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Multivalued Operator with Respect Generalized Distance
on Menger Probabilistic Metric Spaces
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Abstract. In this paper, we recall the concept of r-distance on a Menger probabilistic metric space. Further
we prove a fixed point theorem for contractive type multi-valued operators in terms of a r-distance on a
complete Menger probabilistic metric space.

1. Introduction and Preliminaries

K. Menger introduced the notion of a probabilistic metric space in 1942 and since then the theory
of probabilistic metric spaces has developed in many directions [19]. The idea of K. Menger was to
use distribution functions instead of nonnegative real numbers as values of the metric. The notion of a
probabilistic metric space corresponds to situations when we do not know exactly the distance between
two points, but we know probabilities of possible values of this distance. A probabilistic generalization of
metric spaces appears to be interest in the investigation of physical quantities and physiological thresholds.
It is also of fundamental importance in probabilistic functional analysis. Probabilistic normed spaces were
introduced by Šerstnev in 1962 [21] by means of a definition that was closely modelled on the theory of
(classical) normed spaces, and used to study the problem of best approximation in statistics. In the sequel,
we shall adopt the usual terminologies, notations and conventions of the theory of probabilistic normed
spaces, as in [2–6, 10, 11, 13, 14, 16, 18, 19, 23].

Throughout this paper, the space of all probability distribution functions (briefly, d.f.’s) is denoted by
∆+ = {F : R ∪ {−∞,+∞} −→ [0, 1] : F is left-continuous and non-decreasing on R, F(0) = 0 and F(+∞) = 1}
and the subset D+

⊆ ∆+ is the set D+ = {F ∈ ∆+ : l−F(+∞) = 1}. Here l− f (x) denotes the left limit of the
function f at the point x, l− f (x) = limt→x− f (t). The space ∆+ is partially ordered by the usual point-wise
ordering of functions, i.e., F ≤ G if and only if F(t) ≤ G(t) for all t in R. The maximal element for ∆+ in this
order is the d.f. given by

ε0(t) =

 0, if t ≤ 0,
1, if t > 0.

Definition 1.1. ([19]) A mapping T : [0, 1]×[0, 1] −→ [0, 1] is a continuous t–norm if T satisfies the following
conditions:
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(a) T is commutative and associative;
(b) T is continuous;
(c) T(a, 1) = a for all a ∈ [0, 1];
(d) T(a, b) ≤ T(c, d) whenever a ≤ c and c ≤ d, and a, b, c, d ∈ [0, 1].

Two typical examples of continuous t–norm are T(a, b) = ab and T(a, b) = min(a, b).
Now t–norms are recursively defined by T1 = T and

Tn(x1, · · · , xn+1) = T(Tn−1(x1, · · · , xn), xn+1)

for n ≥ 2 and xi ∈ [0, 1], for all i ∈ {1, 2, . . . ,n + 1}.

Definition 1.2. ([19]) A mapping S : [0, 1]× [0, 1] −→ [0, 1] is a continuous s–norm if S satisfies the following
conditions:

(a) S is associative and commutative;
(b) S is continuous;
(c) S(a, 0) = a for all a ∈ [0, 1];
(d) S(a, b) ≤ S(c, d) whenever a ≤ c and b ≤ d, for all a, b, c, d ∈ [0, 1].

Two typical examples of continuous s–norm are S(a, b) = min(a + b, 1) and S(a, b) = max(a, b).

Definition 1.3. A Menger Probabilistic Metric space (briefly, Menger PM-space) is a triple (X,F ,T), where X
is a nonempty set, T is a continuous t–norm, and F is a mapping from X × X into D+ such that, if Fx,y
denotes the value of F at the pair (x, y), the following conditions hold: for all x, y, z in X,

(PM1) Fx,y(t) = ε0(t) for all t > 0 if and only if x = y;
(PM2) Fx,y(t) = Fy,x(t);
(PM3) Fx,z(t + s) ≥ T(Fx,y(t),Fy,z(s)) for all x, y, z ∈ X and t, s ≥ 0.

