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Abstract. It has been an interesting and natural research subject to consider the reducibility of some
extensively generalized special functions. In this regard, Kampé de Fériet function has been attracted
by many mathematicians. The authors [7] also established many interesting cases of the reducibility
of Kampé de Fériet function by employing generalizations of the two results for the terminating 2F1(2)
hypergeometric identities due to Kim et al. In this sequel, we first aim at presenting several interesting
cases of the reducibility of Kampé de Fériet function by using generalizations of classical Kummer’s
summation theorem due to Lavoie et al. We next show how one can use the above-given result to obtain
eleven new generating relations for products of two Laguerre polynomials in a single-form result. We also
consider many interesting and potentially useful specials cases of our main results.

1. Introduction and Preliminaries

The vast popularity and immense usefulness of the hypergeometric function 2F1 and the generalized
hypergeometric functions pFq

(
p, q ∈N0

)
in one variable have inspired and stimulated a large number of

research workers to investigate hypergeometric functions of two or more variables. Serious and significant
study of the functions of two variables was initiated by Appell [1] who presented the so-called Appell
functions F1, F2, F3 and F4 which are natural generalizations of the Gaussian hypergeometric function and
whose confluent forms were studied by Humbert [24, 25]. A complete list of these functions can be seen
in the standard text of Erdélyi et al. [8]. Also, later on, the four Appell functions F1, F2, F3 and F4 and
their confluent forms were further generalized by Kampé de Fériet [1], who introduced a more general
hypergeometric function of two variables. The notation defined and introduced by Kampé de Fériet for
his double hypergeometric function of superior order was subsequently abbreviated by Burchnall and
Chaundy [4, 5]. We, however, recall here the definition of a more general double hypergeometric function
(than the one defined by Kampé de Fériet) in a slightly modified notation given by Srivastava and Panda
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[26, p. 423, Eq.(26)]. For this, let (hH) denote the sequence of parameters (h1, h2, . . . , hH) and, for n ∈ N0,
define the Pochhammer symbol

((hH))n := (h1)n · · · (hH)n,

where, when n = 0, the product is understood to reduce to unity. Therefore, the most convenient general-
ization of the Kampé de Fériet is defined as follows:

FH: A; B
G: C; D

[
(hH) : (aA) ; (bB);(
1G

)
: (cC) ; (dD);

x, y
]

=

∞∑
m=0

∞∑
n=0

((hH))m+n ((aA))m ((bB))n((
1G

))
m+n ((cC))m ((dD))n

xm

m!
yn

n!
.

(1)

The symbol (h) is a convenient contraction for the sequence of the parameters h1, h2, . . ., hH and the
Pochhammer symbol (h)n is the same as defined (for λ ∈ C) by (see [23, p. 2 and p. 5]):

(λ)n : =

{
1 (n = 0)
λ(λ + 1) . . . (λ + n − 1) (n ∈N)

=
Γ(λ + n)

Γ(λ)
(λ ∈ C \Z−0 )

(2)

and Γ(λ) is the familiar Gamma function. For details about the convergence for this function, we refer to
[24].

It has been an interesting and natural research subject to consider the reducibility of some extensively
generalized special functions. In this regard, Kampé de Fériet function has been attracted by various authors
[6, 7, 10–12, 15]. The authors [7] also established many interesting cases of the reducibility of Kampé de
Fériet function by employing generalizations of the two results for the terminating 2F1(2) hypergeometric
identities due to Kim et al. [14].

In [26], a list of several interesting reducibility of Kampé de Fériet function is recorded, one of which is
given as follows:

FD: 0; 0
G: 1; 1

[
(d) : ; ;(
1
)

: p ; p ;
− x, x

]

= 2DF2G+3


(1

2
d
)
,
(1

2
d
)

+
1
2

;(1
2
1

)
,
(1

2
1

)
+

1
2
, p,

1
2

p,
1
2

p +
1
2

;
− 4D−G−1 x2

 .
(3)

The result (3) is derived with the help of the following classical summation theorem due to Kummer (see,
e.g., [2, 3, 20, 22, 23]):

2F1

[
a, b ;

1 + a − b ;
− 1

]
=

Γ
(
1 + 1

2 a
)

Γ (1 + a − b)

Γ (1 + a) Γ
(
1 + 1

2 a − b
) . (4)

Recently a good deal of progress has been made in generalizing and extending the classical summation
theorems for the series 2F1 and 3F2 (see, e.g., [13], [16] - [19], [21], [27]).

Motivated essentially by the result (3), we first give eleven identities in the form of a single result, which
will be given in Theorem 1.

