have the following quasi periodicity:

ϑ1(x + 1; τ) = −ϑ1(x; τ), ϑ1(x + τ; τ) = −e
(
−x −

τ
2

)
ϑ1(x; τ) (19)

ϑ2(x + 1; τ) = −ϑ2(x; τ), ϑ2(x + τ; τ) = e
(
−x −

τ
2

)
ϑ2(x; τ) (20)

We consider the following function

F(x, ξ; τ) = 1 −
1

1 − z
−

1
1 − w

−

∞∑
m,n=1

(zmwn
− z−mw−n)qmn (21)

(0 < =ξ < =τ, 0 < =x < =τ).

Zagier ([24]) showed that the function F(x, ξ; τ) can be continued to a meromorphic function with poles at
divisors x = m+nτ and ξ = m′+n′τ, and function F(x, ξ; τ) can be expressed in terms of the classical Jacobi’s
theta functions, by formula

F(x, ξ; τ) =
1

2πi
ϑ′1(0; τ)ϑ1(x + ξ; τ)
ϑ1(x; τ)ϑ1(ξ; τ)

(x, ξ ∈ C \Z + τZ), (22)

where ϑ′1(x; τ) = ∂
∂xϑ1(x; τ). For fixed x ∈ C\Z+τZ, the function F(x, ξ; τ) with respect to ξ is meromorphic

with only simple poles on the lattice Z + τZ. The function F(x, ξ; τ) satisfies the following properties by
(19) and (21)

F(ξ, η; τ) = F(η, ξ; τ), F(x, ξ + 1; τ) = F(x, ξ; τ), F(x, ξ + τ; τ) = e(−x)F(x, ξ; τ). (23)

We recall a classical result: Suppose L := {ν + µτ | µ, ν ∈ Z} to denote the lattice generated by 1 and τ. Any
η ∈ C determines a character χη on L as follows:

χη(ξ) = e

ξη − ξητ − τ

 .
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The Kronecker’s identity (see [11, p. 277], or [23, p. 70])∑
e

w∈L

χη(w)
ξ + w

= 2πi e
(
ξ
η − η

τ − τ

)
F(ξ, η; τ). (24)

Let H(x, ξ; τ) = F
(
x, ξ + 1

2 ; τ
)
, C = {ν + 1

2 + µτ | µ, ν ∈ Z}. By (22), we obtain that

H(x, ξ; τ) =
1

2πi
ϑ′1(0; τ)ϑ2(x + ξ; τ)
ϑ1(x; τ)ϑ2(ξ; τ)

. (25)

For fixed x ∈ C \Z+ 1
2 + τZ, the function H(x, ξ; τ) with respect to ξ is meromorphic with only simple poles

on C . The function H(x, ξ; τ) satisfies the following properties by (19) and (20).

H(x, ξ + 1; τ) = H(x, ξ; τ), H(x, ξ + τ; τ) = e(−x)H(x, ξ; τ) (26)

and

H(x + 1, ξ; τ) = H(x, ξ; τ), H(x + τ, ξ; τ) = −e(−ξ)H(x, ξ; τ). (27)

Let H(x′, x; ξ; τ) = −2e(xξ)H(−x′ + xτ, ξ; τ). The elliptic Genocchi functions are defined by means of the
following generating function

H(x′, x; ξ; τ) =

∞∑
n=0

Gn(x′, x; τ)
(2πiξ)n−1

n!
. (28)

By (26), we see easily that

Gn(x′ + 1, x; τ) = Gn(x′, x; τ), Gn(x′, x + 1; τ) = −Gn(x′, x; τ). (29)

By (24), (25) and (28), when x′ and x are real numbers with −1 < x < 0, we can derive the following another
expression of the generating function of elliptic Genocchi functions

−
2
πi

∑
e

e(−µx′ − νx − x/2)
2ξ + 2µτ + 2ν + 1

=

∞∑
n=0

Gn(x′, x; τ)
(2πiξ)n−1

n!
, (30)

(x′, x ∈ R; τ ∈ H; ξ ∈ C).

Therefore, we have

Gn(x′, x; τ) =


0 n = 0,
2 · n!
(πi)n

∑
e

e(µx′ + νx − x/2)
(2µτ + 2ν − 1)n n ≥ 1.

3. Sums of Products for the Elliptic Genocchi Functions

In this section we give formula for sums of products of elliptic Genocchi functions. Thereout we derive
the corresponding formulas for sums of products of the Genocchi polynomials and numbers.

We now define the function

H(`)(x′, x; ξ; τ) :=
1

(2πi)`

(
∂
∂ξ

)`
H(x′, x; ξ; τ), (` ≥ 0),

especially, H(0)(x′, x; ξ; τ) = H(x′, x; ξ; τ). By (26), it is easy to show the following properties.