Definition 1.4. A Menger Probabilistic Normed space (briefly, Menger PN-space) is a triple (X, µ,T), where X
is a vector space, T is a continuous t–norm, and µ is a mapping from X into D+ such that, the following
conditions hold: for all x, y in X,

(PN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;
(PN2) µαx(t) = µx( t

|α| ) for α , 0;
(PN3) µx+y(t + s) ≥ T(µx(t), µy(s)) for all x, y, z ∈ X and t, s ≥ 0.

Definition 1.5. Let (X,F ,T) be a Menger PM-space.
(1) A sequence {xn}n in X is said to be convergent to x in X if, for every ε > 0 and λ > 0, there exists

positive integer N such that Fxn,x(ε) > 1 − λ whenever n ≥ N.
(2) A sequence {xn}n in X is called Cauchy sequence if, for every ε > 0 and λ > 0, there exists positive

integer N such that Fxn,xm (ε) > 1 − λ whenever n,m ≥ N.
(3) A Menger PM-space (X,F ,T) is said to be complete if and only if every Cauchy sequence in X is

convergent to a point in X.

A subset U of X is said to be F-bounded if there exists t > 0 and 0 < r < 1 such that Fx,y(t) > 1 − r for all
x, y ∈ U.

Definition 1.6. Let (X,F ,T) be a Menger PM space. For each p in X and λ > 0, the strong λ − nei1hborhood
of p is the set

Np(λ) = {q ∈ X : Fp,q(λ) > 1 − λ},

and the strong neighborhood system for X is the union
⋃

p∈VNp whereNp = {Np(λ) : λ > 0}.

The strong neighborhood system for X determines a Hausdorff topology for X.
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Theorem 1.7. ([10, 20]) If (X,F ,T) is a PM-space and {pn} and {qn} are sequences such that pn → p and qn → q,
then limn→∞ Fpn,qn (t) = Fp,q(t).

Remark 1.8. We say the t-norm T has Σ property and write T ∈ Σ whenever, Suppose for every α ∈]0, 1[ there exists
a β ∈]0, 1[ (which does not depend on n) with

Tn−1(1 − β, .., 1 − β) > 1 − α for each n ∈ {1, 2, ...}. (1)

2. r–distance

Recently, Kada, Suzuki and Takahashi [9] introduced the concept of w–distance on a metric space and
proved some fixed point theorems. In this section, using the concept of w–distance, we define the concept
of r-distance on a Menger PM-space.

Definition 2.1. Let (X,F ,T) be a Menger PM-space. Then the function f : X2
× [0,∞] −→ [0, 1] is called a

r-distance on X if the following are satisfied:
(r1) fx,z(t + s) ≥ T( fx,y(t), fy,z(s)) for all x, y, z ∈ X and t, s ≥ 0;
(r2) for any x ∈ X and t ≥ 0, fx,. : X × [0,∞] −→ [0, 1] is continuous;
(r3) for any ε > 0, there exists δ > 0 such that fz,x(t) ≥ 1 − δ and fz,y(s) ≥ 1 − δ imply Fx,y(t + s) ≥ 1 − ε.

Let us give some examples of r-distance.

Example 2.2. Let (X,F ,T) be a Menger PM-space. Then f = F is a r-distance on X.

Proof. Now (r1) and (r2) are obvious. We show (r3). Let ε > 0 be given and choose δ > 0 such that

T(1 − δ, 1 − δ) ≥ 1 − ε.

Then, for Fz,x(t) ≥ 1 − δ and Fz,y(s) ≥ 1 − δ we have

Fx,y(t + s) ≥ T(Fz,x(t),Fz,y(s))
≥ T(1 − δ, 1 − δ) ≥ 1 − ε.

Example 2.3. Let (X,F ,T) be a Menger PM-space. Then the function f : X2
× [0,∞) −→ [0, 1] defined by

fx,y(t) = 1 − c for every x, y ∈ X and t > 0 is a r-distance on X, where c ∈]0, 1[.