2. Reducibility of Kampé De Fériet Function

We establish a general formula for the reducibility of Kampé de Fériet function which is expressed in a
single form containing eleven results asserted by the following theorem.
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Theorem 1. The following reducibility of Kampé de Fériet function holds true:

FD: 0; 0
G: 1; 1

[
(d) : ; ;(
1
)

: p + i ; p ;
− x, x

]
=

Γ
(

1
2

)
Γ
(
p
)

Γ
(
p + i

)
Γ
(
p + 1

2 (i + |i|)
) (5)

×

∞∑
n=0

4n(D−G−1) (−x2)n (( 1
2 d))n (( 1

2 d) + 1
2 )n

n! (( 1
21))n (( 1

21) + 1
2 )n ( 1

2 )n ( 1
2 p + 1

4 (i + |i|))n ( 1
2 p + 1

4 (i + |i|) + 1
2 )n

×

 A
′

i ( 1
2 −

1
2 i + [ 1+i

2 ])n

Γ(p + 1
2 i) Γ( 1

2 i + 1
2 − [ 1+i

2 ]) (p + 1
2 i)n

+
B
′

i (1 − 1
2 i + [ i

2 ])n

Γ(p + 1
2 i − 1

2 ) Γ( 1
2 i − [ 1

2 i]) (p + 1
2 i − 1

2 )n


+

(d)
(1)

2x
Γ
(

1
2

)
Γ
(
p
)

Γ
(
p + i

)
Γ
(
1 + p + 1

2 (i + |i|)
)

×

∞∑
n=0

4n(D−G−1) (−x2)n (( 1
2 d) + 1

2 )n (( 1
2 d + 1

2 ) + 1
2 )n

n! (( 1
21 + 1

2 ))n (( 1
21 + 1

2 ) + 1
2 )n ( 3

2 )n ( 1
2 + 1

2 p + 1
4 (i + |i|))n (1 + 1

2 p + 1
4 (i + |i|))n

×

 A
′′

i (1 − 1
2 i + [ 1+i

2 ])n

Γ( 1
2 + 1

2 i + p) Γ( 1
2 i − [ 1+i

2 ]) ( 1
2 + 1

2 i + p)n
+

B
′′

i ( 3
2 −

1
2 i + [ i

2 ])n

Γ(p + 1
2 i) Γ( 1

2 i − [ 1
2 i] − 1

2 ) (p + 1
2 i)n

 ,
where i = 0, ±1, . . . , ±5. Here, as usual, [x] denotes the greatest integer less than or equal to x ∈ R and its absolute
value is denoted by |x|. The coefficientsA′i and B′i can be obtained from the Table ofAi and Bi by simply substituting
a and b with −2n and 1 − p − 2n, respectively, while the coefficientsA′′i and B′′i can be obtained from the Table ofAi
and Bi by substituting a and b with −2n − 1 and −p − 2n, respectively.

Proof. The proof of our first main result (5) is quite straight forward. So we give the outline of its proof. For
this, denoting the left-hand side of (5) by S and expressing the Kampé de Fériet function in double series,
we have

S =

∞∑
n=0

∞∑
m=0

((d))m+n

((1))m+n

(−1)m xm+n

(p + i)m (p)n m! n!
.

Replacing n by n − m, using a well-known double series manipulation (see, e.g., [20, p. 56]), using the
elementary identities for Pochhammer’s symbol (see, e.g., [23, p. 5]), and expressing the inner sum as a 2F1,
we get

S =

∞∑
n=0

((d))n

((1))n

xn

(p)n n! 2F1

[
−n, 1 − p − n ;

p + i ;
− 1

]
.

Separate the final summation into even and odd powers of x, and evaluate both 2F1 with the help of the
following generalization of classical Kummer’s summation theorem (4) due to Lavoie et al. [18]:

2F1

[
a, b ;

1 + a − b + i ;
− 1

]
=

2−a Γ
(

1
2

)
Γ (1 − b) Γ (1 + a − b + i)

Γ
(
1 − b + 1

2 (i + |i|
)

×

 Ai(a, b)

Γ
(

1
2 a + 1

2 i + 1
2 −

[
i+1
2

])
Γ
(
1 + 1

2 a − b + 1
2 i
)

+
Bi(a, b)

Γ
(

1
2 a + 1

2 i −
[

i
2

])
Γ
(

1
2 + 1

2 a − b + 1
2 i
) ,

(6)
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Table 1: Table forAi and Bi

i Ai Bi

−4(6 + a − b)2 + 2b(6 + a − b) 4(6 + a − b)2 + 2b(6 + a − b)
5 +b2 + 22(6 + a − b) − 13b − 20 −b2

− 34(6 + a − b) − b + 62

4 2(a − b + 3)(1 + a − b) − (b − 1)(b − 4) −4(a − b + 2)

