Weighted Boundedness for Toeplitz Type Operators Associated to Singular Integral Operator with Non-Smooth Kernel

Lanzhe Liu ${ }^{\text {a }}$
${ }^{a}$ College of Mathematics, Hunan University, Changsha 410082, P. R. of China

Abstract

In this paper, the weighted boundedness of the Toeplitz type operator associated to some singular integral operator with non-smooth kernel on Lebesgue spaces are obtained. To do this, some weighted sharp maximal function inequalities for the operator are proved.

1. Introduction

As the development of singular integral operators(see [8][19]), their commutators have been well studied. In [3][18], the authors prove that the commutators generated by the singular integral operators and $B M O$ functions are bounded on $L^{p}\left(R^{n}\right)$ for $1<p<\infty$. Chanillo (see [2]) proves a similar result when singular integral operators are replaced by the fractional integral operators(also see [11][17]). In [1][12], the boundedness for the commutators generated by the singular integral operators and the weighted $B M O$ and Lipschitz functions on $L^{p}\left(R^{n}\right)(1<p<\infty)$ spaces are obtained (also see [9]). In [12][13][15], some Toeplitz type operators related to the singular integral operators and strongly singular integral operators are introduced, and the boundedness for the operators generated by BMO and Lipschitz functions are obtained. In [5][16], some singular integral operators with non-smooth kernel are introduced, and the boundedness for the operators and their commutators are obtained (see [4][6][14][20]). Motivated by these, in this paper, we will study the Toeplitz type operator related to some singular integral operator with non-smooth kernel and the weighted Lipschitz and BMO functions.

2. Preliminaries and Notations

In this paper, we will study some singular integral operator as following (see [5][16]).
Definition 1. A family of operators $D_{t}, t>0$ is said to be an "approximation to the identity" if, for every $t>0, D_{t}$ can be represented by a kernel $a_{t}(x, y)$ in the following sense:

$$
D_{t}(f)(x)=\int_{R^{n}} a_{t}(x, y) f(y) d y
$$

[^0]for every $f \in L^{p}\left(R^{n}\right)$ with $p \geq 1$, and $a_{t}(x, y)$ satisfies:
$$
\left|a_{t}(x, y)\right| \leq h_{t}(x, y)=C t^{-n / 2} \rho\left(|x-y|^{2} / t\right)
$$
where ρ is a positive, bounded and decreasing function satisfying
$$
\lim _{r \rightarrow \infty} r^{n+\epsilon} \rho\left(r^{2}\right)=0
$$
for some $\epsilon>0$.
Definition 2. A linear operator T is called a singular integral operator with non-smooth kernel if T is bounded on $L^{2}\left(R^{n}\right)$ and associated with a kernel $K(x, y)$ such that
$$
T(f)(x)=\int_{R^{n}} K(x, y) f(y) d y
$$
for every continuous function f with compact support, and for almost all x not in the support of f.
(1) There exists an "approximation to the identity" $\left\{B_{t}, t>0\right\}$ such that $T B_{t}$ has the associated kernel $k_{t}(x, y)$ and there exist $c_{1}, c_{2}>0$ so that
$$
\int_{|x-y|>c_{1} 1^{1 / 2}}\left|K(x, y)-k_{t}(x, y)\right| d x \leq c_{2} \text { for all } y \in R^{n}
$$
(2) There exists an "approximation to the identity" $\left\{A_{t}, t>0\right\}$ such that $A_{t} T$ has the associated kernel $K_{t}(x, y)$ which satisfies
$$
\left|K_{t}(x, y)\right| \leq c_{4} t^{-n / 2} \text { if }|x-y| \leq c_{3} t^{1 / 2}
$$
and
$$
\left|K(x, y)-K_{t}(x, y)\right| \leq c_{4} t^{\delta / 2}|x-y|^{-n-\delta} \text { if }|x-y| \geq c_{3} t^{1 / 2}
$$
for some $\delta>0, c_{3}, c_{4}>0$.
Let b be a locally integrable function on R^{n} and T be the singular integral operator with non-smooth kernel. The Toeplitz type operator associated to T is defined by
$$
T_{b}=\sum_{k=1}^{m} T^{k, 1} M_{b} T^{k, 2}
$$
where $T^{k, 1}$ are the singular integral operator T with non-smooth kernel or $\pm I$ (the identity operator), $T^{k, 2}$ are the bounded linear operators on $L^{p}\left(R^{n}, \omega\right)$ for $1<p<\infty$ and $\omega \in A_{p}(1 \leq k \leq m)$, and $M_{b}(f)=b f$.

Note that the commutator $[b, T](f)=b T(f)-T(b f)$ is a particular operator of the Toeplitz type operator T_{b}. The Toeplitz type operator T_{b} is the non-trivial generalizations of the commutator. It is well known that commutators are of great interest in harmonic analysis and have been widely studied by many authors (see [18]). In [5][16], the boundedness of the singular integral operator with non-smooth kernel are obtained. In [4][6][14][20], the boundedness of the commutator associated to the singular integral operator with nonsmooth kernel are obtained. The main purpose of this paper is to prove the sharp maximal inequalities for the Toeplitz type operator T_{b}. As the application, we obtain the weighted L^{p}-norm inequality of the Toeplitz type operator T_{b}.

Now, let us introduce some notations. Throughout this paper, Q will denote a cube of R^{n} with sides parallel to the axes. For a nonnegative integrable function ω, let $\omega(Q)=\int_{Q} \omega(x) d x$ and $\omega_{Q}=|Q|^{-1} \int_{Q} \omega(x) d x$. For any locally integrable function f, let

$$
M(f)(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}|f(y)| d y .
$$

For $\eta>0$, let $M_{\eta}(f)(x)=M\left(|f|^{\eta}\right)^{1 / \eta}(x)$.