Proof. Now (r1) and (r2) are obvious. To show (r3), for any ε > 0, put δ = 1 − c/2. Then we have that
fz,x(t) ≥ 1 − c/2 and fz,y(s) ≥ 1 − c/2 imply Fx,y(t + s) ≥ 1 − ε.

Example 2.4. Let (X, µ,T) be a Menger PN-space. Then the function f : X2
× [0,∞) −→ [0, 1] defined by

fx,y(t + s) = T(µx(t), µy(s)) for every x, y ∈ X and t, s > 0 is a r-distance on X.

Proof. Let x, y, z ∈ X and t, s > 0. Then we have

fx,z(t + s) = T(µx(t), µz(s))
≥ T(T(µx(t/2), µy(t/2)),T(µy(s/2), µz(s/2)))
= T( fx,y(t), fy,z(s)).

Hence (r1) holds. Also (r2) is obvious. Let ε > 0 be given and choose δ > 0 such that

T(1 − δ, 1 − δ) ≥ 1 − ε.
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Then, for fz,x(t) ≥ 1 − δ and fz,y(s) ≥ 1 − δ we have

Fx,y(t + s) = µx−y(t + s) ≥ T(µx(t), µy(s))
≥ T(T(µx(t/2), µz(t/2)),T(µy(s/2), µz(s/2)))
= T( fz,x(t), fz,y(s))
≥ T(1 − δ, 1 − δ) ≥ 1 − ε.

Hence (r3)also holds.

Example 2.5. Let (X, µ,T) be a Menger PN-space. Then the function f : X2
× [0,∞] −→ [0, 1] defined by

fx,y(t) = µx(t) for every x, y ∈ X and t > 0 is a r-distance on X.

Proof. Let x, y, z ∈ X and t, s > 0. Then we have

fx,z(t + s) = µz(t + s)
≥ T(µy(t), µz(s))
= T( fx,y(t), fy,z(s)).

Hence (r1) holds. Also (r2) is obvious. Let ε > 0 be given and choose δ > 0 such that

T(1 − δ, 1 − δ) ≥ 1 − ε.

Then, for fz,x(t) ≥ 1 − δ and fz,y(s) ≥ 1 − δ we have

Fx,y(t + s) = µx−y(t + s)
≥ T(µx(t), µy(s))
= T( fz,x(t), fz,y(s))
≥ T(1 − δ, 1 − δ) ≥ 1 − ε.

Hence (r3) holds.

Example 2.6. Let (X,F ,T) be a Menger PM-space and let A be a continuous mapping from X into X. Then the
function f : X2

× [0,∞] −→ [0, 1] defined by

fx,y(t) = min(FAx,y(t),FAx,Ay(s))

for every x, y ∈ X and t, s > 0 is a r-distance on X.

Proof. Let x, y, z ∈ X and t, s > 0. If FAx,z(t) ≤ FAx,Ay(t) then we have

fx,z(t + s) = FAx,z(t + s) ≥ T(FAx,Ay(t),FAy,z(s))
≥ T(min(FAx,y(t),FAx,Ay(t)),min(FAy,z(s),FAx,Ay(s))
= T( fx,y(t), fy,z(s)).

With this inequality, we have

fx,z(t + s) = FAx,Az(t + s) ≥ T(FAx,Ay(t),FAy,Az(s))
≥ T(min(FAx,y(t),FAx,Ay(t)),min(FAy,z(s),FAx,Ay(s))
= T( fx,y(t), fy,z(s)).

Hence (r1) holds. Since A is continuous, (r2) is obvious . Let ε > 0 be given and choose δ > 0 such that

T(1 − δ, 1 − δ) ≥ 1 − ε.
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Then, from fz,x(t) ≥ 1 − δ and fz,y(s) ≥ 1 − δ we have FAz,x(t) ≥ 1 − δ and FAz,y(s) ≥ 1 − δ. Therefore

Fx,y(t + s) ≥ T(FAz,x(t),FAz,y(s))
≥ T(1 − δ, 1 − δ) ≥ 1 − ε.

