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Abstract. We introduce the mixed degree-Kirchhoff index, a new molecular descriptor defined by

R̂(G) =
∑
i< j

(
di

d j
+

d j

di

)
Ri j,

where di is the degree of the vertex i and Ri j is the effective resistance between vertices i and j. We give
general upper and lower bounds for R̂(G) and show that, unlike other related descriptors, it attains its
largest asymptotic value (order n4), among barbell graphs, for the highly asymmetric lollipop graph. We
also give more refined lower (order n2) and upper (order n3) bounds for c-cyclic graphs in the cases 0 ≤ c ≤ 6.
For this latter purpose we use a close relationship between our new mixed degree-Kirchhoff index and the
inverse degree, prior bounds we found for the inverse degree of c-cyclic graphs, and suitable expressions
for the largest and smallest effective resistances of c-cyclic graphs.

1. Introduction

The Kirchhoff index of an undirected connected simple graph G = (V,E), with |V| = n and |E| = m, was
defined by Klein and Randić in [16] as

R(G) =
∑
i< j

Ri j, (1)

where Ri j is the effective resistance between the vertices i and j. This molecular descriptor has attracted
considerable interest (see [11] and [17]) and the references cited therein. Eventually, it spawned a class of
other indices that, in addition to the effective resistance, include other graph information. Among these
we can mention the multiplicative degree-Kirchhoff index defined by Cheng and Zhang in [8] (see also [20]
and the references cited therein)

R∗(G) =
∑
i< j

did jRi j, (2)
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where di is the degree of the vertex i, and the additive degree-Kirchhoff index defined by Gutman et al. in
[13] (see also [14] and [21] and the references cited therein)

R+(G) =
∑
i< j

(di + d j)Ri j. (3)

Along these lines we propose in this note a new descriptor, which is inspired in our previous work [3] and
we call it the mixed degree-Kirchhoff index:

R̂(G) =
∑
i< j

(
di

d j
+

d j

di

)
Ri j. (4)

In the spirit of references [22] and [23], we justify the introduction of yet another descriptor on the basis of
these arguments:

(i) it coincides with 2R(G) when G is regular, so it discriminates as well as the indices (1), (2) and (3)
within the family of regular graphs;

(ii) The summands Si j = ( di
d j

+
d j

di
)Ri j are symmetric in i and j. This characteristic is shared by the

summands of the descriptors (2) and (3), but unlike these, which attain their maxima on graphs with certain
symmetry (the barbell graphs), our new index tends to be larger the more asymmetric the graph is, attaining
its asymptotic maximum, among the barbell graphs, on the lollipop graph, as will be shown below. These
particularly shaped molecules are not unheard of in Chemistry. Lollipop-shaped molecules are mentioned
in [7], p. 69, and they are described as being composed of one or two hydrophobic hydrocarbons tails and
of a hydrophilic head group. Barbell-shaped molecules are the subject of recent interest as shown in [15];

(iii) It can be written in an attractive way as a probabilistic object, namely

R̂(G) =
1

2|E|

∑
i< j

(
πi

π j
+
π j

πi

)
(EiT j + E jTi),

where {πi} is the stationary distribution and EiT j is the expected hitting time (starting from i) of the
vertex j (We refer the reader to [3] for the probabilistic details);

(iv) we proved in [3] that

∑
i< j

(
di

d j
+

d j

di

)
=

∑
j

1 − π j

π j
= 2|E|

n∑
j=1

1
d j
− n,

and therefore we immediately have these upper and lower bounds

R̂(Kn) = 2(n − 1) ≤ rn(n − 1) ≤ r

2|E|
n∑

j=1

1
d j
− n

 ≤ R̂(G) ≤ R

2|E|
n∑

j=1

1
d j
− n

 , (5)

where r = mini, j Ri j ≥
2
n , R = maxi, j Ri j ≤ n − 1, and the only nontrivial tool used in (5) is the harmonic

mean-arithmetic mean inequality. The bounds on the resistances are consequences of the monotonicity
principle (see [12]) because Ri j is always greater than the resistance between i and j when we add edges
to the graph until it is turned into a complete graph, for which this effective resistance between any pair
of vertices is 2

n ; likewise, if d(i, j) = k, then Ri j is always less than the resistance between i and j when we
delete edges of the graph until there is only one path of length k between i and j, in which case Ri j = k. And
clearly, k ≤ n − 1.