For $0<\eta<n, 1 \leq p<\infty$ and the non-negative weight function ω, set

$$
M_{\eta, p, \omega}(f)(x)=\sup _{Q \exists x}\left(\frac{1}{\omega(Q)^{1-p \eta / n}} \int_{Q}|f(y)|^{p} \omega(y) d y\right)^{1 / p} .
$$

Given a double measure σ (that is $\sigma(Q) \leq C \sigma(Q)$ for any cube Q), set

$$
M_{\sigma}(f)(x)=\sup _{Q \ni x} \frac{1}{\sigma(Q)} \int_{Q}|f(y)| d \sigma(y) .
$$

The sharp maximal function $M_{A}(f)$ associated with the "approximation to the identity" $\left\{A_{t}, t>0\right\}$ is defined by

$$
M_{A}^{\#}(f)(x)=\sup _{x \in Q} \frac{1}{|Q|} \int_{Q}\left|f(y)-A_{t_{Q}}(f)(y)\right| d y,
$$

where $t_{Q}=l(Q)^{2}$ and $l(Q)$ denotes the side length of Q. For $\eta>0$, let $M_{A, \eta}^{\#}(f)=M_{A}^{\#}\left(|f|^{\eta}\right)^{1 / \eta}$.
The A_{p} weight is defined by (see [8])

$$
A_{p}=\left\{0<\omega \in L_{l o c}^{1}\left(R^{n}\right): \sup _{Q}\left(\frac{1}{|Q|} \int_{Q} \omega(x) d x\right)\left(\frac{1}{|Q|} \int_{Q} \omega(x)^{-1 /(p-1)} d x\right)^{p-1}<\infty\right\}, 1<p<\infty,
$$

and

$$
A_{1}=\left\{0<\omega \in L_{l o c}^{p}\left(R^{n}\right): M(\omega)(x) \leq C w(x), \text { a.e. }\right\}
$$

Given a non-negative weight function ω. For $1 \leq p<\infty$, the weighted Lebesgue space $L^{p}\left(R^{n}, \omega\right)$ is the space of functions f such that

$$
\|f\|_{L^{p}(\omega)}=\left(\int_{R^{n}}|f(x)|^{p} \omega(x) d x\right)^{1 / p}<\infty
$$

Given the non-negative weight function ω. The weighted $B M O$ space $B M O(\omega)$ is the space of functions b such that

$$
\|b\|_{B M O(\omega)}=\sup _{Q} \frac{1}{\omega(Q)} \int_{Q}\left|b(y)-b_{Q}\right| d y<\infty .
$$

For $0<\beta<1$, the weighted Lipschitz space $\operatorname{Lip}_{\beta}(\omega)$ is the space of functions b such that

$$
\|b\|_{L i p_{\beta}(\omega)}=\sup _{Q} \frac{1}{\omega(Q)^{\beta / n}}\left(\frac{1}{\omega(Q)} \int_{Q}\left|b(y)-b_{Q}\right|^{p} \omega(x)^{1-p} d y\right)^{1 / p}<\infty .
$$

Remark.(1). It has been known that(see [7]), for $b \in \operatorname{Lip}_{\beta}(\omega), \omega \in A_{1}$ and $x \in Q$,

$$
\left|b_{Q}-b_{2^{j} Q}\right| \leq C j\|b\|_{L i p_{\beta}(\omega)} \omega(x) w\left(2^{j} Q\right)^{\beta / n} .
$$

(2). Let $b \in \operatorname{Lip}_{\beta}(\omega)$ and $\omega \in A_{1}$. By [8], we know that spaces $\operatorname{Lip}_{\beta}(\omega)$ coincide and the norms $\|b\|_{L i p_{\beta}(\omega)}$ are equivalent with respect to different values $1 \leq p<\infty$.

3. Theorems and Lemmas

We shall prove the following theorems.
Theorem 1. Let T be the singular integral operator as Definition 2, $1<p<\infty, 0<\eta<1, \mu, v \in A_{p}$, $\omega=\left(\mu \nu^{-1}\right)^{1 / p}$ and $b \in B M O(\omega)$. If $T_{1}(g)=0$ for any $g \in L^{u}\left(R^{n}\right)(1<u<\infty)$, then there exists a constant $C>0$, $\varepsilon>0,0<\delta<1,1<q<p$ and $p^{\prime}<r<\min \left(p^{\prime}+\varepsilon, p^{\prime}(1+\delta)\right)$ such that, for any $f \in C_{0}^{\infty}\left(R^{n}\right)$ and $\tilde{x} \in R^{n}$,

$$
M_{A, \eta}^{\#}\left(T_{b}(f)\right)(\tilde{x}) \leq C\|b\|_{B M O(\omega)} \sum_{k=1}^{m}\left(\left[M_{v^{\prime} / p}\left(\left|\omega T^{k, 2}(f)\right|^{r^{\prime}}\right)(\tilde{x})\right]^{1 / r^{\prime}}+\left[M_{v}\left(\left|\omega T^{k, 2}(f)\right|^{q}\right)(\tilde{x})\right]^{1 / q}\right)
$$

Theorem 2. Let T be the singular integral operator as Definition 2, $1<s<\infty, 0<\eta<1,0<\beta<1$, $\omega \in A_{1}$ and $b \in \operatorname{Lip}_{\beta}(\omega)$. If $T_{1}(g)=0$ for any $g \in L^{u}\left(R^{n}\right)(1<u<\infty)$, then there exists a constant $C>0$ such that, for any $f \in C_{0}^{\infty}\left(R^{n}\right)$ and $\tilde{x} \in R^{n}$,

$$
M_{A, \eta}^{\#}\left(T_{b}(f)\right)(\tilde{x}) \leq C\|b\|_{L p_{\beta}(\omega)} \omega(\tilde{x}) \sum_{k=1}^{m} M_{\beta, s, \omega}\left(T^{k, 2}(f)\right)(\tilde{x})
$$

Theorem 3. Let T be the singular integral operator as Definition $2,1<p<\infty, \mu, v \in A_{p}, \omega=\left(\mu v^{-1}\right)^{1 / p}$ and $b \in B M O(\omega)$. If $T_{1}(g)=0$ for any $g \in L^{u}\left(R^{n}\right)(1<u<\infty)$, then T^{b} is bounded from $L^{p}\left(R^{n}, \mu\right)$ to $L^{p}\left(R^{n}, v\right)$.

Theorem 4. Let T be the singular integral operator as Definition 2, $\omega \in A_{1}, 0<\beta<1, b \in \operatorname{Lip}_{\beta}(\omega)$, $1<p<n / \beta$ and $1 / q=1 / p-\beta / n$. If $T_{1}(g)=0$ for any $g \in L^{u}\left(R^{n}\right)(1<u<\infty)$, then T^{b} is bounded from $L^{p}\left(R^{n}, \omega\right)$ to $L^{q}\left(R^{n}, \omega^{1-q}\right)$.

Corollary 1. Let $[b, T](f)=b T(f)-T(b f)$ be the commutator generated by the singular integral operator T as Definition 23 and b. Then Theorems 1-4 hold for $[b, T]$.

