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Generalized Hyers–Ulam Stability of Cubic Functional Inequality

Hark-Mahn Kima, Eunyoung Sona

aDepartment of Mathematics, Chungnam National University, Korea

Abstract. In this article, we investigate the generalized Hyers–Ulam stability of a cubic functional in-
equality in Banach spaces and in non-Archimedean Banach spaces by using fixed point method and direct
method, respectively.

1. Introduction

The first stability problem was raised by S.M. Ulam [27] during his talk at the University of Wisconsin
in 1940.

Let G be a group and G′ a metric group with metric ρ(·, ·). Given ε > 0, does there exist a number δ > 0 such
that if f : G → G′ satisfies ρ( f (xy), f (x) f (y)) < δ for all x, y ∈ G, then a homomorphism h : G → G′ exists with
ρ( f (x), h(x)) < ε for all x ∈ G?

In the next year, D.H. Hyers [14] have presented a first affirmative partial answer to the question of
Ulam for Banach spaces. Hyers’ theorem was generalized by T. Aoki [2] for additive mappings and by
Th.M. Rassias [24] for linear mappings by considering an unbounded Cauchy difference. A generalization
of the Rassias’ theorem was obtained by P. Gǎvruta [9] by replacing the unbounded Cauchy difference by
a general control function in the spirit of the Rassias’ approach. The Hyers–Ulam stability of the quadratic
functional equation f (x+y)+ f (x−y) = 2 f (x)+2 f (y) was first proved by F. Skof [26] for functions f : E1 → E2,
where E1 is a normed space and E2 is a Banach space. P. W. Cholewa [5] noticed that Skof’s theorem is also
valid if E1 is replaced by an abelian group. In 1992, S. Czerwik [6] proved the generalized Hyers–Ulam
stability of quadratic functional equation in the spirit of Rassias approach.

A. Gilányi [10] and J. Rätz [25] proved that for a function f : G→ E mapping from an abelian group G
divisible by 2 into an inner product space E, the functional inequality

‖2 f (x) + 2 f (y) − f (xy−1)‖ ≤ ‖ f (xy)‖ (x, y ∈ G) (1)

implies the Jordan–von Neumann functional equation

2 f (x) + 2 f (y) = f (xy) + f (xy−1) (x, y ∈ G).

W. Fechner [8] and A. Gilányi [11] have investigated the generalized Hyers–Ulam stability of the
functional inequality (1). Park et al.[23] have proved the generalized Hyers–Ulam stability of functional

2010 Mathematics Subject Classification. Primary 39B82; Secondary 46S10
Keywords. generalized Hyers–Ulam stability, cubic functional inequality, contractive mapping, non-Archimedean space
Received: 17 November 2014; Accepted: 30 April 2015
Communicated by Hari M. Srivastava
This research was supported by Basic Research Program through the National Research Foundation of Korea (NRF) funded by

the Ministry of Education (No.2012R1A1A2008139)
Email addresses: hmkim@cnu.ac.kr (Hark-Mahn Kim), sey8405@hanmail.net (Eunyoung Son)



H. Kim, E. Son / Filomat 30:7 (2016), 1969–1978 1970

inequalities associated with Jordan–von Neumann type additive functional equations, and Y. Cho and H.
Kim [3] have proved the generalized Hyers–Ulam stability of functional inequalities with Cauchy–Jensen
additive mappings. Recently, H. Kim, K. Jun and E. Son [19] have established the generalized Hyers–Ulam
stability of quadratic functional inequality in Banach spaces and in non-Archimedean Banach spaces.

In 2002, K. Jun and H. Kim [15] established the general solution and the Hyers–Ulam stability of the
following cubic functional equation

f (2x + y) + f (2x − y) = 2 f (x + y) + 2 f (x − y) + 12 f (x) (2)

in linear spaces and every solution of the cubic functional equation (2) is said to be a cubic mapping. If f is
cubic, then we see from [15] and [16] that (2) implies the following functional equation

f (x + y + z) + f (x + y − z) + 2 f (x) + 2 f (y) − 2 f (x + y) − f (x + z) − f (x − z)
− f (y + z) − f (y − z) = 0

and so

f (2x + y + z) + 16 f (x) + 2 f (y) − 2 f (2x + y) − f (2x + z) − f (2x − z)
− f (y + z) − f (y − z) = − f (2x + y − z).