The inequalities in (5) tell us that the minimal value of R̂(G) is attained at the complete graph Kn, and
also that our new descriptor is linked to another one, called the inverse degree and defined as (see [9], [10]
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and [18])

ρ(G) =

n∑
j=1

1
d j
,

through the inequalities
r(2|E|ρ(G) − n) ≤ R̂(G) ≤ R(2|E|ρ(G) − n). (6)

The main objectives of this article are to give some general bounds for R̂(G) and to show that its largest
asymptotic value among the barbell graphs is attained by the L(n/2) lollipop graph. Also, from the sizable
body of work on the inverse degree, we use recently obtained upper and lower bounds (see [4]) for this
index on the particular family of c-cyclic graphs, that is, graphs which contain only c independent cycles
(i.e., cycles that do not contain other cycles within themselves). We provide results for 0 ≤ c ≤ 6 and apply
them to (6) in order to obtain upper and lower bounds for R̂(G) on these c-cyclic graphs.

2. Further general bounds and the lollipop graph

Since 2 ≤ di
d j

+
d j

di
≤ di + d j, we immediately have that for any G

2R(G) ≤ R̂(G) ≤ R+(G). (7)

The upper bound in (7) also tells us that R̂(G) is at most of order 1
3 n4. Moreover, since

di

d j
+

d j

di
≤ n−1+

1
n − 1

,

directly from the definition we have that

R̂(G) ≤
(
n − 1 +

1
n − 1

)
R(G) ≤

1
6

(n4
− n3 + 2n),

using the well known fact that R(G) is largest for the linear graph, for which R(G) =
n3
− n
6

. We now show

that there is a graph G such that R̂(G) attains the order n4. In fact we show that the largest asymptotic value
among barbell graphs is attained by the L(n/2) lollipop graph, and conjecture that this is the largest value
among all graphs.

Indeed, consider the L(s) lollipop graph consisting of a complete graph Ks attached to a linear graph on

n− s vertices, 0 ≤ s ≤ n. The largest term of R̂(L(s)) arises from considering the terms
(

di
d j

+
d j

di

)
Ri j computed

when j runs over all s vertices in the complete part and i is a fixed vertex in the linear part, and then adding
over all the vertices in the linear part. This value is at least of order

n−s∑
i=1

s2

2
i ∼

1
4

s2(n − s)2.

Optimizing this expression over s, the maximum value occurs at s = n
2 and the value of the largest term is

n4

64 .
We consider now a barbell graph B(s, t) consisting of two complete graphs Ks and Kt attached to the

endpoints of a n − s − t linear graph, where 0 ≤ s, t ≤ n, 0 ≤ s + t ≤ n. As in the previous calculation,

the largest term of R̂(B(s, t)) arises from considering the terms
(

di
d j

+
d j

di

)
Ri j computed when j runs over all

vertices in the complete parts and i is a fixed vertex in the linear part, and then adding over all i. The
contribution of all pairs (i, j) when both i and j are in the linear part of the barbell, or when i ∈ Ks and j ∈ Kt,
is at most cubic in n, and the contribution when both i and j belong to the same complete graph is at most
linear in n. So the largest term is roughly

1
4

(s2 + t2)(n − s − t)2.
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We maximize this expression on the triangle 0 ≤ s, t ≤ n, 0 ≤ s + t ≤ n . The sides of said triangle correspond
to lollipop graphs, already studied, and barbells without the linear part that we can discard right away. By
partial differentiation we find that the critical points inside the triangle lie on the line s = t, and the maximal
value on that line occurs at s = t = n/4 , for which R̂(B(n/4,n/4)) ∼ 1

128 n4, a value that does not improve the
one obtained above. Thus the largest asymptotic value of the mixed-degree Kirchhoff index among barbells
occurs at the lollipop graph L(n/2) for which R̂(L(n/2)) ∼ 1

64 n4.