To prove the theorems, we need the following lemmas.
Lemma 1. (see [8, p.485]) Let $0<p<q<\infty$ and for any function $f \geq 0$. We define that, for $1 / r=1 / p-1 / q$

$$
\|f\|_{W L^{q}}=\sup _{\lambda>0} \lambda\left|\left\{x \in R^{n}: f(x)>\lambda\right\}\right|^{1 / q}, N_{p, q}(f)=\sup _{E}\left\|f \chi_{E}\right\|_{L^{p}} /\left\|\chi_{E}\right\|_{L^{r}}
$$

where the sup is taken for all measurable sets E with $0<|E|<\infty$. Then

$$
\|f\|_{W L^{q}} \leq N_{p, q}(f) \leq(q /(q-p))^{1 / p}\|f\|_{W L^{q}} .
$$

Lemma 2.(see [5][16]) Let T be the singular integral operator as Definition 2. Then T is bounded on $L^{p}\left(R^{n}, \omega\right)$ for $\omega \in A_{p}$ with $1<p<\infty$, and weak $\left(L^{1}, L^{1}\right)$ bounded.

Lemma 3.([5][16]) Let $\left\{A_{t}, t>0\right\}$ be an "approximation to the identity". For any $\gamma>0$, there exists a constant $C>0$ independent of γ such that

$$
\left|\left\{x \in R^{n}: M(f)(x)>D \lambda, M_{A}^{\#}(f)(x) \leq \gamma \lambda\right\}\right| \leq C \gamma\left|\left\{x \in R^{n}: M(f)(x)>\lambda\right\}\right|
$$

for $\lambda>0$, where D is a fixed constant which only depends on n. Thus, for $f \in L^{p}\left(R^{n}\right), 1<p<\infty, 0<\eta<\infty$ and $\omega \in A_{p}$,

$$
\left\|M_{\eta}(f)\right\|_{L^{p}(\omega)} \leq C\left\|M_{A, \eta}^{\#}(f)\right\|_{L^{p}(\omega)} .
$$

Lemma 4.(see [1]) Let $b \in B M O(\omega)$. Then

$$
\left|b_{Q}-b_{2 j}\right| \leq C j\|b\|_{B M O(\omega)} \omega_{Q_{j}}
$$

where $\omega_{Q_{j}}=\max _{1 \leq i \leq j}\left|2^{i} Q\right|^{-1} \int_{2^{i} Q} \omega(x) d x$.
Lemma 5.(see [1]) Let $\omega \in A_{p}, 1<p<\infty$. Then there exists $\varepsilon>0$ such that $\omega^{-r / p} \in A_{r}$ for any $p^{\prime} \leq r \leq p^{\prime}+\varepsilon$.

Lemma 6.(see [1]) Let $b \in B M O(\omega), \omega=\left(\mu v^{-1}\right)^{1 / p}, \mu, v \in A_{p}$ and $p>1$. Then there exists $\varepsilon>0$ such that for $p^{\prime} \leq r \leq p^{\prime}+\varepsilon$,

$$
\int_{Q}\left|b(x)-b_{Q}\right|^{r} \mu(x)^{-r / p} d x \leq C\|b\|_{B M O(\omega)}^{r} \int_{Q} v(x)^{-r / p} d x .
$$

Lemma 7.(see [1]) Let $\mu, v \in A_{p}, \omega=\left(\mu v^{-1}\right)^{1 / p}, 1<p<\infty$. Then there exists $1<q<p$ such that

$$
\omega_{Q}\left(v_{Q}\right)^{1 / q}\left(\frac{1}{|Q|} \int_{Q} \omega(x)^{-q^{\prime}} v(x)^{-q^{\prime} / q} d x\right)^{1 / q^{\prime}} \leq C
$$

Lemma 8.(see [1]) Let $\omega \in A_{p}, 1<p<\infty$. Then there exists $0<\delta<1$ such that $\omega^{1-r^{\prime} / p} \in A_{p / r^{\prime}}(d \mu)$ for any $p^{\prime}<r<p^{\prime}(1+\delta)$, where $d \mu=\omega^{r^{\prime} / p} d x$.

Lemma 9.(see [2][8]) Let $0<\eta<n, 1 \leq s<p<n / \eta, 1 / q=1 / p-\eta / n$ and $\omega \in A_{1}$. Then

$$
\left\|M_{\eta, s, \omega}(f)\right\|_{L^{q}(\omega)} \leq C\|f\|_{L^{p}(\omega)} .
$$

4. Proofs of Theorems

Proof of Theorem 1. It suffices to prove for $f \in C_{0}^{\infty}\left(R^{n}\right)$, the following inequality holds:

$$
\begin{aligned}
& \left(\frac{1}{|Q|} \int_{Q}\left|T_{b}(f)(x)-A_{t_{Q}}\left(T_{b}(f)\right)(x)\right|^{\eta} d x\right)^{1 / \eta} \\
\leq & C\|b\|_{B M O(\omega)} \sum_{k=1}^{m}\left(\left[M_{v^{\prime} / p}\left(\left|\omega T^{k, 2}(f)\right|^{r^{\prime}}\right)(\tilde{x})\right]^{1 / r^{\prime}}+\left[M_{v}\left(\left|\omega T^{k, 2}(f)\right|^{q}\right)(\tilde{x})\right]^{1 / q}\right),
\end{aligned}
$$

where $t_{Q}=(l(Q))^{2}$ and $l(Q)$ denotes the side length of Q. Without loss of generality, we may assume $T^{k, 1}$ are $T(k=1, \ldots, m)$. Fix a cube $Q=Q\left(x_{0}, d\right)$ and $\tilde{x} \in Q$. Let $\tilde{x} \in Q$. We write

$$
T_{b}(f)(x)=T_{b-b_{2 Q}}(f)(x)=T_{\left(b-b_{2 \varrho}\right) \chi_{2 Q}}(f)(x)+T_{\left(b-b_{2 \varrho}\right) \chi_{(2 \Omega)}}(f)(x)=U_{1}(x)+U_{2}(x)
$$

and

$$
\begin{aligned}
& \left(\frac{1}{|Q|} \int_{Q}\left|T_{b}(f)(x)-A_{t_{Q}}\left(T_{b}(f)\right)(x)\right|^{\eta} d x\right)^{1 / \eta} \\
\leq & \left(\frac{C}{|Q|} \int_{Q}\left|U_{1}(x)\right|^{\eta} d x\right)^{1 / \eta}+\left(\frac{C}{|Q|} \int_{Q}\left|A_{t_{Q}}\left(U_{1}\right)(x)\right|^{\eta} d x\right)^{1 / \eta}+\left(\frac{C}{|Q|} \int_{Q}\left|U_{2}(x)-A_{t_{Q}}\left(U_{2}\right)(x)\right|^{\eta} d x\right)^{1 / \eta} \\
= & I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

