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Some Applications of Mittag-Leffler Function in the Unit Disk
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Abstract. In this paper we introduce an operator associated with generalized Mittag-Leffler function in
the unit diskU = {z : |z| < 1}. By using this operator and the virtue of differential subordination, we obtain
interesting results. Some applications of our results are also obtained.

1. Introduction

The Mittag-Leffler function Eα(z) (z ∈ C) ([10], [11]) is defined by

Eα(z) =

∞∑
n=0

zn

Γ(αn + 1)
(α ∈ C; Re(α) > 0).

Several properties of Mittag-Leffler function and generalized Mittag-Leffler function can be found e.g. in
[1], [2], [3], [4], [5], [7], [12], [13],[14], [15], [16], [19], [20] and [21].

Moreover, Srivastava and Tomovski [18] introduced the function Eγ,kα,β(z) (z ∈ C) in the form

Eγ,kα,β(z) =

∞∑
n=0

(
γ
)

nk zn

Γ(αn + β) n!
, (1.1)

(α, β, γ ∈ C; Re(α) > max {0,Re(k) − 1} ; Re(k) > 0) .

where
(
γ
)

n is the Pochhammer symbol:

(
γ
)

n =
Γ(γ + n)

Γ(γ)
=

{
1, n = 0

γ(γ + 1)...(γ + n − 1) .

Srivastava and Tomovski [18] proved that the function Eγ,kα,β(z) defind by (1.1) is an entire function in the
complex z-plane .
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Let A denote the class of functions f (z) normalized by

f (z) = z +

∞∑
k=2

ak zk (1.2)

which are analytic in the open unit discU = {z ∈ C : |z| < 1}.

Noting that, by using a similar proof which is used by Srivastava and Tomovski [18, Theorem 1, P 201]
we find that, if

Re(α) ≥ 0 when Re(k) = 1 with β , 0 ,

then, the power series in the defining equation (1.1) is still analytic and converges absolutely in U for all
γ ∈ C.

Now, we define the function Qγ,k
α,β(z) by

Qγ,k
α,β(z) =

Γ(α + β)(
γ
)

k

(
Eγ,kα,β(z) −

1
Γ(β)

)
(z ∈ U), (1.3)

(β, γ ∈ C; Re(α) > max {0,Re(k) − 1} ; Re(k) > 0;
Re(α) = 0 when Re(k) = 1 with β , 0).

Throughout this paper, unless otherwise indicated, the conditions on the four complex parameters
α, β, γ and k will be as follows:

β, γ ∈ C, Re(α) > max {0,Re(k) − 1} , Re(k) > 0 and
Re(α) = 0 when Re(k) = 1 with β , 0.

Moreover, let f (z) ∈ A. Denote byHγ,k
α,β( f ) : A→ A the operator is defined by

H
γ,k
α,β( f ) (z) = Qγ,k

α,β(z) ∗ f (z) (z ∈ U ), (1.4)

where the symbol (∗) denotes the Hadamard product (or convolution).

We note that

H
γ,k
α,β( f ) (z) = z +

∞∑
n=2

Γ
(
γ + nk

)
Γ
(
α + β

)
Γ
(
γ + k

)
Γ
(
β + αn

)
n!

an zn.

Also, noting that:

1. H1,1
0,β ( f )(z) = f (z).

2. H2,1
0,β ( f )(z) = 1

2

(
f (z) + z f ′ (z)

)
.

3. H0,1
0,β ( f )(z) =

z∫
0

1
t f (t)dt.

4. H1,1
1,0 ( z

1−z ) = zez .

5. H1,1
1,1 ( z

1−z ) = ez
− 1.

6. H1,1
2,1 ( z

1−z ) = −2 + cosh(
√

z).

Remark 1.1. It is noteworthy to mention that, the Srivastava–Wright operator [17] (see also [6]) which is defined by
the Fox-Wright generalization qΨs of the hypergeometric qFs function also generalized the Mittag-Leffler function.
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2. Some Definitions and Lemmas

In our paper we use the following definitions.

Definition 2.1. Let f (z) and F(z) be analytic functions. The function f (z) is said to be subordinate to F(z), written
f (z) ≺ F(z), if there exists a function w(z) analytic in U, with w(0) = 0 and |w(z)| ≤ 1, and such that f (z) =
F(w(z)). If F(z) is univalent, then f (z) ≺ F(z) if and only if f (0) = F(0) and f (U) ⊂ F(U) .

Definition 2.2. Let Ψ : C2
×U→C be analytic in domain D, and let h(z) be univalent in U. If p(z) is analytic

inU with ( p(z), z p′ (z) ) ∈ D when z ∈ U, then we say that p(z) satisfies a first order differential subordination if:

Ψ( p(z), z p
′

(z) ; z) ≺ h(z) (z ∈ U) . (2.1)

The univalent function q(z) is called dominant of the differential subordination (2.1), if p(z) ≺ q(z) for all p(z) satisfying (2.1), if
q̃(z) ≺ q(z) for all dominant of (2.1), then we say that q̃(z) is the best dominant of (2.1).

