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Abstract. In this article, we study recent investigations on completely monotonic and related functions.
An open problem is presented.

Let us first introduce some notations which shall be used in the article. Throughout the paper,N denotes
the set of all positive integers,

N0 :=N ∪ {0}, R+ := (0,∞),

I+ is an open interval contained inR+, Io is the interior of the interval I ⊂ R, R is the set of all real numbers,
R( f ) denotes the range of the function f and C(I) is the class of all continuous functions on I.

In this review article we shall only mention the recent developments on completely monotonic and
related functions. For older results on completely monotonic and absolutely monotonic functions please
see, for example, [37, Chapter IV].

We now recall some definitions we shall use.

Definition 1 (See [4]). A function f is said to be absolutely monotonic on an interval I, if f ∈ C(I), has derivatives
of all orders on Io and for all n ∈N0

f (n)(x) ≥ 0 (x ∈ Io).

The class of all absolutely monotonic functions on the interval I is denoted by AM(I).

Definition 2 (See [4]). A function f is said to be completely monotonic on an interval I, if f ∈ C(I), has derivatives
of all orders on Io and for all n ∈N0

(−1)n f (n)(x) ≥ 0 (x ∈ Io).

The class of all completely monotonic functions on the interval I is denoted by CM(I).
By Leibniz’s rule for the derivative of the product function f1 of order n, we can easily prove that if

f , 1 ∈ CM(I)(AM(I)),

then the product function
f1 ∈ CM(I)(AM(I)).

Dubourdieu [5] showed
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Theorem 3. A non-constant completely monotonic function on I := (a,∞) is strictly completely monotonic there -
i.e.

(−1)n f (n)(x) > 0 (n ∈N0, x ∈ I).

Lorch and Szego [24] also proved this result.

Remark 4. We notice that if the interval (a,∞) in Theorem 3 is replaced by other kinds of intervals , the conclusion
may not be true. We can try this example:

f (x) := x2, I := (−∞, 0).

In 1989, Trimble, et al [35] introduced the following notion:

Definition 5 (See [35]). A function f is said to be strongly completely monotonic on I+ if, for all n ∈N0, (−1)nxn+1 f (n)(x)
are nonnegative and decreasing on I+.

The class of such functions on the interval I+ is denoted by SCM(I+). By the definition we know that

α f + β1 ∈ SCM(I+)

if
f , 1 ∈ SCM(I+) and α, β ≥ 0.

Using Leibniz’s rule we can get
f1 ∈ SCM(I+)

if
f , 1 ∈ SCM(I+).

Trimble, et al [35] proved

Theorem 6. f ∈ SCM(R+) if and only if there exists a non-negative and non-decreasing function φ(t) on [0,∞)
such that

f (x) =

∫
∞

0
e−xtφ(t)dt, x ∈ R+.

It is easy to see that SCM(I+) is a nontrivial subset of CM(I+).

Definition 7 (See [2]). A function f is said to be logarithmically completely monotonic on an interval I if f > 0, f ∈
C(I), has derivatives of all orders on Io and for n ∈N

(−1)n[ln f (x)](n)
≥ 0 (x ∈ Io).

The set of all logarithmically completely monotonic functions on the interval I is denoted by LCM(I).
In [29] the authors proved

Theorem 8.

LCM(I) ⊂ CM(I).

For the interval R+ Horn [21] proved, in terms of logarithmically completely monotonic functions, that

f ∈ LCM(R+)⇐⇒ f . 0

and
n
√

f ∈ CM(R+) (n ∈N).

A function f such that
n
√

f ∈ CM(R+) (n ∈N)

is called infinitely divisible completely monotonic (cf. [21]). From Horn’s investigation in [21], we have

LCM(R+) ⊂ CM(R+).
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Definition 9 (See [16]). A function f is said to be strongly logarithmically completely monotonic on I+ if f > 0
and, for all n ∈N, (−1)nxn+1[ln f (x)](n) are nonnegative and decreasing on I+.

Such a function class on the interval I+ is denoted by SLCM(I+).
It is apparent that the class SLCM(I+) is a nontrivial subclass of LCM(I+) and that if

f , 1 ∈ SLCM(I+)(LCM(I)),

then
f1 ∈ SLCM(I+)(LCM(I)).

In [16] the authors proved an important relationship between SLCM(R+) and SCM(R+) as follows.

Theorem 10. SLCM(R+) ∩ SCM(R+) = ∅.

In words, a strongly logarithmically completely monotonic function on R+ can not be strongly completely
monotonic on R+, or, a strongly completely monotonic function on R+ can not be strongly logarithmically
completely monotonic on R+.

The following result (see [16]) also reveals a relationship between SLCM(I+) and SCM(I+).

Theorem 11. Suppose that
f ∈ C(I+), f > 0 and f ′ ∈ SCM(I+).