For I_{1}, we know $v^{-r / p} \in A_{r}$ by Lemma 5 , thus

$$
\left(\frac{1}{|Q|} \int_{Q} v(x)^{-r / p} d x\right)^{1 / r} \leq C\left(\frac{1}{|Q|} \int_{Q} v(x)^{r^{\prime} / p} d x\right)^{-1 / r^{\prime}}
$$

then, by the weak (L^{1}, L^{1}) boundedness of T (see Lemma 2) and Kolmogoro's inequality (see Lemma 1), we obtain, by Lemma 6,

$$
\begin{aligned}
& \left(\frac{1}{|Q|} \int_{Q}\left|T^{k, 1} M_{\left(b-b_{Q}\right) x_{2 Q}} T^{k, 2}(f)(x)\right|^{\eta} d x\right)^{1 / \eta} \\
= & \frac{|Q|^{1 / \eta-1}}{|Q|^{1 / \eta}} \frac{\left\|T^{k, 1} M_{\left(b-b_{Q}\right) x_{2 Q}} T^{k, 2}(f) \chi_{Q}\right\|_{L^{\eta}}}{\left\|\chi_{Q}\right\|_{L^{\eta /(1-\eta)}}} \\
\leq & \frac{C}{|Q|}\left\|T^{k, 1} M_{\left(b-b_{2 Q}\right) x_{2 Q}} T^{k, 2}(f)\right\|_{W L^{1}} \\
\leq & \frac{C}{|Q|} \int_{R^{n}}\left|M_{\left(b-b_{2 Q}\right) \chi_{2 Q}} T^{k, 2}(f)(x)\right| d x \\
= & \frac{C}{|Q|} \int_{2 Q}\left|b(x)-b_{2 Q}\right| \mu(x)^{-1 / p}\left|T^{k, 2}(f)(x)\right| \omega(x) v(x)^{1 / p} d x \\
\leq & C\left(\frac{1}{|Q|} \int_{2 Q}\left|b(x)-b_{2 Q}\right|^{r} \mu(x)^{-r / p} d x\right)^{1 / r}\left(\frac{1}{|Q|} \int_{2 Q}\left|T^{k, 2}(f)(x)\right|^{r^{\prime}} \omega(x)^{r^{\prime}} v(x)^{r^{\prime} / p} d x\right)^{1 / r^{\prime}} \\
\leq & C\left|\mid b \|_{B M O(\omega)}\left(\frac{1}{|2 Q|} \int_{2 Q} v(x)^{-r / p} d x\right)^{1 / r}\left(\frac{1}{|Q|} \int_{2 Q}\left|T^{k, 2}(f)(x) \omega(x)\right|^{r^{\prime}} v(x)^{r^{\prime} / p} d x\right)^{1 / r^{\prime}}\right. \\
\leq & C\|b\|_{B M O(\omega)}\left(\frac{1}{|2 Q|} \int_{2 Q} v(x)^{r^{\prime} / p} d x\right)^{-1 / r^{\prime}}\left(\frac{1}{|Q|} \int_{2 Q}\left|T^{k, 2}(f)(x) \omega(x)\right|^{r^{\prime}} v(x)^{r^{\prime} / p} d x\right)^{1 / r^{\prime}} \\
\leq & C\|b\|_{B M O(\omega)}\left(\frac{1}{v(2 Q)^{r^{\prime} / p}} \int_{2 Q}\left|T^{k, 2}(f)(x) \omega(x)\right|^{r^{\prime}} v(x)^{r^{\prime} / p} d x\right)^{1 / r^{\prime}} \\
\leq & C\|b\|_{B M O(\omega)}\left[M_{v^{\prime} / p}\left(\left|\omega T^{k, 2}(f)\right|^{r^{\prime}}\right)(\tilde{x})\right]^{1 / r^{\prime}},
\end{aligned}
$$

thus

$$
\begin{aligned}
I_{1} & \leq C \sum_{k=1}^{m}\left(\frac{1}{|Q|} \int_{Q}\left|T^{k, 1} M_{\left(b-b_{Q}\right) x_{2 Q}} T^{j, 2}(f)(x)\right|^{\eta} d x\right)^{1 / \eta} \\
& \leq C\|b\|_{B M O(\omega)} \sum_{k=1}^{m}\left[M_{v^{r^{\prime} / p}}\left(\left|\omega T^{k, 2}(f)\right|^{r^{\prime}}\right)(\tilde{x})\right]^{1 / r^{\prime}}
\end{aligned}
$$

For I_{2}, taking $r>r_{1}>1$ and $r>s>1$ such that $1 / r_{1}+1 / r_{1}{ }^{\prime}=1$ and $s r_{1}{ }^{\prime}=r^{\prime}$. Now by the condition on $h_{t_{Q}}$ and notice for $x \in Q, y \in 2^{j+1} Q \backslash 2^{j} Q$, then $h_{t_{Q}}(x, y) \leq C t_{Q}^{-n / 2} \rho\left(2^{2(j-1)}\right)$, we obtain, similar to the proof of I_{1},