Thus, we now consider the following functional inequality

‖ f (2x + y + z) + 16 f (x) + 2 f (y) − 2 f (2x + y) − f (2x + z) − f (2x − z)
− f (y + z) − f (y − z)‖ ≤ ‖ f (2x + y − z)‖ (3)

in normed linear spaces. As a result, we can easily prove that if a mapping f : X→ Y satisfies the functional
inequality (3), then f is cubic. In this paper, we make an attempt to establish the generalized Hyers–Ulam
stability of cubic functional inequality (3). In Section 2, we investigate the generalized Hyers–Ulam stability
of the functional inequality (3) in Banach spaces by using fixed point method. In Section 3, we establish
the generalized Hyers–Ulam stability of the functional inequality (3) in Banach spaces by using direct
method. In Section 4, we prove the generalized Hyers–Ulam stability of the functional inequality (3) in
non-Archimedean Banach spaces by using fixed point method. In Section 5, we investigate the generalized
Hyers–Ulam stability of the functional inequality (3) in non-Archimedean Banach spaces by using direct
method.

2. Stability of (3) by Fixed Point Method

In this part, assume that X is a normed space and that Y is a Banach space. Now, we are going to inves-
tigate the stability of the functional inequality (3) in Banach space by using fixed point method. We recall
that a fixed point theory investigates the existence and uniqueness of fixed points under some conditions
for operators on abstract spaces. A classical Banach contraction principle is one of the fundamental results
in the fixed point theory, and then several authors have studied to generalize and improve the fixed point
theory by applying new contractive conditions for operators and by replacing complete metric spaces with
various abstract spaces (see e.g. [1],[7],[18],[22]).

Theorem 2.1. Let ϕ : X3
→ [0,∞) be a function such that there exists 0 < L < 1 with

ϕ(2x, 2y, 2z) ≤ 8Lϕ(x, y, z),
(
ϕ(

x
2
,

y
2
,

z
2

) ≤
L
8
ϕ(x, y, z), respectively

)
(4)

for all x, y, z ∈ X. Suppose that a mapping f : X→ Y with f (0) = 0 satisfies the functional inequality

‖ f (2x + y + z) + 16 f (x) + 2 f (y) − 2 f (2x + y) − f (2x + z) − f (2x − z)
− f (y + z) − f (y − z)‖ ≤ ‖ f (2x + y − z)‖ + ϕ(x, y, z) (5)
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for all x, y, z ∈ X. Then, there exists a unique cubic mapping T : X → Y given by T(x) = limm→∞
1

8m f (2mx)(
T(x) = limm→∞ 8m f ( x

2m ), resp.
)

such that

‖ f (x) − T(x)‖ ≤
1

16 − 16L
ϕ(x,−2x, 0), (6)(

‖ f (x) − T(x)‖ ≤
L

16 − 16L
ϕ(x,−2x, 0), resp.

)
for all x ∈ X.

Proof. Letting y = −2x and z = 0 in (5), we obtain

‖16 f (x) − 2 f (2x)‖ ≤ ϕ(x,−2x, 0) (7)

for all x ∈ X. Dividing by 16 in (7), we obtain

‖ f (x) −
1
8

f (2x)‖ ≤
1

16
ϕ(x,−2x, 0) (8)

all x ∈ X.
Consider the set

S := {h : X→ Y|h(0) = 0}

and introduce the generalized metric on S:

d(1, h) = inf{µ ∈ [0,∞) : ‖1(x) − h(x)‖ ≤ µϕ(x,−2x, 0),∀x ∈ X},

where, as usual, infφ = +∞. It is easy to show that (S, d) is generalized complete metric space (see the proof
of Theorem 3.1 of [17]). Now we consider an operator J : S→ S defined as