3 3b − 2a − 5 2a − b + 1

2 1 + a − b −2

1 −1 1

0 1 0

−1 1 1

−2 a − b − 1 2

−3 2a − 3b − 4 2a − b − 2

−4 2(a − b − 3)(a − b − 1) − b(b + 3) 4(a − b − 2)

4(a − b − 4)2
− 2b(a − b − 4) 4(a − b − 4)2 + 2b(a − b − 4)

−5 −b2 + 8(a − b − 4) − 7b −b2 + 16(a − b − 4) − b + 12

where i = 0, ±1, . . . , ±5. Here, as usual, [x] denotes the greatest integer less than or equal to x ∈ R and its
absolute value is denoted by |x|. The coefficientsAi(a, b) := Ai and Bi(a, b) := Bi are given in the following
table.

After some algebra, we arrive at the right-hand side of our general formula (5). This completes the proof
of (5).

3. Special Cases and Applications

In this section, first we consider a few special cases of (5) and next we give an interesting application of
the results in Theorem 1. For this, the special case of (5) when i = 0 is easily seen to yield (3). The special
cases of (5) when i = ±1 are given as follows:

FD: 0; 0
G: 1; 1

[
(d) : ; ;(
1
)

: p + 1 ; p ;
− x, x

]

= 2DF2G+3


(1

2
d
)
,
(1

2
d
)

+
1
2

;(1
2
1

)
,
(1

2
1

)
+

1
2
, p,

1
2

p +
1
2
,

1
2

p + 1 ;
− 4D−G−1 x2


(7)
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+
(d)
(1)

x
p(p + 1)

× 2DF2G+3


(1

2
d
)

+
1
2
,
(1

2
d + +

1
2

)
+

1
2

;(1
2
1

)
+

1
2
,
(1

2
1 +

1
2

)
+

1
2
, p + 1,

1
2

p + 1,
1
2

p +
3
2

;
− 4D−G−1 x2


and

FD: 0; 0
G: 1; 1

[
(d) : ; ;(
1
)

: p − 1 ; p ;
− x, x

]

= 2DF2G+3


(1

2
d
)
,
(1

2
d
)

+
1
2

;(1
2
1

)
,
(1

2
1

)
+

1
2
, p − 1,

1
2

p,
1
2

p +
1
2

;
− 4D−G−1 x2


(8)

−
(d)
(1)

x
p(p − 1)

× 2DF2G+3


(1

2
d +

1
2

)
,
(1

2
d +

1
2

)
+

1
2

;(1
2
1 +

1
2

)
,
(1

2
1 +

1
2

)
+

1
2
, p,

1
2

p +
1
2
,

1
2

p + 1 ;
− 4D−G−1 x2

 .
Next we apply the result (5) to give generating relations for products of two Laguerre polynomials. The

Laguerre polynomials are defined by (see [8])

L(a)
n (x) =

(a)n

n! 1F1

[
−n ;

a + 1 ;
x
]
. (9)

In a two-dimensional extension of a very general series transform due to Bailey [22], Exton [9] deduced the
following interesting double generating relation for a product of two Laguerre polynomials:

∞∑
m=0

∞∑
n=0

((d))m+n (−1)n xm+n

((1))m+n (p′)m (p)n
L(p′−1)

m (y) L(p−1)
n (t)

= FD: 0; 0
G: 1; 1

[
(d) : ; ;(
1
)

: p′ ; p ;
− xy, xt

] (10)

and deduced several interesting special cases including the following result:

∞∑
m=0

∞∑
n=0

((d))m+n (−1)n xm+n

((1))m+n (p′)m (p)n
L(p′−1)

m (y) L(p−1)
n (y)

= D+2FG+3

 (d) ,
1
2
(
p′ + p − 1

)
,

1
2

(p′ + p) ;(
1
)
, p′, p, p′ + p − 1 ;

− 4 xy

 .
(11)

Here, by using (10) and (5), we establish a general generating relation which includes eleven identities
for product of two Laguerre polynomials asserted by the following theorem.