$$
\begin{aligned}
& {\left[\frac{1}{|Q|} \int_{Q}\left|A_{t_{Q}}\left(T^{k, 1} M_{\left(b-b_{2 Q}\right) x_{2 Q}} T^{k, 2}(f)\right)(x)\right|^{\eta} d x\right]^{1 / \eta} } \\
\leq & C\left[\frac{1}{|Q|} \int_{Q}\left(\int_{R^{n}} h_{t_{Q}}(x, y)\left|T^{k, 1} M_{\left(b-b_{2 Q}\right) x_{2 Q}} T^{k, 2}(f)(y)\right| d y\right)^{\eta} d x\right]^{1 / \eta} \\
\leq & C\left[\frac{1}{|Q|} \int_{Q}\left(\int_{2 Q} h_{t_{Q}}(x, y)\left|T^{k, 1} M_{\left(b-b_{2 Q}\right) x_{2 Q}} T^{k, 2}(f)(y)\right| d y\right)^{\eta} d x\right]^{1 / \eta} \\
+ & C\left[\frac{1}{|Q|} \int_{Q}\left(\int_{(2 Q)^{c}} h_{t_{Q}}(x, y)\left|T^{k, 1} M_{\left(b-b_{2 Q}\right) \chi_{2 Q}} T^{k, 2}(f)(y)\right| d y\right)^{\eta} d x\right]^{1 / \eta} \\
\leq & C \int_{2 Q} t_{Q}^{-n / 2}\left|T^{k, 1} M_{\left(b-b_{2 Q}\right) \chi_{2 Q}} T^{k, 2}(f)(y)\right| d y \\
+ & C \sum_{j=1}^{\infty} t_{Q}^{-n / 2} \rho\left(2^{2(j-1)}\right) \int_{2^{j+1} Q \backslash 2 j Q}\left|T^{k, 1} M_{\left(b-b_{2 Q}\right) x_{2 Q}} T^{k, 2}(f)(y)\right| d y \\
\leq & C\left(\frac{1}{|Q|} \int_{R^{n}}\left|T^{k, 1} M_{\left(b-b_{2 Q}\right) x_{2 Q}} T^{k, 2}(f)(y)\right|^{s} d y\right)^{1 / s} \\
+ & C \sum_{j=1}^{\infty} 2^{j n} \rho\left(2^{2(j-1)}\right)\left(\frac{1}{\left|2^{j+1} Q\right|} \int_{R^{n}}\left|T^{k, 1} M_{\left(b-b_{2 Q}\right) x_{2 Q}} T^{k, 2}(f)(y)\right|^{s} d y\right)^{1 / s} \\
\leq & C\left(\frac{1}{|Q|} \int_{R^{n}}\left|M_{\left(b-b_{2 Q}\right) \chi_{2 Q}}^{k, 2}(f)(y)\right|^{s} d y\right)^{1 / s} \\
+ & C \sum_{j=1}^{\infty} 2^{j n} \rho\left(2^{2(j-1)}\right)\left(\frac{1}{\left|2^{j+1} Q\right|} \int_{R^{n}}\left|M_{\left(b-b_{2 Q}\right) x_{2 Q}} T^{k, 2}(f)(y)\right|^{s} d y\right)^{1 / s} \\
\leq & C\left(\frac{1}{|Q|} \int_{2 Q}\left|b(y)-b_{2 Q}\right|^{s} \mu(y)^{-s / p}\left|T^{k, 2}(f)(y)\right|^{s} \omega(y)^{s} v(y)^{s / p} d y\right)^{1 / s} \\
+ & C \sum_{j=1}^{\infty} 2^{j n} \rho\left(2^{2(j-1)}\right)\left(2^{j} l(Q)\right)^{-n / s}(l(Q))^{-n / s} \\
\times & \left(\frac{1}{|Q|} \int_{2 Q}\left|b(y)-b_{2 Q}\right|^{s} \mu(y)^{-s / p}\left|T^{k, 2}(f)(y)\right|^{s} \omega(y)^{s} v(y)^{s / p} d y\right)^{1 / s}
\end{aligned}
$$

$$
\begin{aligned}
& \leq C\left(\frac{1}{|Q|} \int_{2 Q}\left|b(y)-b_{2 Q}\right|^{s r_{1}} \mu(y)^{-s r_{1} / p} d y\right)^{1 / s r_{1}}\left(\frac{1}{|Q|} \int_{2 Q}\left|T^{k, 2}(f)(y)\right|^{s r_{1}{ }^{\prime}} \omega(y)^{s r_{1}{ }^{\prime}} v(y)^{r_{1}{ }^{\prime} s / p} d y\right)^{1 / s r_{1}{ }^{\prime}} \\
& +C \sum_{j=1}^{\infty} 2^{j n(1-1 / s)} \rho\left(2^{2(j-1)}\right)\left(\frac{1}{|Q|} \int_{2 Q}\left|b(y)-b_{2 Q}\right|^{s r_{1}} \mu(y)^{-s r_{1} / p} d y\right)^{1 / s r_{1}} \\
& \times\left(\frac{1}{|Q|} \int_{2 Q}\left|T^{k, 2}(f)(y)\right|^{s r_{1}{ }^{\prime}} \omega(y)^{s r_{1}{ }^{\prime}} v(y)^{s r_{1}{ }^{\prime} / p} d y\right)^{1 / s r_{1}{ }^{\prime}} \\
& \leq C| | b \|_{B M O(\omega)}\left(\frac{1}{|2 Q|} \int_{2 Q} v(y)^{-s r_{1} / p} d y\right)^{1 / s r_{1}}\left(\frac{1}{|Q|} \int_{2 Q}\left|T^{k, 2}(f)(y) \omega(y)\right|^{s r_{1}{ }^{\prime}} v(y)^{s r_{1}{ }^{\prime} / p} d y\right)^{1 / s r_{1}{ }^{\prime}} \\
& +C \sum_{j=1}^{\infty} 2^{j n(1-1 / s)} \rho\left(2^{2(j-1)}\right)\|b\|_{B M O(\omega)}\left(\frac{1}{|Q|} \int_{2 Q} v(y)^{-s r_{1} / p} d y\right)^{1 / s r_{1}} \\
& \times\left(\frac{1}{|Q|} \int_{2 Q}\left|T^{k, 2}(f)(y) \omega(y)\right|^{s r_{1}{ }^{\prime}} v(y)^{s r_{1}{ }^{\prime} / p} d y\right)^{1 / s r_{1}{ }^{\prime}} \\
& \leq C| | b \|_{B M O(\omega)}\left(\frac{1}{|2 Q|} \int_{2 Q} v(y)^{s r_{1}^{\prime} / p} d y\right)^{-1 / s r_{1}{ }^{\prime}}\left(\left.\frac{1}{|Q|} \int_{2 Q} \right\rvert\, T^{k, 2}(f)(y) \omega(y)^{s r_{1}{ }^{\prime}} v(y)^{s r_{1}{ }^{\prime} / p} d y\right)^{1 / s r_{1}{ }^{\prime}} \\
& +C\|b\|_{B M O(\omega)} \sum_{j=1}^{\infty} 2^{j n(1-1 / s)} \rho\left(2^{2(j-1)}\right)\left(\frac{1}{|Q|} \int_{2 Q} v(y)^{s r_{1}^{\prime} / p} d y\right)^{-1 / s r_{1}{ }^{\prime}} \\
& \times\left(\frac{1}{|Q|} \int_{2 Q}\left|T^{k, 2}(f)(y) \omega(y)\right|^{s r_{1}{ }^{\prime}} v(y)^{s r_{1}{ }^{\prime} / p} d y\right)^{1 / s r_{1}{ }^{\prime}} \\
& \leq C\|b\|_{B M O(\omega)}\left(\frac{1}{v(2 Q)^{s r_{1}{ }^{\prime} / p}} \int_{2 Q}\left|T^{k, 2}(f)(y) \omega(y)\right|^{s r_{1}{ }^{\prime}} v(y)^{s r_{1}{ }^{\prime} / p} d y\right)^{1 / s r_{1}{ }^{\prime}} \\
& \times \sum_{j=1}^{\infty} 2^{(j-1)(n+\varepsilon)} \rho\left(2^{2(j-1)}\right) 2^{-j(\epsilon+n / s)} \\
& \leq C\|b\|_{B M O(\omega)}\left[M_{v^{\prime} / p}\left(\mid \omega T^{k, 2}(f) r^{r^{\prime}}\right)(\tilde{x})\right]^{1 / r^{\prime}},
\end{aligned}
$$