By using the definition ofHγ,k
α,β( f ) (z) which is defined by (1.4), we can prove the following lemma:

Lemma 2.1. If f (z) ∈ A (z ∈ U), then

z
(
H

γ,k
α,β( f )(z)

)′
=

(
γ + k

k

) (
H

γ+1,k
α,β ( f ) (z)

)
−
γ

k

(
H

γ,k
α,β( f ) (z)

)
(2.2)

and

αz
(
H

γ,k
α,β+1( f )(z)

)′
= (α + β)

(
H

γ,k
α,β( f ) (z)

)
− β

(
H

γ,k
α,β+1( f ) (z)

)
. (2.3)

Remark 2.1. Putting f (z) = z
1−z and k = q ∈ (0, 1)∪N, in (2.3) we have the result due to Shukla [16, Theorem 2.1,

P. 800].

Using (2.2), (2.3) and mathematical induction, we get the following lemmas:

Lemma 2.2. If f (z) ∈ A (z ∈ U) and m ∈N0 = {0, 1, 2, ...} , then

H
γ+m,k
α,β ( f )(z) =

km

(γ + k)m
(zD +

γ

k
)m
H

γ,k
α,β( f )(z) (D :=

d
dz

), (2.4)

where (zD+
γ
k )m = (zD+

γ
k )◦(zD+

γ
k )◦...◦(zD+

γ
k ) to m−times and ◦ denotes the composition (I◦J)( f )(z) = I(J( f (z))).

Lemma 2.3. If z ∈ U, f ∈ A and m ∈N0, then

H
γ,k
α,β( f )(z) =

1
(α + β)m

(αzD + β)m
H

γ,k
α,β+m( f )(z) (D :=

d
dz

), (2.5)

where (αzD + β)m = (αzD + β) ◦ (αzD + β) ◦ ... ◦ (αzD + β) to m − times and ◦ denotes the composition
(I ◦ J)( f )(z) = I(J( f (z))).

Example 2.1. Putting γ = k = 1, α = 0 and f (z) = z
1−z in Lemma 2.2, we have the following property of the

generalized Mittag-Leffler function in the unit diskU,

Em+1,1
0,β ( f )(z) =

1
Γ(β)

+
1

(m + 1)! Γ(β)
(zD + 1)m z

1 − z
(z ∈ U; m ∈N0) .
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3. Differential Subordination withHγ,k

α,β
( f )

We require the following lemma due to Miller and Mocanu [8], see also [9, P. 132].

Lemma 3.1. Let q(z) be univalent inU and let θ and φ be analytic in a domainD containing q(U), with φ(w) , 0,
when w ∈ q(U).Set Q(z) = zq′ (z)φ[q(z)], h(z) = θ[q(z)] + Q(z) and suppose that either h(z) is convex, or Q(z) is

starlike . In addition, assume that Re
{

z h′ (z)
Q(z)

}
> 0.

If p(z) is analytic inU, with p(0) = q(0), p(U) ⊂ D and

θ[p(z)] + z p
′

(z) φ[p(z)] ≺ θ[q(z)] + zq
′

(z) φ[q(z)] = h(z), (3.1)

then p(z) ≺ q(z), and q(z) is the best dominant of (3.1).

Now, we will prove the following theorem.

Theorem 3.1. Let
H

γ+i,k
α,β ( f )(z)

z , 0 (i = 0, 1) and

z
(
H

γ+1,k
α,β ( f )(z)

)′
H

γ+1,k
α,β ( f )(z)

≺ q(z) +
z
(
q(z)

)′
q(z) +

γ
k

(
f ∈ A; z ∈ U

)
where q(z) is univalent inU with q(0) = 1, which satisfies the following conditions:

Re
(
q(z) +

γ

k

)
> 0 and Re

1 +
zq′′ (z)
q′ (z)

−
zq′ (z)

q(z) +
γ
k

 > 0.

Then

z
(
H

γ,k
α,β( f )(z)

)′
H

γ,k
α,β( f )(z)

≺ q(z) (3.2)

and q(z) is the best dominant of (3.2).

Proof. We choose p(z) =
z
(
H

γ,k
α,β ( f )(z)

)′
H

γ,k
α,β ( f )(z)

, then (2.2) becomes

(
p(z) +

γ

k

)
H

γ,k
α,β( f )(z) = (

γ + k
k

)Hγ+1,k
α,β ( f )(z). (3.3)

Then, from the identity (3.3), we have

z
(
H

γ+1,k
α,β ( f )(z)

)′
H

γ+1,k
α,β ( f )(z)

=

p(z) +
z p′ (z)

p(z) +
γ
k

 , (3.4)

therefore, (3.4) becomes

p(z) +
z p′ (z)

p(z) +
γ
k

≺ q(z) +
z
(
q(z)

)′
q(z) +

γ
k

, (z ∈ U). (3.5)

where q(z) is defined in Theorem 3.1.
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Let us choose the functions θ(w) = w and φ(w) =
1

w +
γ
k

. Then θ(w) and φ(w) are analytic with domain

D = C \{−
γ
k }which contains q(U) and φ(w) , 0 when w ∈ q(U).