3. Bounds for c-cyclic graphs

In [4] we provided a new characterization of c-cyclic graphs, 0 ≤ c ≤ 6, depending on the degree
sequence and we identified their extremal degree sequences with respect to the majorization order. In what
follows we briefly recall some basic notations on majorization (for more details see [6] and [19]).

Definition 1. Given two vectors y, z ∈ D = {x ∈ Rn : x1 ≥ x2 ≥ ... ≥ xn}, the majorization order y E z means:
〈
y, sk

〉
≤

〈
z, sk

〉
, k = 1, ..., (n − 1)〈

y, sn〉 = 〈z, sn
〉

where 〈·, ·〉 is the inner product in Rn and sj = [1 j, 0n− j], j = 1, 2, · · · ,n.

A vector x∗(S) ∈ S is said to be maximal for S with respect to the majorization order if x E x∗(S) for each
x ∈ S. Analogously, a vector x∗(S) ∈ S is said to be minimal for S with respect to the majorization order if
x∗(S) E x for each x ∈ S. Notice that if S ⊆ T, then x∗(S) E x∗(T) and x∗(T) E x∗(S).

A symmetric function φ : A→ R, A ⊆ Rn, is said to be Schur-convex on A if x E y implies φ(x) ≤ φ(y).
Given an interval I ⊂ R, and a convex function 1 : I → R, the function φ(x) =

∑n
i=1 1(xi) is Schur-convex on

In = I × I × · · · × I︸         ︷︷         ︸
n−times

.

If φ is a Schur-convex function and S is a subset which admits maximal and minimal elements with respect
to the majorization order, the solutions of the constrained optimization problemsmax (min) φ(x)

subject to x ∈ S
(P)

are the maximal element x∗(S) and the minimal element x∗(S), respectively. Let now F(d1, d2, · · · , dn) be any
topological index which is a Schur-convex function of its arguments, defined on a subset S. Then, since the
Schur-convex functions preserve the majorization ordering, we get

F(x∗(S)) ≤ F(d1, d2, · · · , dn) ≤ F(x∗(S)).

Using this methodology we determined upper and lower upper bounds of some degree-based topo-
logical indices that can be expressed as Schur convex (concave) functions of the degree sequence of the
graph (see [1], [2], [4], [3], [5] and [6]). In Table 1 we summarize the bounds obtained in [4] for ρ(G) =

∑ 1
d j

and point out that when several maximal/minimal degree sequences were identified, we present the best
estimate.
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c Lower bound Upper bound

0
n + 2

2
(n − 1) +

1
n − 1

1
n
2

(n − 2) +
1

n − 1

2
n − 2

2
+

2
3

(n − 3) +
1

n − 1
+

1
3

3 (n ≥ 5)
n − 4

2
+

4
3

(n − 3) +
1

n − 1

4 (n ≥ 6)
n − 2

2
1

n − 1
+

17
12

5 (n ≥ 8)
n − 8

2
+

8
3

(n − 5) +
1

n − 1
+

7
6

6 (n ≥ 10)
n − 10

2
+

10
3

(n − 4) +
1

n − 1

Table 1: Lower and upper bounds for ρ(G).

Using the bounds on the inverse degree and the inequalities in (6) we can provide lower and upper
bounds for the mixed degree-Kirchhoff index. First we need expressions for r and R in terms of the graph
parameters, which are given in the next

Proposition 2. For a c-cyclic graph,

(i) If 0 ≤ c ≤ n − 2 then

r =
2

2 + c
(ii) If 0 ≤ c ≤ 6 the values of R are given in the following table:

c 0 1 2 3 4 5 6

R n − 1 n − 7
3 n − 3 n − 7

2 n − 33
8 n − 13

3 n − 23
5

Table 2: Maximum resistance R for c-cyclic graphs with 0 ≤ c ≤ 6.