H(x′, x; ξ + 1; τ) = e(x)H(x′, x; ξ; τ), H(x′, x; ξ + τ; τ) = e(x′)H(x′, x; ξ; τ) (31)
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and

H(`)(x′, x; ξ + 1; τ) = e(x)H(`)(x′, x; ξ; τ), H(`)(x′, x; ξ + τ; τ) = e(x′)H(`)(x′, x; ξ; τ). (32)

We differentiate both side of (28) with respect to the variable ξ, iterate n − 1 times, yields the relationship
between the function H(`)(x′, x; ξ; τ) and elliptic Genocchi functions Gn(x′, x; τ) below.

H(`)(x′, x; ξ; τ) =

∞∑
n=0

Gn+`+1(x′, x; τ)
(2πiξ)n

(n + ` + 1)n!
. (33)

We define sums of products for the elliptic Genocchi functions below.

RτN(n; ~x1, . . . , ~xN) =
∑

j1 ,..., jN≥0
j1+···+ jN=n

(
n

j1, . . . , jN

)
G j1 (x′1, x1; τ) · · ·G jN (x′N, xN; τ).

By (28), we obtain the generating function of RτN(n; ~x1, . . . , ~xN)

(2πiξ)N
N∏

i=1

H(x′i , xi; ξ; τ) =

∞∑
n=0

RτN(n; ~x1, . . . , ~xN)
(2πiξ)n

n!
. (34)

We need the following lemma.

Lemma 4. Let n be an integer with n ≥ N. For any i = 1, 2, . . . ,N, let x′i and xi be real numbers with x′i < Z. Set

~xi = (x′i , xi) (i = 1, 2, . . . ,N), (y′, y) = (x′1 + · · · + x′N, x1 + · · · + xN).

Suppose that y′ < Z, we have

(N − 1)!
N∏

i=1

H(x′i , xi; ξ; τ) = 2N−1
N−1∑
k=0

(−1)k
(
N − 1

k

)
SτN(k; ~x1, . . . , ~xN)H(N−1−k)(y′, y; ξ; τ). (35)

Proof. Let function K(ξ) equals LHS of (35) minus RHS of (35). By (31) and (32) yields

K(ξ + 1) = e(y)K(ξ), K(ξ + τ) = e(y′)K(ξ). (36)

Let ξ be a complex number near the origin. By (33), (34) and RτN(n; ~x1, . . . , ~xN) = 0 when 0 ≤ n ≤ N − 1 and
G0(x′, x; τ) = 0, it is not difficult to show that

K(ξ) =(N − 1)!
∞∑

n=N

RτN(n; ~x1, . . . , ~xN)
(2πiξ)n−N

n!

− 2N−1
N−1∑
k=0

(−1)k
(
N − 1

k

)
SτN(k; ~x1, . . . , ~xN)

∞∑
n=0

Gn+N−k(y′, y; τ)
(2πiξ)n

(n + N − k)n!
.

(37)

From (37) we see that function K(ξ) is holomorphic at ξ = 0. By (25) we know function H(x, ξ; τ) with
respect to ξ is meromorphic with only simple poles on C , the possible poles of function K(ξ) are on C . By
(36) and (37), we obtain that function K(ξ) is a holomorphic function in ξ.

On the other hand, since
∣∣∣e(y)

∣∣∣ =
∣∣∣e(y′)

∣∣∣ = 1, e(y′) , 1, and combining (36), we say that function K(ξ) is a
bounded function. Therefor, we obtain the K(ξ) = 0 by applying Liouville’s theorem. This completes the
proof.
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Theorem 5 (Sums of products for the elliptic Genocchi functions). Let n be an integer with n ≥ N. For any
i = 1, 2, . . . ,N, let x′i and xi be real numbers with x′i < Z. Set ~xi = (x′i , xi), (y′, y) = (x′1+· · ·+x′N, x1+· · ·+xN), y′ < Z,
we have

RτN(n; ~x1, . . . , ~xN) = 2N−1N
(

n
N

) N−1∑
k=0

(−1)k
(
N − 1

k

)
SτN(k; ~x1, . . . , ~xN)

Gn−k(y′, y; τ)
n − k

. (38)

Proof. By (33), (34) and (35), we arrive at formula (38).

Next we give the formulas of sums of products of the Genocchi polynomials and numbers. Set

RN(n; x1, . . . , xN) =
∑

j1 ,..., jN≥0
j1+···+ jN=n

(
n

j1, . . . , jN

)
G j1 (x1) · · ·G jN (xN)

and

RN(n) =
∑

j1 ,..., jN≥0
j1+···+ jN=n

(
2n

2 j1, . . . , 2 jN

)
G2 j1 · · ·G2 jN .