J1(x) :=
1
8
1(2x), 1 ∈ S,

for all x ∈ X. Let 1, h ∈ S be given such that d(1, h) ≤ ε. Then

‖1(x) − h(x)‖ ≤ εϕ(x,−2x, 0)

for all x ∈ X. Hence

‖J1(x) − Jh(x)‖ ≤ ‖
1
4
1(2x) −

1
4

h(2x)‖ ≤ εLϕ(x,−2x, 0)

for all x ∈ X. So d(1, h) ≤ ε implies that d(J1, Jh) ≤ Lε. This means that

d(J1, Jh) ≤ Ld(1, h)

for all 1, h ∈ S. Thus J is a strictly contractive mapping with Lipschitz constant L, and it follows from (8) that
d( f , J f ) ≤ 1

16 . By the fixed point theorem [20], there exists a mapping T : X → Y satisfying the followings
(1),(2) and (3):

(1) T is a fixed point of J, i.e.,

T(2x) = 8T(x) (9)

for all x ∈ X. The mapping T is a unique fixed point of J in the set

M = {1 ∈ S : d( f , 1) < ∞}.

This implies that T is a unique fixed point of J such that there exists a µ ∈ (0,∞) satisfying

‖ f (x) − T(x)‖ ≤ µϕ(x,−2x, 0)

for all x ∈ X;
(2) d(Jm f ,T)→ 0 as m→∞. This implies the equality T(x) = limm→∞

1
8m f (2mx) for all x ∈ X;
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(3) d( f ,T) ≤ 1
1−L d( f , J f ) ≤ 1

16−16L , which implies that the inequality (6) holds.
Now, we show that the mapping T is cubic. It follows from (4) and (5) that

‖T(2x + y + z) + 16T(x) + 2T(y) − 2T(2x + y) − T(2x + z) − T(2x − z)
−T(y + z) − T(y − z)‖

≤ ‖T(2x + y − z)‖ + lim
m→∞

1
8mϕ(2mx, 2my, 2mz)

≤ ‖T(2x + y − z)‖ + lim
m→∞

Lmϕ(x, y, z)

= ‖T(2x + y − z)‖

for all x, y, z ∈ X. Therefore, the mapping T : X→ Y is cubic, as desired.

We obtain the following corollary concerning the stability for approximate cubic mappings controlled
by a sum of the same powers of norms.

Corollary 2.2. Let θ ≥ 0 be a real number and p a positive real number with p , 3 . If a mapping f : X → Y with
f (0) = 0 satisfies the inequality

‖ f (2x + y + z) + 16 f (x) + 2 f (y) − 2 f (2x + y) − f (2x + z) − f (2x − z)
− f (y + z) − f (y − z)‖ ≤ ‖ f (2x + y − z)‖ + θ(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X, then we can find a unique cubic mapping T : X→ Y satisfying the inequality

‖ f (x) − T(x)‖ ≤
θ

2|8 − 2p|
(1 + 2p)‖x‖p

for all x ∈ X.

3. Stability of (3) by Direct Method

We prove stability problem of the cubic functional inequality (3) with perturbed control function ϕ. In
this section, let X be a normed space and Y a Banach space.

Theorem 3.1. Let ϕ : X3
→ [0,∞) be a function such that

∞∑
i=0

1
8iϕ(2ix, 2iy, 2iz) < ∞,

( ∞∑
i=1

8iϕ
( x
2i ,

y
2i ,

z
2i

)
< ∞, resp.

)
(10)

for all x, y, z ∈ X. Suppose that a mapping f : X→ Y satisfies the functional inequality

‖ f (2x + y + z) + 16 f (x) + 2 f (y) − 2 f (2x + y) − f (2x + z) − f (2x − z)
− f (y + z) − f (y − z)‖ ≤ ‖ f (2x + y − z)‖ + ϕ(x, y, z) (11)

for all x, y, z ∈ X. Then, there exists a unique cubic mapping T : X → Y given by T(x) = limm→∞
1

8m f (2mx)(
T(x) = limm→∞ 8m f ( x

2m ), resp.
)

such that

‖ f (x) −
f (0)
14
− T(x)‖ ≤

1
16

∞∑
i=0

1
8iϕ(2ix,−2i+1x, 0), (12)

(
‖ f (x) − T(x)‖ ≤

1
16

∞∑
i=1

8iϕ
( x
2i ,
−2x
2i , 0

)
, resp.