thus

$$
\begin{aligned}
I_{2} & \leq C \sum_{k=1}^{m}\left(\frac{1}{|Q|} \int_{Q}\left|T^{k, 1} M_{\left(b-b_{Q}\right) x_{2 Q}} T^{j, 2}(f)(x)\right|^{\eta} d x\right)^{1 / \eta} \\
& \leq C\|b\|_{B M O(\omega)} \sum_{k=1}^{m}\left[M_{v^{r^{\prime} / p}}\left(\left|\omega T^{k, 2}(f)\right|^{r^{\prime}}\right)(\tilde{x})\right]^{1 / r^{\prime}} .
\end{aligned}
$$

For I_{3}, we get, for $x \in Q$,

$$
\begin{aligned}
& \left|T^{k, 1} M_{\left(b-b_{Q}\right) \chi_{(2))}} T^{k, 2}(f)(x)-A_{t_{Q}}\left(T^{k, 1} M_{\left(b-b_{2 Q}\right) \chi_{(22)}{ }^{c}} T^{k, 2}(f)\right)(x)\right| \\
\leq & \int_{(2 Q)^{c}}\left|b(y)-b_{2 Q}\left\|K(x-y)-K_{t_{Q}}(x-y)\right\| T^{k, 2}(f)(y)\right| d y \\
\leq & C \sum_{j=1}^{\infty} \int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d} \frac{l(Q)^{\delta}}{\left|y-x_{0}\right|^{n+\delta}}\left|b(y)-b_{2 Q} \| T^{k, 2}(f)(y)\right| d y
\end{aligned}
$$

$$
\begin{aligned}
\leq & C \sum_{j=1}^{\infty} \frac{d^{\delta}}{\left(2^{j+1} d\right)^{n+\delta}} \int_{2^{j+1} Q}\left|b(y)-b_{2^{j+1} Q} \| T^{k, 2}(f)(y)\right| d y \\
& +C \sum_{j=1}^{\infty} \frac{d^{\delta}}{\left(2^{k+1} d\right)^{n+\delta}}\left|b_{2^{j+1} Q}-b_{2 Q}\right| \int_{2^{j+1} Q}\left|T^{k, 2}(f)(y)\right| d y \\
= & I_{3}^{(1)}+I_{3}^{(2)} .
\end{aligned}
$$

For $I_{3}^{(1)}$, by using the same argument as I_{1}, we get

$$
\begin{aligned}
I_{3}^{(1)} \leq & C \sum_{j=1}^{\infty} 2^{-\delta j}\left(\frac{1}{\left|2^{j+1} Q\right|} \int_{2^{j+1} Q}\left|b(y)-b_{2^{j+1}} Q\right|^{r} \mu(y)^{-r / p} d y\right)^{1 / r} \\
& \times\left(\frac{1}{\left|2^{j+1} Q\right|} \int_{2^{j+1} Q}\left|T^{k, 2}(f)(y)\right|^{r^{\prime}} \omega(y)^{r^{\prime}} v(y)^{r^{\prime} / p} d y\right)^{1 / r^{\prime}} \\
\leq & C\|b\|_{B M O(\omega)} \sum_{j=1}^{\infty} 2^{-\delta j}\left(\frac{1}{\left|2^{j+1} Q\right|} \int_{2^{j+1} Q} v(y)^{-r / p} d y\right)^{1 / r} \\
& \times\left(\frac{1}{\left|2^{j+1} Q\right|} \int_{2^{j+1} Q}\left|T^{k, 2}(f)(y) \omega(y)\right|^{r^{\prime}} v(y)^{r^{\prime} / p} d y\right)^{1 / r^{\prime}} \\
\leq & C\|b\|_{B M O(\omega)} \sum_{j=1}^{\infty} 2^{-\delta j}\left(\frac{1}{\left|2^{j+1} Q\right|} \int_{2^{j+1} Q} v(y)^{r^{\prime} \mid p} d y\right)^{-1 / r^{\prime}} \\
& \times\left(\frac{1}{\left|2^{j+1} Q\right|} \int_{2^{j+1} Q}\left|T^{k, 2}(f)(y) \omega(y)\right|^{r^{\prime}} v(y)^{r^{\prime} / p} d y\right)^{1 / r^{\prime}} \\
\leq & C\|b\|_{B M O(\omega)} \sum_{j=1}^{\infty} 2^{-\delta j}\left(\frac{1}{v\left(2^{j+1} Q\right)^{r^{\prime} / p}} \int_{2^{j+1} Q}\left|T^{k, 2}(f)(y) \omega(y)\right|^{r^{\prime}} v(y)^{r^{\prime} / p} d y\right)^{1 / r^{\prime}} \\
\leq & C\|b\|_{B M O(\omega)}\left[M_{v^{\prime} / p}\left(\left|\omega T^{k, 2}(f)\right|^{r^{\prime}}\right)(\tilde{x})\right]^{1 / r^{\prime}} .
\end{aligned}
$$