If
x f ′(x) ≥ f (x) (x ∈ I+),

then
1
f
∈ SLCM(I+).

Remark 12. The following condition:
x f ′(x) ≥ f (x) (x ∈ I+)

in Theorem 11 cannot be dropped. See the counterexample contained in [16, Remark 2]

If in Definition 2 the set N0 is replaced with the set N, the function will be called almost completely
monotonic function [34]. If in Definition 5 the set N0 is replaced with the set N, the function will be called
almost strongly completely monotonic function [16]. The class of all almost completely monotonic functions
on the interval I and the class of all almost strongly completely monotonic functions on the interval I+

are denoted by ACM(I) and by ASCM(I+), respectively. These two terminologies are useful to simplify the
statements of the results.

The following result is the Lemma 2 of [34], which shows a property of ACM(I) and ASCM(I+).

Theorem 13.

1. − f ∈ ACM(I) if and only if f ∈ C(I) and f ′ ∈ CM(Io).
2. − f ∈ ASCM(I+) implies f ′ ∈ SCM(I+).

Remark 14. Please note that the converse of Theorem 13(2) is not true. See the counterexample give in [34, Remark
2].

The result below can be derived directly from the definitions.

Theorem 15.

1. f ∈ LCM(I) if and only if f > 0 and ln f ∈ ACM(I).
2. f ∈ SLCM(I+) if and only if f > 0 and ln f ∈ ASCM(I+).
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The following two results (see [16]) show relationships between SLCM(I+) and ASCM(I+).

Theorem 16. SLCM(I+) ⊂ ASCM(I+).

That is, a strongly logarithmically completely monotonic function on the interval I+ must be almost strongly
completely monotonic on I+.

Theorem 17. Suppose that
f ∈ C(I+), f > 0 and − f ∈ ASCM(I+).

Then
1
f
∈ SLCM(I+).

In [16] authors also showed

Theorem 18. Suppose that
f ∈ C(I), f > 0 and f ′ ∈ CM(Io).

Then
1
f
∈ LCM(I).

In [6] the following result was obtained, which shows a relationship between ACM(I) and LCM(I).

Theorem 19. Suppose that
f > 0 and − f ∈ ACM(I),

then
1
f
∈ LCM(I).

For the interpolation of sequences by completely monotonic functions, the author [10] established

Theorem 20. Suppose that the sequence {µn}
∞

0 is completely monotonic, then for any ε ∈ (0, 1), there exists a
continuous interpolating function f (x) on the interval [0,∞) such that f |[0, ε] and f |[ε,∞) are both completely monotonic
and

f (n) = µn, n ∈N0.

Remark 21. From the result of widder (see Theorem 14b of [37, Chapter IV] ) we know that if the sequence {µn}
∞

n=0
is not minimal completely monotonic, then there does not exist a function f ∈ CM[0,∞) such that

f (n) = µn, n ∈N0.

For the notion of a completely monotonic sequence see [20]. For the notion of a minimal completely
monotonic sequence see [38].

As a corollary of Theorem 20, the following result was also given in [10].

Theorem 22. Suppose that the sequence {µn}
∞

n=0 is completely monotonic. Then there exists a completely monotonic
interpolating function 1(x) on the interval [1,∞) such that

1(n) = µn, n ∈N.

Regarding the compositions of completely monotonic and related functions, the following two results
were given in [37, Chapter IV].
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Theorem 23. Suppose that
f ∈ AM(I1), 1 ∈ AM(I) and R(1) ⊂ I1.

Then f ◦ 1 ∈ AM(I).

Theorem 24. Suppose that
f ∈ AM(I1), 1 ∈ CM(I) and R(1) ⊂ I1.

Then f ◦ 1 ∈ CM(I).

Remark 25. We observe that f ◦ 1 may neither belong to CM(I) nor belong to AM(I) when

f ∈ CM(I1), 1 ∈ AM(I) and R(1) ⊂ I1.

See the counterexample given in [6, Remark 1.5].

The result below (see [25, Theorem 5]) is a converse of Theorem 24.

Theorem 26. Let f be defined on [0,∞). If, for each 1 ∈ CM(R+), f ◦ 1 ∈ CM(R+), then f ∈ AM(R+).

The following result was given in [26].

Theorem 27. Suppose that

f ∈ CM(I1), 1 ∈ C(I), 1′ ∈ CM(Io) and R(1) ⊂ I1,

then f ◦ 1 ∈ CM(I).

In [25] the authors gave an interesting result related to Theorem 27 as follows.

Theorem 28. For each function f ∈ CM(I), where I := [0,∞), there exists a function 1 on I such that

1(0) = 0, f ◦ 1 ∈ CM(I) and 1′ < CM(R+).