Theorem 2. The following generating function holds true:

∞∑
m=0

∞∑
n=0

((d))m+n (−1)n xm+n

((1))m+n (p + i)m (p)n
L(p+i−1)

m (y) L(p−1)
n (y) =

Γ
(

1
2

)
Γ
(
p
)

Γ
(
p + i

)
Γ
(
p + 1

2 (i + |i|)
) (12)
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×

∞∑
n=0

4n(D−G−1) (−x2 y2)n (( 1
2 d))n (( 1

2 d) + 1
2 )n

n! (( 1
21))n (( 1

21) + 1
2 )n ( 1

2 )n ( 1
2 p + 1

4 (i + |i|))n ( 1
2 p + 1

4 (i + |i|) + 1
2 )n

×

 A
′

i ( 1
2 −

1
2 i + [ 1+i

2 ])n

Γ(p + 1
2 i) Γ( 1

2 i + 1
2 − [ 1+i

2 ]) (p + 1
2 i)n

+
B
′

i (1 − 1
2 i + [ i

2 ])n

Γ(p + 1
2 i − 1

2 ) Γ( 1
2 i − [ 1

2 i]) (p + 1
2 i − 1

2 )n


+

(d)
(1)

2x y
Γ
(

1
2

)
Γ
(
p
)

Γ
(
p + i

)
Γ
(
1 + p + 1

2 (i + |i|)
)

×

∞∑
n=0

4n(D−G−1) (−x2 y2)n (( 1
2 d) + 1

2 )n (( 1
2 d + 1

2 ) + 1
2 )n

n! (( 1
21 + 1

2 ))n (( 1
21 + 1

2 ) + 1
2 )n ( 3

2 )n ( 1
2 + 1

2 p + 1
4 (i + |i|))n (1 + 1

2 p + 1
4 (i + |i|))n

×

 A
′′

i (1 − 1
2 i + [ 1+i

2 ])n

Γ( 1
2 + 1

2 i + p) Γ( 1
2 i − [ 1+i

2 ]) ( 1
2 + 1

2 i + p)n
+

B
′′

i ( 3
2 −

1
2 i + [ i

2 ])n

Γ(p + 1
2 i) Γ( 1

2 i − [ 1
2 i] − 1

2 ) (p + 1
2 i)n

 ,
where i = 0, ±1, . . . , ±5, the coefficientsAi, Bi,A′i , B

′

i ,A
′′

i , B′′i , and other notations are same as in (5).

Proof. We can derive our generating relation in a straightforward way. Indeed, if we set t = y and p′ = p + i
in (10), then, for i = 0, ±1, . . . , ±5, we obtain

∞∑
m=0

∞∑
n=0

((d))m+n (−1)n xm+n

((1))m+n (p + i)m (p)n
L(p+i−1)

m (y) L(p−1)
n (y)

= FD: 0; 0
G: 1; 1

[
(d) : ; ;(
1
)

: p + i ; p ;
− xy, xy

]
.

(13)

Replacing x by xy in (5) and applying the resulting identity to (13), we get our desired generating relation
(12). This completes the proof of (12).

We also consider some interesting special cases of Theorem 2. The special case of (12) when i = 0 gives
the following result:

∞∑
m=0

∞∑
n=0

((d))m+n (−1)n xm+n

((1))m+n (p)m (p)n
L(p−1)

m (y) L(p−1)
n (y)

= 2DF2G+3


(1

2
d
)
,
(1

2
d +

1
2

)
;(1

2
1

)
,
(1

2
1 +

1
2

)
, p,

1
2

p,
1
2

p +
1
2

;
− 4D−G−1 x2 y2

 ,
(14)

which is a known result due to Exton [9]. Further, in (14), if we set

(i) D = 1 and G = 0;

(ii) D = 2, G = 0, d1 = p and d2 = 2p;

(iii) D = 2, G = 0, d1 = p and d2 = 2p − 1,

we, respectively, obtain the following results:

∞∑
m=0

∞∑
n=0

(p)m+n (−1)n xm+n

(p)m (p)n
L(p−1)

m (y) L(p−1)
n (y)

= 0F1

[
;

p ;
− x2 y2

]
= Γ(p) (xy)1−p Jp−1(2xy),

(15)
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where Jν(z) is the Bessel function of the first kind having the following connection with 0F1(·) (see, e.g., [3,
p. 675]):

0F1

[
;

ν + 1 ;
−

z2

4

]
= Γ(ν + 1)

( z
2

)−ν
Jν(z); (16)

∞∑
m=0

∞∑
n=0

(p)m+n (2p)m+n (−1)n xm+n

(p)m (p)n
L(p−1)

m (y) L(p−1)
n (y)

= 1F0

 p +
1
2

;

;
− 4 x2 y2

 =
(
1 + 4 x2 y2

)−p− 1
2 ;

(17)

∞∑
m=0

∞∑
n=0

(p)m+n (2p − 1)m+n (−1)n xm+n

(p)m (p)n
L(p−1)

m (y) L(p−1)
n (y)

= 1F0

 p −
1
2

;

;
− 4 x2 y2

 =
(
1 + 4 x2 y2

)−p+ 1
2 .

(18)

It is noted that the results (15) to (18) were derived by Exton [9] but the identity (18) is a corrected form.
Similarly, many other interesting results can be obtained.
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