For $I_{3}^{(2)}$, by Lemmas 4 and 7 , we get

$$
\begin{aligned}
I_{3}^{(2)} \leq & C\|b\|_{B M O(\omega)} \sum_{j=1}^{\infty} j \omega_{Q_{j}} 2^{-\delta j} \frac{1}{\left|2^{j+1} Q\right|} \int_{2^{j+1} Q}\left|T^{k, 2}(f)(y)\right| d y \\
\leq & C\|b\|_{B M O(\omega)} \sum_{j=1}^{\infty} j 2^{-\delta j} \omega_{Q_{j}}\left(\frac{1}{\left|2^{j+1} Q\right|} \int_{2^{j+1} Q}\left|\omega(y) T^{k, 2}(f)(y)\right|^{q} v(y) d y\right)^{1 / q} \\
& \times\left(\frac{1}{\left|2^{j+1} Q\right|} \int_{2^{j+1} Q} \omega(y)^{-q^{\prime}} v(y)^{-q^{\prime} \mid q} d y\right)^{1 / q^{\prime}} \\
\leq & C\|b\|_{B M O(\omega)} \sum_{j=1}^{\infty} j 2^{-\delta j} \omega_{2^{j} Q}\left(v_{2 j} Q\right)^{1 / q}\left(\frac{1}{v\left(2^{j+1} Q\right)} \int_{2^{j+1} Q}\left|\omega(y) T^{k, 2}(f)(y)\right|^{q} v(y) d y\right)^{1 / q} \\
& \times\left(\frac{1}{\left|2^{j+1} Q\right|} \int_{2^{j+1} Q} \omega(y)^{-q^{\prime}} v(y)^{-q^{\prime} / q} d y\right)^{1 / q^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
\leq & C\|b\|_{B M O(\omega)}\left[M_{v}\left(\left|\omega T^{k, 2}(f)\right|^{q}\right)(\tilde{x})\right]^{1 / q} \sum_{j=1}^{\infty} j 2^{-\delta j} \\
& \times \omega_{2^{j} Q}\left(v_{2 j Q}\right)^{1 / q}\left(\frac{1}{\left|2^{j+1} Q\right|} \int_{2^{j+1} Q} \omega(y)^{-q^{\prime}} v(y)^{-q^{\prime} / q} d y\right)^{1 / q^{\prime}} \\
\leq & C\|b\|_{B M O(\omega)}\left[M_{v}\left(\left|\omega T^{k, 2}(f)\right|^{q}\right)(\tilde{x})\right]^{1 / q} \sum_{j=1}^{\infty} j 2^{-\delta j} \\
\leq & C\|b\|_{B M O(\omega)}\left[M_{v}\left(\left|\omega T^{k, 2}(f)\right|^{q}\right)(\tilde{x})\right]^{1 / q} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
I_{3} & \leq \frac{C}{|Q|} \int_{Q} \sum_{k=1}^{m}\left|T^{k, 1} M_{\left(b-b_{Q}\right) x_{(2))}} T^{k, 2}(f)(x)-A_{t_{Q}}\left(T^{k, 1} M_{\left.\left(b-b_{2 Q}\right) x_{(2 Q)}\right)} I_{\alpha} T^{k, 2}(f)\right)(x)\right| d x \\
& \leq C\|b\|_{B M O(\omega)} \sum_{k=1}^{m}\left(\left[M_{v^{\prime} / p}\left(\left|\omega T^{k, 2}(f)\right|^{r^{\prime}}\right)(\tilde{x})\right]^{1 / r^{\prime}}+\left[M_{v}\left(\left|\omega T^{k, 2}(f)\right|^{q}\right)(\tilde{x})\right]^{1 / q}\right) .
\end{aligned}
$$

This completes the proof of Theorem 1.

Proof of Theorem 2. It suffices to prove for $f \in C_{0}^{\infty}\left(R^{n}\right)$, the following inequality holds:

$$
\left(\frac{1}{|Q|} \int_{Q}\left|T_{b}(f)(x)-A_{t_{Q}}\left(T_{b}(f)\right)(x)\right|^{\eta} d x\right)^{1 / \eta} \leq C\|b\|_{L p_{\beta}(\omega)} \omega(\tilde{x}) \sum_{k=1}^{m} M_{\beta, s, \omega}\left(T^{k, 2}(f)\right)(\tilde{x}),
$$

where $t_{Q}=(l(Q))^{2}$ and $l(Q)$ denotes the side length of Q. Without loss of generality, we may assume $T^{k, 1}$ are $T(k=1, \ldots, m)$. Fix a cube $Q=Q\left(x_{0}, d\right)$ and $\tilde{x} \in Q$. Similar to the proof of Theorem 1, we have

$$
T_{b}(f)(x)=T_{b-b_{2 \varnothing}}(f)(x)=T_{\left(b-b_{2 \varnothing}\right) \chi_{2 \varnothing}}(f)(x)+T_{\left(b-b_{2 \varnothing}\right) \chi_{(2 \Omega)}}(f)(x)=V_{1}(x)+V_{2}(x)
$$

and

$$
\begin{aligned}
& \left(\frac{1}{|Q|} \int_{Q}\left|T_{b}(f)(x)-A_{t_{Q}}\left(T_{b}(f)\right)(x)\right|^{\eta} d x\right)^{1 / \eta} \\
\leq & \left(\frac{C}{|Q|} \int_{Q}\left|V_{1}(x)\right|^{\eta} d x\right)^{1 / \eta}+\left(\frac{C}{|Q|} \int_{Q}\left|A_{t_{Q}}\left(V_{1}\right)(x)\right|^{\eta} d x\right)^{1 / \eta}+\left(\frac{C}{|Q|} \int_{Q}\left|V_{2}(x)-A_{t_{Q}}\left(V_{2}\right)(x)\right|^{\eta} d x\right)^{1 / \eta} \\
= & I_{4}+I_{5}+I_{6} .
\end{aligned}
$$

For I_{4}, by Lemmas 2 and 1, we obtain

$$
\begin{aligned}
& \left(\frac{1}{|Q|} \int_{Q}\left|T^{k, 1} M_{\left(b-b_{2 Q}\right) \chi_{2 Q}} T^{k, 2}(f)(x)\right|^{\eta} d x\right)^{1 / \eta} \\
\leq & \frac{|Q|^{1 / \eta-1}}{|Q|^{1 / \eta}} \frac{\left\|T^{k, 1} M_{\left(b-b_{2 Q}\right) x_{2 Q}} T^{k, 2}(f) \chi_{Q}\right\|_{L^{\eta}}}{\left\|\chi_{Q}\right\|_{L^{\eta /(1-\eta)}}} \\
\leq & \frac{C}{|Q|}\left\|T^{k, 1} M_{\left(b-b_{2 Q}\right) \chi_{2 Q}} T^{k, 2}(f)\right\|_{W L^{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{C}{|Q|} \int_{R^{n}}\left|M_{\left(b-b_{2 Q}\right) x_{2 Q}} T^{k, 2}(f)(x)\right| d x \\
& \leq \frac{C}{|Q|} \int_{2 Q}\left|b(x)-b_{2 Q}\right| \omega(x)^{-1 / s}\left|T^{k, 2}(f)(x)\right| \omega(x)^{1 / s} d x \\
& \leq \frac{C}{|Q|}\left(\int_{2 Q}\left|b(x)-b_{2 Q}\right|^{s^{\prime}} \omega(x)^{1-s^{\prime}} d x\right)^{1 / s^{\prime}}\left(\int_{2 Q}\left|T^{k, 2}(f)(x)\right|^{s} \omega(x) d x\right)^{1 / s} \\
& \leq \frac{C}{|Q|}\|b\|_{L i p_{\beta}(\omega)} \omega(2 Q)^{1 / s^{\prime}+\beta / n} \omega(2 Q)^{1 / s-\beta / n}\left(\frac{1}{\omega(Q)^{1-s \beta / n}} \int_{Q}|f(y)|^{s} \omega(y) d y\right)^{1 / s} \\
& \leq C| | b \|_{L i i_{\beta}(\omega)} \frac{\omega(2 Q)}{|2 Q|} M_{\beta, s, \omega}\left(T^{k, 2}(f)\right)(\tilde{x}) \\
& \leq C\|b\|_{L i i_{\beta}(\omega)} \omega(\tilde{x}) M_{\beta, s, \omega}\left(T^{k, 2}(f)\right)(\tilde{x}),
\end{aligned}
$$