Hence (r3) holds.

Next, we discuss some properties of r-distance.

Lemma 2.7. Let (X,F ,T) be a Menger PM-space and let f be a r-distance on it. Let {xn} and {yn} be sequences in X,
let {αn} and {βn} be sequences in [0,∞) converging to zero, and let x, y, z ∈ X and t, s > 0. Then the following hold:

(1) if fxn,y(t) ≥ 1 − αn and fxn,z(s) ≥ 1 − βn for any n ∈N, then y = z. In particular, if fx,y(t) = 1 and fx,z(s) = 1,
then y = z;

(2) if fxn,yn (t) ≥ 1 − αn and fxn,z(s) ≥ 1 − βn for any n ∈N, then Fyn,z(t + s)→ 1;
(3)if fxn,xm (t) ≥ 1 − αn for any n,m ∈N with m > n, then {xn} is a Cauchy sequence;
(4) if fy,xn (t) ≥ 1 − αn for any n ∈N, then {xn} is a Cauchy sequence.

Proof. We first prove (2). Let ε > 0 be given. From the definition of r-distance, there exists δ > 0 such that
fu,v(t) ≥ 1 − δ and fu,z(s) ≥ 1 − δ imply Fv,z(t + s) ≥ 1 − ε. Choose n0 ∈ N such that αn ≤ δ and βn ≤ δ for
every n ≥ n0. Then we have, for any n ≥ n0 fxn,yn (t) ≥ 1 − αn ≥ 1 − δ and fxn,z(t) ≥ 1 − βn ≥ 1 − δ and hence
Fyn,z(t + s) ≥ 1 − ε. This implies that {yn} converges to z. It follows from (2) that (1) holds. Let us prove (3).
Let ε > 0 be given. As in the proof of (1), choose δ > 0 and then n0 ∈N. Then for any n,m ≥ n0 + 1

fxn0 ,xn (t) ≥ 1 − αn0 ≥ 1 − δ and fxn0 ,xm (s) ≥ 1 − αn0 ≥ 1 − δ

and hence Fxn,xm (t + s) ≥ 1 − ε. This implies that {xn} is a Cauchy sequence.

Lemma 2.8. Let f : X2
× [0,∞] −→ [0, 1] be a r-distance on (X,F,T) in which T ∈ Σ. If we define Eλ, f : X2

−→

R+
∪ {0} by

Eλ, f (x, y) = inf{t > 0 : fx,y(t) > 1 − λ}

for each λ ∈]0, 1[ and x, y ∈ X, then we have the following:
(1) For any µ ∈]0, 1[, there exists λ ∈]0, 1[ such that

Eµ, f (x1, xk) ≤ Eλ, f (x1, x2) + Eλ, f (x2, x3) + · · · + Eλ, f (xk−1, xk)

for any x1, ..., xk ∈ X;

(2) For any sequence {xn} in X, we have, fxn,x(t) −→ 1 if and only if Eλ, f (xn, x) → 0. Also the sequence {xn} is
Cauchy w.r.t. f if and only if it is Cauchy with Eλ, f .

Proof. The proof is the same as in Lemma 1.6 of [15].

Lemma 2.9. Let (X,F ,T) be a Menger PM-space, let f be a r-distance on it and let A be a mapping from X into
itself. Let {un} be a sequence in X. Suppose that there exists k ∈]0, 1[ such that

fun,un+1 (kt) ≥ fun−1,un (t)

for every n ∈N, t > 0. Then the sequence {un} is Cauchy.

Proof. See Theorem 3.1 of [17].
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3. Main Results

Let (X,F ,T) a Menger PM-space. We will use the following notations:
P(X)- the set of all nonempty subsets of X;
Pcl(X)- the set of all nonempty closed subsets of X;
Pb,cl(X)- the set of all nonempty bounded and closed subsets of X;
Φ : P(X) × P(X)→ D+,

ΦZ,Y(t) = sup{Fx,y(t) : x ∈ Z, y ∈ Y}

for t > 0 in which Y,Z ⊂ X.