This result shows that the condition:
1′ ∈ CM(Io)

in Theorem 27 is not a necessary condition.
In [18], the following results were shown.

Theorem 29. Suppose that

f ∈ ACM(I1), 1 ∈ C(I), 1′ ∈ CM(Io) and R(1) ⊂ I1.

Then f ◦ 1 ∈ ACM(I).

Corollary 30. Suppose that

f ∈ ACM(I1), − 1 ∈ ACM(I) and R(1) ⊂ I1.

Then f ◦ 1 ∈ ACM(I).

Theorem 31. Suppose that

f ∈ LCM(I1), 1 ∈ C(I), 1′ ∈ CM(Io) and R(1) ⊂ I1.

Then f ◦ 1 ∈ LCM(I).
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Theorem 32. Suppose that

f ∈ SLCM(I+
1 ), 1′ ∈ SCM(I+) and R(1) ⊂ I+

1 .

If
2x1′(x) ≥ 1(x) (x ∈ I+),

then f ◦ 1 ∈ SLCM(I+).

Remark 33. The condition:
2x1′(x) ≥ 1(x) (x ∈ I+)

in Theorem 32 cannot be waived. See the counterexample given in [18, Remark 3].

Theorem 34. Suppose that
f ∈ LCM(I1), − 1 ∈ ACM(I) and R(1) ⊂ I1.

Then f ◦ 1 ∈ LCM(I).

Theorem 35. Let I1 and I be open intervals. Also let f and 1 be defined on I1 and I, respectively. If

f ′ ∈ LCM(I1), 1′ ∈ LCM(I) and R(1) ⊂ I1,

then ( f ◦ 1)′ ∈ LCM(I).

In [34], the authors established the results below.

Theorem 36. Suppose that

f ∈ AM(I), 1 ∈ ASCM(I+) and R(1) ⊂ I.

Then f ◦ 1 ∈ ASCM(I+).

Theorem 37. Let I1 be an open interval and f defined on I1.

1. If f ′ ∈ AM(I1), 1 ∈ ACM(I) and R(1) ⊂ I1, then f ◦ 1 ∈ ACM(I).
2. If f ′ ∈ AM(I1), 1 ∈ ASCM(I+) and R(1) ⊂ I1, then −( f ◦ 1)′ ∈ ASCM(I+).

Theorem 38. Suppose that

f ∈ ASCM(I+
1 ), 1′ ∈ SCM(I+) and R(1) ⊂ I+

1 .

If
2x1′(x) ≥ 1(x) (x ∈ I+),

then f ◦ 1 ∈ ASCM(I+).

Remark 39. The condition:
2x1′(x) ≥ 1(x) (x ∈ I+)

in Theorem 38 can not be waived even if the hypothesis f ∈ ASCM(I+
1 ) is replaced by a stronger condition: f ∈

SCM(I+
1 ). See the counterexample given in [34, Remark 1].

We shall also mention Lemma 3 of [34] here.

Theorem 40. Suppose that
f ∈ AM(I1), 1 ∈ ACM(I) and R(1) ⊂ I1.

Then
f ◦ 1 ∈ CM(I).
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Remark 41. Theorem 8 can be regarded as a corollary of Theorem 40. In fact, let

f ∈ LCM(I),

then
ln f ∈ ACM(I).

Since
ex
∈ AM(R),

by Theorem 40, we obtain
eln f = f ∈ CM(I).

In [6] the following results were established.

Theorem 42. Suppose that

f ∈ ACM(I1), − 1 ∈ ASCM(I+) and R(1) ⊂ I1.

Then
f ◦ 1 ∈ ASCM(I+).

Theorem 43. Suppose that

f ∈ LCM(I1), − 1 ∈ ASCM(I+) and R(1) ⊂ I1.

Then
f ◦ 1 ∈ SLCM(I+).

Theorem 44. Let I1 and I be open intervals, and let f and 1 be defined on I1 and I respectively. If

f ′ ∈ CM(I1), 1′ ∈ CM(I) and R(1) ⊂ I1.

Then
( f ◦ 1)′ ∈ CM(I).

Theorem 45. Let f and 1 be defined on I+
1 and I+ respectively. Suppose that

f ′ ≥ 0, f ′ ∈ ASCM(I+
1 ), 1′ ∈ SCM(I+) and R(1) ⊂ I+

1 .

If
2x1′(x) ≥ 1(x) (x ∈ I+),

then
( f ◦ 1)′ ∈ ASCM(I+).

Open Problem

Can the condition:
2x1′(x) ≥ 1(x) (x ∈ I+)

in Theorem 45 be waived?
There are also a lot of investigations on specific completely monotonic or related functions and their

applications. For several recent works, see (for example) [1, 3, 7–9, 11–15, 17, 19, 22, 23, 27, 28, 30–
33, 36, 39, 40].
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