)
for all x ∈ X.
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Proof. Letting y = −2x and z = 0 in (11), we obtain

‖16 f (x) − 2 f (2x) − f (0)‖ ≤ ϕ(x,−2x, 0) (13)

for all x ∈ X. If we put f̃ (x) = f (x) − f (0)
14 , then it follows from (13) that

‖16 f̃ (x) − 2 f̃ (2x)‖ ≤ ϕ(x,−2x, 0) (14)

for all x ∈ X. Dividing by 16 in (14), we obtain

‖ f̃ (x) −
1
8

f̃ (2x)‖ ≤
1

16
ϕ(x,−2x, 0) (15)

for all x ∈ X. Therefore we prove from inequality (15) that for any integers m, l with m > l ≥ 0∥∥∥∥∥∥ f̃ (2lx)
8l
−

f̃ (2mx)
8m

∥∥∥∥∥∥ ≤

m−1∑
i=l

∥∥∥∥∥ 1
8i f̃ (2ix) −

1
8i+1

f̃ (2i+1x)
∥∥∥∥∥

≤

m−1∑
i=l

1
8i

∥∥∥∥∥ f̃ (2ix) −
1
8

f̃ (2i+1x)
∥∥∥∥∥

≤
1

16

m−1∑
i=l

1
8iϕ(2ix,−2i+1x, 0) (16)

for all x ∈ X. Since the right-hand side of (16) tends to zero as l→∞, we obtain that the sequence { f̃ (2mx)
8m } is

Cauchy for all x ∈ X. Because of the fact that Y is complete, it follows that the sequence { f̃ (2mx)
8m } converges

in Y. Therefore, we can define a mapping T : X→ Y as

T(x) = lim
m→∞

f̃ (2mx)
8m = lim

m→∞

f (2mx)
8m , x ∈ X.

Moreover, letting l = 0 and taking m→∞ in (16), we get the desired inequality (12). It follows from (10)
and (11) that

‖T(2x + y + z) + 16T(x) + 2T(y) − 2T(2x + y) − T(2x + z) − T(2x − z)
−T(y + z) − T(y − z)‖

≤ ‖T(2x + y − z)‖ + lim
m→∞

1
8mϕ(2mx, 2my, 2mz)

= ‖T(2x + y − z)‖

for all x, y, z ∈ X. Therefore, the mapping T : X→ Y is cubic.
Next, let T′ : X→ Y be another cubic mapping satisfying (12). Then, we have

‖T(x) − T′(x)‖ =

∥∥∥∥∥ 1
8k

T(2kx) −
1
8k

T′(2kx)
∥∥∥∥∥

≤
1
8k
{‖T(2kx) − f (2kx) +

f (0)
14
‖ + ‖ f (2kx) −

f (0)
14
− T′(2kx)‖}

≤ 2
[ 1
16

∞∑
i=0

1
8i+k

ϕ(2i+kx,−2i+k+1x, 0)
}]

=
1
8

∞∑
i=k

1
8iϕ(2ix,−2i+1x, 0)

for all k ∈N and all x ∈ X. Taking the limit as k→∞, we conclude that T(x) = T′(x) for all x ∈ X.
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We obtain the following corollary concerning the stability for approximate cubic mappings controlled
by a sum of different powers of norms.