Definition 3.1. Let (X,F ,T) a Menger PM-space. Assume that A : X → P(X) be a multi-valued operator
and f : X2

× [0,∞] −→ [0, 1] be a r-distance on (X,F ,T). Define the function h : X × [0,∞] −→ [0, 1] as
hx(t) = φx,A(x)(t) , where

φx,A(x)(t) = sup{ fx,y(t) : y ∈ A(x)},

for t > 0.

For a positive constant b ∈ (0, 1) define the set Ix
b ⊂ X as follows:

Ix
b = {y ∈ A(x) : fx,y(t) ≥ φx,A(x)(bt)},

for all t > 0. We will present now a fixed point theorem for multi-valued operators on a complete Menger
PM-space endowed with a r-distance. Our result generalized and extend some recent results presented at
[1, 7, 8, 12, 22].

Theorem 3.2. Let (X,F ,T) a complete Menger PM-space, A : X → Pcl(X) a multi-valued operator, f : X2
×

[0,∞] −→ [0, 1] be a r-distance on X and b ∈ (0, 1).
Suppose that:
(i) there exists c ∈ (0, 1), with c < b, such that for any x ∈ X there is y ∈ Ix

b satisfying

fy,x(t) ≤ φx,A(x)(ct)

for all t > 0.
(ii) the function hx(t) = φx,A(x)(t) is continuous.

Then A has a fixed point in X.

Proof. Since A(X) ⊂ Pcl(X), then, for any x ∈ X, Ix
b is nonempty for any constant b ∈ (0, 1). For any initial

point x0 ∈ X, there is x1 ∈ Ix0
b such that

fx0,x1 (t) ≤ φx1,A(x1)(ct)

for all t > 0. For any x1 ∈ X, there is x2 ∈ Ix1
b such that

fx1,x2 (t) ≤ φx2,A(x2)(ct)

for all t > 0. We obtain an iterative sequence {xn}
∞

n=0 where xn+1 ∈ Ixn
b such that

fxn,xn+1 (t) ≤ φxn+1,A(xn+1)(ct) (2)

for all t > 0 and for n = 1, 2, · · · . Now, we show that the sequence {xn}
∞

n=0 is Cauchy. Since xn+1 ∈ Ixn
b , we

have

fxn,xn+1 (t) ≥ φxn,A(xn)(bt) (3)

for all t > 0 and for n = 1, 2, · · · . Form (2) and (3) and since c < b we have

φxn,Axn (t) ≤ φxn+1,A(xn+1)

( c
b

t
)

(4)
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for all t > 0 and for n = 1, 2, · · · . Then

φx0,Ax0 (t) ≤ φxn,A(xn)

(( c
b

)n
t
)

(5)

for all t > 0 and for n = 1, 2, · · · , which implies that the sequence {hxn (t)}∞n=0 = {φxn,A(xn)(t)}∞n=0 converges to 1.
On the other hand, by (2) and (3), we have

fxn,xn+1

(
b
c

t
b

)
≥ φxn,Axn

(
b
c

t
)

≥ fxn−1,xn

(
b
c2 t

)
(6)

for all t > 0 and for n = 1, 2, · · · . Then,

fxn,xn+1

( c
b

t
)
≥ fxn−1,xn (t) (7)

for all t > 0 and for n = 1, 2, · · · . Hence, by Lemma 2.9 the sequence {xn}
∞

n=0 is Cauchy. Since X is a complete
Menger PM-space, there exists a x ∈ X such that xn converges to x. Since h is continuous, we have

1 = lim
n→∞

hxn (t) = hx(t)

for all t > 0, then,

φx,A(x)(t) = 1 (8)

for all t > 0. From A(x) ∈ Pcl(X) and (8) we have that x ∈ A(x). Hence, A has a fixed point in X.
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