Lemma 6. Let x be a real number and x′ a complex number with x′ < Z, we have

lim
τ→i∞

Gn(x′, x; τ) =

(−1)[x] e(x′) + 1
e(x′) − 1

n = 1, x ∈ Z,

Ĝn(x) otherwise.
(39)

Proof. By (29), we have Gn(x′, x; τ) = (−1)[x]Gn(x′, {x}; τ) for any x ∈ R. Suppose 0 ≤ x < 1, function H(x, ξ; τ)
has the following expression by (21)

H(x, ξ; τ) = 1 +
1

e(x) − 1
−

1
e(ξ) + 1

−

∞∑
j=1

(−q) j

e(−x) − q j e( jξ) +

∞∑
j=1

(−q) j

e(x) − q j e(− jξ)

(0 < =ξ < =τ, 0 < =x < =τ).

By (1) and (28), via a simple computation, we obtain

Gn(x′, x; τ) =Gn(x) − 2n
[
xn−1 e(−x′ + xτ)

e(−x′ + xτ) − 1
−

∞∑
j=1

(x + j)n−1 e(xτ)(−q) j

e(x′) − e(xτ)q j

+

∞∑
j=1

(x − j)n−1 e(−xτ)(−q) j

e(−x′) − e(−xτ)q j

]
.

(40)

For j ∈N, we have

lim
τ→i∞

e(xτ)(−q) j = lim
τ→i∞

e(−xτ)(−q) j = 0,

lim
τ→i∞

xn−1 e(−x′ + xτ)
e(−x′ + xτ) − 1

=


1

1 − e(x′)
n = 1, x = 0,

0 otherwise,

in conjunction with (40), we obtain the desired (39). This proof is completed.

Lemma 7. We have
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(i) Let x1, . . . , xN be real numbers and x′1, . . . , x
′

N be complex numbers with x′1, . . . , x
′

N < Z. Set ~xi = (x′i , xi) for
i = 1, . . . ,N. If 0 ≤ x1, . . . , xN < 1, we have

lim
x′1→−i∞

· · · lim
x′N→−i∞

lim
τ→i∞

RτN(n; ~x1, . . . , ~xN) = RN(n; x1, . . . , xN). (41)

(ii) Set ~xi = ( 1
2 , 0) for i = 1, . . . ,N − 1, ~xN = (x′N, 0), N is any positive integers, we have

The coefficient of (x′N)0(= 1) of lim
τ→i∞

RτN(n; ~x1, . . . , ~xN) = RN(n). (42)

Proof. For 0 ≤ x < 1, by (39), we have

lim
x′→−i∞

lim
τ→i∞

Gn(x′, x; τ) = Gn(x),

which implies (41).
From (39), noticing that G2n+1 = 0 (n ≥ 1) and limτ→i∞ G1( 1

2 , 0; τ) = 0, we have

lim
τ→i∞

RτN(n; ~x1, . . . , ~xN) = RN(n) +
e(x′N) + 1
e(x′N) − 1

∑
j1 ,..., jN−1≥0, jN=1
j1+···+ jN−1=n−1

(
2n

2 j1, . . . , 2 jN−1, 2

)
G2 j1 · · ·G2 jN−1 .

For any N positive integer,
e(x′N)+1
e(x′N)−1 is an odd finction, we derive (42) immediately.

Theorem 8 (Sums of products of Genocchi polynomials). Let x1, . . . , xN, y be complex numbers with y = x1 +
· · · + xN. For n ≥ N, we have

RN(n; x1, . . . , xN) =2N−1N
(

n
N

) N−1∑
k=0

(−1)k
(
N − 1

k

)
B(N)

k (y)
Gn−k(y)

n − k
(43)

=2N−1N
(

n
N

) N−1∑
k=0

(−1)k


k∑

j=0

(
N − k − 1 + j

j

)
s(N,N − k + j)y j

 Gn−k(y)
n − k

, (44)

where s(n, k) denotes the Stirling numbers of the first kind.

Proof. By analytic continuation, from (15), (38), (39) and (41), and noting that fact B(N)
k (y) = SN(k; x1, . . . , xN),

we deduce (43) for any complex numbers x1, . . . , xN with y = x1 + · · · + xN. Applying identity [8, 52.2.21]
after appropriate substitutions(

N − 1
k

)
B(N)

k (y) =

k∑
j=0

(
N − k − 1 + j

j

)
s(N,N − k + j)y j. (45)

The formula (44) follows directly from (43).

Corollary 9. For n ≥ N, we have

∑
j1 ,..., jN≥0

j1+···+ jN=n

(
n

j1, . . . , jN

)
G j1 · · ·G jN =2N−1N

(
n
N

) N−1∑
k=0

(−1)k
(
N − 1

k

)
B(N)

k
Gn−k

n − k
(46)

=2N−1N
(

n
N

) N−1∑
k=0

(−1)ks(N,N − k)
Gn−k

n − k
. (47)
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Proof. Taking y = 0 in (43) and (44), we deduce (46) and (47) respectively.