Corollary 3.2. Let θi ≥ 0 be a real number and pi a positive real number with pi < 3 or pi > 3 for all i = 1, 2, 3. If a
mapping f : X→ Y satisfies the inequality

‖ f (2x + y + z) + 16 f (x) + 2 f (y) − 2 f (2x + y) − f (2x + z) − f (2x − z)
− f (y + z) − f (y − z)‖ ≤ ‖ f (2x + y − z)‖ + θ1‖x‖p1 + θ2‖y‖p2 + θ3‖z‖p3

for all x, y, z ∈ X, then we can find a unique cubic mapping T : X→ Y satisfying the inequality

‖ f (x) −
f (0)
14
− T(x)‖ ≤

θ1

2|8 − 2p1 |
‖x‖p1 +

2p2θ2

2|8 − 2p2 |
‖x‖p2

for all x ∈ X.

4. Stability of (3) in Non-Archimedean Spaces by Fixed Point Method

We recall that a non-Archimedean valuation in a fieldK is a function | · | : K→[0,∞) with
(i) |r| = 0 if and only if r = 0;
(ii) |rs| = |r||s| for all r, s ∈ K;
(iii) |r + s| ≤max{|r|, |s|} for all r, s ∈ K.
Any field endowed with a non-Archimedean valuation is said to be a non-Archimedean field; in any

such field we have |1| = | − 1| = 1 and |n| ≤ 1 for all nonzero integers n ∈ Z.

Definition 4.1. Let X be a linear space over a fieldK with a non-Archimedean non-trivial valuation | · |. A function
‖ · ‖ : X→[0,∞) is said to be a non-Archimedean norm if it satisfies the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖rx‖ = |r|‖x‖, for all r ∈ K and x ∈ X;
(iii) ‖x + y‖ ≤ max{‖x‖, ‖y‖}, for all x, y ∈ X.

Then (X, ‖ · ‖) is called a non-Archimedean space.

Definition 4.2. Let {xn} be a sequence in a non-Archimedean normed space X.
(1) A sequence {xn}

∞

n=1 in a non-Archimedean space is a Cauchy sequence if the sequence {xn+1 − xn}
∞

n=1 converges
to zero.

(2) The sequence {xn} is said to be convergent if, for any ε > 0, there are a positive integer N and x ∈ X such that

‖xn − x‖ < ε, ∀n ≥ N.

Then the point x ∈ X is called the limit of the sequence {xn}, which is denoted by limn→∞ xn = x.
(3) If every Cauchy sequence in X converges, then the non-Archimedean normed space X is called a non-

Archimedean Banach space.

In 2007, M.S. Moslehian and Th.M. Rassias [21] proved the generalized Hyers–Ulam stability of the
Cauchy and quadratic functional equations in non-Archimedean normed spaces. Some papers ([4],[12],[13])
on the stability of various functional equations and inequalities in non-Archimedean normed spaces have
been published after their stability results.

In this section, assume that X is a non-Archimedean normed space and that Y is a non-Archimedean
Banach space. Now, we are going to investigate the stability of the functional inequality (3) in non-
Archimedean Banach space by using fixed point method.

Theorem 4.3. Let ϕ : X3
→ [0,∞) be a function such that there exists 0 < L < 1 with

ϕ(2x, 2y, 2z) ≤ |8|Lϕ(x, y, z),
(
ϕ(

x
2
,

y
2
,

z
2

) ≤
L
|8|
ϕ(x, y, z), resp.

)
(17)
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for all x, y, z ∈ X. Suppose that a mapping f : X→ Y with f (0) = 0 satisfies the functional inequality

‖ f (2x + y + z) + 16 f (x) + 2 f (y) − 2 f (2x + y) − f (2x + z) − f (2x − z)
− f (y + z) − f (y − z)‖ ≤ ‖ f (2x + y − z)‖ + ϕ(x, y, z) (18)

for all x, y, z ∈ X. Then, there exists a unique cubic mapping T : X → Y given by T(x) = limm→∞
1

8m f (2mx)(
T(x) = limm→∞ 8m f ( x

2m ), resp.
)

such that

‖ f (x) − T(x)‖ ≤
1

|16| − |16|L
ϕ(x,−2x, 0), (19)(

‖ f (x) − T(x)‖ ≤
L

|16| − |16|L
ϕ(x,−2x, 0), resp.

)
for all x ∈ X.