Also, we define the function Q(z) by

Q(z) = zq
′

(z)φ(q(z)),

since

h(z) = θ[q(z)] + Q(z) = q(z) +
z
(
q(z)

)′
q(z) +

γ
k

,

furthermore,

zQ′

(z)
Q(z)

= 1 +
zq′′ (z)
q′ (z)

−
zq′ (z)

q(z) +
γ
k

,

therefore, Q(z) is starlike function inU, and

Re
{

z h′ (z)
Q(z)

}
= Re

{
1

φ(q(z))
+

zQ′

(z)
Q(z)

}
= Re

(
q(z) +

γ

k

)
+ Re

(
zQ′

(z)
Q(z)

)
> 0.

Also, the condition
H

γ+1,k
α,β ( f )(z)

z
, 0, gives that the function p(z) is analytic in U, p(0) = q(0) = 1 and

−
γ
k < p(U), therefore p(U) ⊂ D. By Lemma 3.1, we deduce

z
(
H

γ,k
α,β ( f )(z)

)′
H

γ,k
α,β ( f )(z)

≺ q(z), and q(z) is the best dominant

of (3.2).

By using the technique which is used in Theorem 3.1 and the recurrence relation (2.3), we have the
following theorem.

Theorem 3.2. Let
H

γ,k
α,β+i( f )(z)

z , 0 (i = 0, 1) and

z
(
H

γ,k
α,β( f )(z)

)′
H

γ,k
α,β( f )(z)

≺ q(z) +
z
(
q(z)

)′
q(z) +

γ
k

where q(z) is univalent inU with q(0) = 1, which satisfies the following conditions:

Re
(
q(z) +

β

α

)
> 0 and Re

1 +
zq′′ (z)
q′ (z)

−
zq′ (z)

q(z) +
β
α

 > 0.

Then

z
(
H

γ,k
α,β+1( f )(z)

)′
H

γ,k
α,β+1( f )(z)

≺ q(z) (3.6)

and q(z) is the best dominant of (3.6).
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Corollary 3.1. Let Re
(
γ
k

)
≥ −δ; δ ∈ [0, 1). Also, let

z
(
H

γ+1,k
α,β ( f )(z)

)′
H

γ+1,k
α,β ( f )(z)

≺ h(z) ( z ∈ U),

for all f ∈ A satisfies
H

γ+i,k
α,β ( f )(z)

z , 0 (i = 0, 1), then

H
γ,k
α,β( f )(z) ∈ S∗(δ), δ is the best possible,

where S∗(δ) is starlike function of order δ and

h(z) = −1 + 2δ −
3 − 2δ
1 − z

−
1 +

γ
k

1 +
γ
k +

(
1 − 2δ − γ

k

)
z
. (3.7)

Proof. Putting q(z) =
1 + (1 − 2α) z

1 − z
, therefore under the condition Re

(
γ
k

)
≥ −δ, we have

Re
(
q(z) +

γ

k

)
> 0. (3.8)

After some calculations, we have,

1 +
zq′′ (z)
q′ (z)

−
zq′ (z)

q(z) +
γ
k

= −1 +
1

1 − z
+

1 +
γ
k

1 +
γ
k +

(
1 − 2δ − γ

k

)
z
,

therefore,

Re

1 +
zq′′ (z)
q′ (z)

−
zq′ (z)

q(z) +
γ
k

 > 0 (3.9)

By using (3.8), (3.9) and applying Theorem 3.1, we complete the corollary.

By using the technique which is used in Corollary 3.1, we have the following corollary.

Corollary 3.2. Let Re
(
β
α

)
≥ −δ; δ ∈ [0, 1). Also, let

z
(
H

γ,k
α,β( f )(z)

)′
H

γ,k
α,β( f )(z)

≺ h(z) ( z ∈ U),

for all f ∈ A satisfies
H

γ,k
α,β+i( f )(z)

z
, 0 (i = 0, 1), then

H
γ,k
α,β+1( f )(z) ∈ S∗(δ), δ is the best possible,

where S∗(δ) is starlike function of order δ and h(z) is defined by (3.7).
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Example 3.1. We can show that the function f (z) (z ∈ U) defined by

H
2,1
0,β ( f )(z) =

1
2

(
f (z) + z f

′

(z)
)

= z(1 − δz)(1 − z)2δ−3, (3.10)

satisfies the hypotheses of Corollary 3.1. Also, the equation (3.10) is a first order linear differential equation, which
has a solution

f (z) =
z

(1 − z)2(1−δ)

that is the extremal function for the class of starlike function of order δ.Therefore,

H
1,1
0,β ( f )(z) = f (z) ∈ S∗(δ),

and δ is the best possible.
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