Theorem 10. For n ≥ N, we have

RN(n) = 2N−1N
(
2n
N

) [(N−1)/2]∑
k=0

(
N − 1

2k

)
SN(k)

G2n−2k

2n − 2k
. (48)

Proof. If ~xi = ( 1
2 , 0) for i = 1, . . . ,N − 1, ~xN = (x′N, 0), (y′, y) =

(
N−1

2 + x′N, 0
)

for any positive integer N (odd or
even), by (38) and (39), we obtain that

lim
τ→i∞

RτN(n; ~x1, . . . , ~xN) =2N−1N
(
2n
N

) N−1∑
k=0

(−1)k
(
N − 1

k

)

×

 G2n−k

2n − k
+

(−1)N−1e(x′N) + 1

(−1)N−1e(x′N) − 1

 lim
τ→i∞

SτN(k; ~x1, . . . , ~xN).

For any positive integers N,
(−1)N−1e(x′N)+1
(−1)N−1e(x′N)−1 is an odd function. Combining (16) and (42), we obtain the desired

(48).

In particular, taking N = 2 in (38), we can get the convolution identity for the elliptic Genocchi polyno-
mials

n∑
k=0

(
n
k

)
Gk(x′1, x1; τ)Gn−k(x′2, x2; τ) = 2(n − 1)Gn(x′1 + x′2, x1 + x2; τ)

−2n[B1(x′1, x1; τ) + B1(x′2, x2; τ)]Gn−1(x′1 + x′2, x1 + x2; τ),

(49)

which is an elliptic extension of the convolution identity (see e.g., [8, Ch. 50])

n∑
k=0

(
n
k

)
Gk(x1)Gn−k(x2) = 2(n − 1)Gn(x1 + x2) − 2n(x1 + x2 − 1)Gn−1(x1 + x2). (50)

By (39), (49) and noticing that limx′→−i∞ limτ→i∞ B1(x′, x; τ) = B1(x), we obtain (50) in a different way.

4. Further Remarks

Remark 11. We still use the notation of [11]. The theta function θ(ξ, τ) should be written as the following form in
[11, p. 267]

θ(ξ, τ) =

∞∑
j=−∞

(−1) je
(

1
2

(
j +

1
2

)2

τ +
(
j +

1
2

)
ξ

)
,

it follows that, by [24, p. 455-456, Theorem (vii)], the equation (2) of [11, p. 273] should be corrected as

F(ξ, η, τ) =
1

2πi
θ′(0, τ)θ(ξ + η, τ)
θ(ξ, τ)θ(η, τ)

.

Remark 12. Equation (18) of [13, p. 1065] should be corrected as follows:

2πi
∂
∂ξ

Λ(ξ, τ;−2πix′,−2πix) = F(x′, x; ξ; τ),

where F(x′, x; ξ; τ) = e(xξ)FM(−x′ + xτ, ξ; τ), FM(x, ξ; τ) denotes the function F(x, ξ; τ) of [12] and [13].
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Remark 13. In [12], Lemma 4 (ii) and Lemma 16 (ii) are involved in Lemma 4 (iii) and Lemma 16 (iii) respectively.
Because the function 1+e(x′N)

1−e(x′N) is an odd function for any positive integer N, i.e., we only need the Lemma 4 (iii) and
Lemma 16 (iii), we can complete these proofs of (21) and (39) or (41) in [12] respectively. Another thing is to replace
“limx′→−i∞ limτ→i∞” by “limx′1→−i∞ · · · limx′N→−i∞ limτ→i∞” in Lemma 4 (i) and Lemma 16(i) respectively.

Remark 14. H. M. Srivastava and Á. Pintér [21] obtained the following relationships between the Bernoulli and
Euler polynomials, i.e., Srivastava-Pintér’s addition theorem:

B(α)
n (x + y) =

n∑
k=0

(
n
k

) [
B(α)

k (y) +
k
2

B(α−1)
k−1 (y)

]
En−k(x), (51)

E(α)
n (x + y) =

n∑
k=0

2
k + 1

(
n
k

) [
E(α−1)

k+1 (y) − E(α)
k+1(y)

]
Bn−k(x). (52)

when α = 1 we have

Bn(x + y) =

n∑
k=0

(
n
k

) [
Bk(y) +

k
2

yk−1

]
En−k(x), (53)

En(x + y) =

n∑
k=0

2
k + 1

(
n
k

) [
yk+1
− Ek+1(y)

]
Bn−k(x). (54)

A question is: how we obtain the elliptic analogues of Srivastava-Pintér’s addition theorem from the elliptic Bernoulli
and elliptic Euler functions?
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