Proof. Letting y = −2x and z = 0 in (18), we obtain

‖16 f (x) − 2 f (2x)‖ ≤ ϕ(x,−2x, 0) (20)

for all x ∈ X. Dividing by |16| in (20), we obtain

‖ f (x) −
1
8

f (2x)‖ ≤
1
|16|

ϕ(x,−2x, 0) (21)

all x ∈ X. Applying the similar argument to the corresponding proof of Theorem 2.1 on the complete
generalized metric space (S, d), we get the desired result.

We obtain the following corollary concerning the stability for approximate cubic mappings controlled
by a sum of the same powers of norms.

Corollary 4.4. Let θ ≥ 0 be a real number and p a positive real number with p , 3 . If a mapping f : X → Y with
f (0) = 0 satisfies the inequality

‖ f (2x + y + z) + 16 f (x) + 2 f (y) − 2 f (2x + y) − f (2x + z) − f (2x − z)
− f (y + z) − f (y − z)‖ ≤ ‖ f (2x + y − z)‖ + θ(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y, z ∈ X. Then we can find a unique cubic mapping T : X→ Y satisfying the inequality

‖ f (x) − T(x)‖ ≤
θ

|2||8 − 2p|
(1 + |2|p)‖x‖p

for all x ∈ X.

5. Stability of (3) in Non-Archimedean Spaces by Direct Method

We prove the stability of the functional inequality (3) in non-Archimedean Banach space by direct
method. In this section, assume that X is a non-Archimedean normed space and that Y is a non-Archimedean
Banach space.

Theorem 5.1. Let ϕ : X3
→ [0,∞) be a function such that

lim
m→∞

1
|8|m

ϕ(2mx, 2my, 2mz) = 0,
(

lim
m→∞

|8|mϕ
( x
2m ,

y
2m ,

z
2m

)
= 0, resp.

)
(22)

for all x, y, z ∈ X and

ϕ̃(x) = lim
m→∞

max
{ 1
|8|k

ϕ(2kx,−2k+1x, 0) : 0 ≤ k < m
}
, (23)(

ϕ̃(x) = lim
m→∞

max
{
|8|kϕ

( x
2k
,
−x

2k−1
, 0

)
: 1 ≤ k < m + 1

}
, resp.

)
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exists for all x ∈ X. Suppose that a mapping f : X→ Y satisfies the functional inequality

‖ f (2x + y + z) + 16 f (x) + 2 f (y) − 2 f (2x + y) − f (2x + z) − f (2x − z)
− f (y + z) − f (y − z)‖ ≤ ‖ f (2x + y − z)‖ + ϕ(x, y, z) (24)

for all x, y, z ∈ X. Then there exists a cubic mapping T : X → Y defined as T(x) = limm→∞
1

8m f (2mx)
(
T(x) =

limm→∞ 8m f ( x
2m ), resp.

)
such that

‖ f (x) − T(x)‖ ≤
1
|16|

ϕ̃(x), (25)(
‖ f (x) −

f (0)
14
− T(x)‖ ≤

1
|16|

ϕ̃(x), resp.
)

for all x ∈ X. Moreover, if

lim
l→∞

lim
m→∞

max
{ 1
|8|k

ϕ(2kx,−2k+1x, 0) : l ≤ k < m + l
}

= 0, (26)(
lim
l→∞

lim
m→∞

max
{
|8|kϕ

( x
2k
,
−x

2k−1
, 0

)
: l + 1 ≤ k < m + l + 1

}
= 0, resp.

)
for all x ∈ X, then T is a unique cubic mapping satisfying (25).

Proof. In this case, f (0) = 0 since ϕ(0, 0, 0) = 0 by (22). Replacing x by 2m−1x and dividing by |8|m−1 in (21),
we have∥∥∥∥∥∥ f (2m−1x)

8m−1 −
f (2mx)

8m

∥∥∥∥∥∥ ≤ 1
|16|

1
|8|m−1ϕ(2m−1x,−2mx, 0), (27)

for all x ∈ X. It follows from (22) and (27) that the sequence { f (2mx)
8m } is Cauchy for all x ∈ X. Because of

the fact that Y is complete, it follows that the sequence { f (2mx)
8m } converges in Y. Therefore, we can define a

mapping T : X→ Y as

T(x) = lim
m→∞

f (2mx)
8m , x ∈ X.