Proof. For part (i), take a and b neighbors and set a battery of 1 volt between a and b. To minimize Rab,
which is the inverse of the current flowing from a to b, we need to maximize such current, and that is done
using c paths of length 2 from a to b which determine exactly c cycles (see Figure 1 for an illustration in the
3-cyclic case). Then by the rule governing resistors placed in parallel we have

Rab =
1

1 + c
2

=
2

2 + c
,

for all 0 ≤ c ≤ n − 2. When c = n − 2 we reach the lowest Rab can be, which is 2
n , as mentioned in Section 1.

Regarding (ii), by the rule stating that the effective resistance of resistors connected in series is the sum
of the individual resistances, it is clear that the largest Rab can be is when there is a chain of unit resistors as
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long as possible between a and b. For a tree (c=0) this happens when there are exactly n − 1 unit resistors
(edges) between a and b.

Figure 1: Illustration in the tricyclic case

For a unicyclic graph this is accomplished, as in Figure 2 (I), when we attach a triangle to n − 3 vertices
arranged linearly. For the bicyclic graph we attach a square as in (II), and check that R14 = 1. For the
tricyclic a similar arrangement, as in (III), but now R14 = 1

2 . For the tetra- penta- and hexa-cyclic graphs we
attach a pentagon as illustrated in Figure 3, (IV), (V) and (VI) respectively, and check that R14 is now 7

8 , 2
3

and 2
5 , respectively.

For all these graphs the maximal effective resistance, computed between vertices 1 and n, results from
grouping as few vertices as possible in one end while respecting the c-cyclicity, and using the rest of the
vertices in a linear arrangement •

Figure 2: Unicyclic, bicyclic and tricyclic graphs
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Figure 3: Tetracyclic, pentacyclic and hexacyclic graphs

Now proposition 2 and the inequalities in (6) allow us to present upper and lower bounds for R̂(G),
summarized in Table 3. We remark that the lower bounds are all of order n2, whereas the upper bounds are
of order n3. Notice also that the results for the tricyclic graphs are valid in case n ≥ 5; those for tetracyclic
graphs in case n ≥ 6; those for pentacyclic graphs in case n ≥ 8, and those for hexacyclic graphs in case
n ≥ 10.

c Lower bounds Upper bounds

0 (n2
− 2) (n − 1)(2n2

− 5n + 4)

1
2
3

n (n − 1)
n (3n − 7)

(
2n2
− 7n + 7

)
3 (n − 1)

2
1
6

(
3n2
− 2n − 2

) (n − 2) (n − 3)
(
6n2
− 7n − 11

)
3 (n − 1)

3
2

15

(
3n2
− n − 8

) (
2n3
− 5n2

− 7n + 16
)

(2n − 7)

2 (n − 1)

4
1
3

(
n2
− 6

) (
12n3

− 25n2
− 104n + 165

)
(8n − 33)

48 (n − 1)

5
2

21

(
n + 3n2

− 32
) 2

(
3n3
− 4n2

− 42n + 58
)

(3n − 13)

9 (n − 1)

6
1

12

(
2n + 3n2

− 50
) (

2n3
− n2

− 39n + 50
)

(5n − 23)

5 (n − 1)

Table 3: Lower and upper bounds for R̂(G).
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4. Concluding Remarks

We introduced a new molecular descriptor that, while sharing some properties of the Kirchhoff index
and its related descriptors, it is asymptotically largest (order n4) for asymmetric graphs such as the lollipop
graph. We gave general upper and lower bounds for this descriptor, as well as more refined lower bounds
(order n2) and upper bounds (order n3) for c-cyclic graphs, in the cases 0 ≤ c ≤ 6. The results were obtained
using the bounds we found for the inverse degree of c-cyclic graphs through majorization techniques and
closed form expressions for the largest and smallest values of the effective resistance of these c-cyclic graphs
that, to the best of our knowledge, are new.

We finally remark that we could define a whole family of descriptors thus:

R̂(G)α =
∑
i< j

((
di

d j

)α
+

(
d j

di

)α)
Ri j, (8)

for any non-negative real α.
If α ≥ β ≥ 0 then (α,−α) � (β,−β) � (0, 0), where � means “majorizes”, and then by majorization

(Muirhead’s theorem) we have
R̂(G)α ≥ R̂(G)β ≥ 2R(G),

but we will not pursue this matter any further.
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