It follows from (21) and (27) that∥∥∥∥∥ f (x) −
f (2mx)

8m

∥∥∥∥∥ ≤ 1
|16|

max
{ 1
|8|k

ϕ(2kx,−2k+1x, 0) : 0 ≤ k < m
}

(28)

for all m ∈ N and all x ∈ X. Applying the similar argument to the corresponding proof of Theorem 3.1 in
non-Archimedean spaces, we get the required result.

Corollary 5.2. Let ρ : [0,∞)→ [0,∞) be a function satisfying

(i) ρ(|2|t) = ρ(|2|)ρ(t) f or all t ≥ 0 and (ii) ρ(|2|) < |2|3.

Suppose that a mapping f : X→ Y satisfies the inequality

‖ f (2x + y + z) + 16 f (x) + 2 f (y) − 2 f (2x + y) − f (2x + z) − f (2x − z)
− f (y + z) − f (y − z)‖ ≤ ‖ f (2x + y − z)‖ + ε{ρ(‖x‖) + ρ(‖y‖) + ρ(‖z‖)}

for all x, y, z ∈ X and for some ε > 0. Then there exists a unique cubic mapping T : X→ Y such that

‖ f (x) − T(x)‖ ≤
ε
|16|

(1 + ρ(|2|))ρ(‖x‖)

for all x ∈ X.i
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Proof. Letting ϕ(x, y, z) = ε{ρ(‖x‖) + ρ(‖y‖) + ρ(‖z‖)}, we obtain

lim
m→∞

1
|8|m

ϕ(2mx, 2my, 2mz) =
(ρ(|2|)
|8|

)m
ϕ(x, y, z) = 0

for all x, y, z ∈ X and also

ϕ(x,−2x, 0) = ε{ρ(‖x‖) + ρ(‖2x‖)}
= ε{ρ(‖x‖) + ρ(|2|)ρ(‖x‖)}
= ε(1 + ρ(|2|))ρ(‖x‖)

for all x ∈ X. By direct calculation,

ϕ̃(x) = lim
m→∞

max
{ 1
|8|k

ϕ(2kx,−2k+1x, 0) : 0 ≤ k < m
}

= ϕ(x,−2x, 0)

exists and

lim
l→∞

lim
m→∞

max
{ 1
|8|k

ϕ(2kx,−2k+1x, 0) : l ≤ k < m + l
}

= lim
l→∞

1
|8|l
ϕ(2lx,−2l+1x, 0) = 0

holds for all x ∈ X. Applying Theorem ??, we conclude that

‖ f (x) − T(x)‖ ≤
1
|16|

ϕ̃(x) =
1
|16|

ϕ(x,−2x, 0) =
ε
|16|

(1 + ρ(|2|))ρ(‖x‖)

for all x ∈ X.

Corollary 5.3. Let ρ : [0,∞)→ [0,∞) be a function satisfying

(i) ρ
( t
|2|

)
= ρ

( 1
|2|

)
ρ(t) f or all t ≥ 0 and (ii) ρ

( 1
|2|

)
< |2|−3.

Suppose that a mapping f : X→ Y satisfies the inequality

‖ f (2x + y + z) + 16 f (x) + 2 f (y) − 2 f (2x + y) − f (2x + z) − f (2x − z)
− f (y + z) − f (y − z)‖ ≤ ‖ f (2x + y − z)‖ + ε{ρ(‖x‖) + ρ(‖y‖) + ρ(‖z‖)}

for all x, y, z ∈ X and for some ε > 0. Then there exists a unique cubic mapping T : X→ Y such that

‖ f (x) −
f (0)
14
− T(x)‖ ≤

ε
|2|

(
1 + ρ

( 1
|2|

))
ρ(‖x‖)

for all x ∈ X.
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