thus

$$
\begin{aligned}
I_{4} & \leq C \sum_{k=1}^{m}\left(\frac{1}{|Q|} \int_{Q}\left|T^{k, 1} M_{\left(b-b_{2 Q}\right) \chi_{2 Q}} T^{k, 2}(f)(x)\right|^{\eta} d x\right)^{1 / \eta} \\
& \leq C\|b\|_{L i i_{\beta}(\omega)} \omega(\tilde{x}) \sum_{k=1}^{m} M_{\beta, s, \omega}\left(T^{k, 2}(f)\right)(\tilde{x})
\end{aligned}
$$

For I_{5}, noting that $\omega \in A_{1}, \omega$ satisfies the reverse of Hölder's inequality:

$$
\left(\frac{1}{|Q|} \int_{Q} \omega(x)^{p_{0}} d x\right)^{1 / p_{0}} \leq \frac{C}{|Q|} \int_{Q} \omega(x) d x
$$

for all cube Q and some $1<p_{0}<\infty$ (see [9]). Choose $q>1$ such that $r=\left(p_{0}-1\right) / q+1<s$ and let $p>1$ with $r / s+1 / p+1 / q=1$. By using the same argument as in the proof of I_{2}, we obtain

$$
\begin{aligned}
& {\left[\frac{1}{|Q|} \int_{Q}\left|A_{t_{Q}}\left(T^{k, 1} M_{\left(b-b_{2 Q}\right) x_{2 Q}} T^{k, 2}(f)\right)(x)\right|^{\eta} d x\right]^{1 / \eta} } \\
\leq & C\left(\frac{1}{|Q|} \int_{R^{n}}\left|M_{\left(b-b_{2 Q}\right) x_{2 Q}} T^{k, 2}(f)(y)\right|^{r} d y\right)^{1 / r} \\
+ & C \sum_{j=1}^{\infty} 2^{j n} \rho\left(2^{2(j-1)}\right)\left(\frac{1}{\left|2^{j+1} Q\right|} \int_{R^{n}}\left|M_{\left(b-b_{2 Q}\right) x_{2 Q}} T^{k, 2}(f)(y)\right|^{r} d y\right)^{1 / r} \\
\leq & C|Q|^{-1 / r}\left(\int_{2 Q}\left|b(y)-b_{2 Q}\right|^{r} \omega(y)^{1 / p-r}\left|T^{k, 2}(f)(y)\right|^{r} \omega(y)^{r / s} \omega(y)^{r-r / s-1 / p} d y\right)^{1 / r} \\
+ & C \sum_{j=1}^{\infty} 2^{j n} \rho\left(2^{2(j-1)}\right)\left(2^{j} l(Q)\right)^{-n / r} \\
\times & \left(\int_{2 Q}\left|b(y)-b_{2 Q}\right|^{r} \omega(y)^{1 / p-r}\left|T^{k, 2}(f)(y)\right|^{r} \omega(y)^{r / s} \omega(y)^{r-r / s-1 / p} d y\right)^{1 / r}
\end{aligned}
$$

$$
\begin{aligned}
& \leq C|Q|^{-1 / r}\left(\int_{2 Q}\left|b(y)-b_{2 Q}\right|^{p r} \omega(y)^{1-p r} d y\right)^{1 / p r} \\
& \times\left(\int_{2 Q} \mid T^{k, 2}(f)(y)^{s} \omega(y) d y\right)^{1 / s}\left(\int_{2 Q} \omega(y)^{(r-r / s-1 / p) q} d y\right)^{1 / q r} \\
& \times C \sum_{j=1}^{\infty} 2^{j n} \rho\left(2^{2(j-1)}\right)\left(2^{j} l(Q)\right)^{-n / r}\left(\int_{2 Q}\left|b(y)-b_{2 Q}\right|^{p r} \omega(y)^{1-p r} d y\right)^{1 / p r} \\
& \times\left(\int_{2 Q}\left|T^{k, 2}(f)(y)\right|^{s} \omega(y) d y\right)^{1 / s}\left(\int_{2 Q} \omega(y)^{(r-r / s-1 / p) q} d y\right)^{1 / q r} \\
& \leq C|Q|^{-1 / r}\|b\|_{L i p_{\beta}(\omega)} \omega(Q)^{\beta / n+1 / p r} \omega(Q)^{1 / s-\beta / n} M_{\beta, s, \omega}\left(T^{k, 2}(f)\right)(\tilde{x}) \\
& \times|Q|^{1 / q r}\left(\frac{1}{|Q|} \int_{2 Q} \omega(y)^{p_{0}} d y\right)^{1 / q r} \\
& +C \sum_{j=1}^{\infty} 2^{j n} \rho\left(2^{2(j-1)}\right)\left(2^{j} l(Q)\right)^{-n / r}\|b\|_{L i p_{\beta}(\omega)} \omega(Q)^{\beta / n+1 / p r} \omega(Q)^{1 / s-\beta / n} M_{\beta, s, \omega}\left(T^{k, 2}(f)\right)(\tilde{x}) \\
& \times|Q|^{1 / q r}\left(\frac{1}{|Q|} \int_{2 Q} \omega(y)^{p_{0}} d y\right)^{1 / q r} \\
& \leq C| | b \|_{L i p_{\beta}(\omega)|Q|^{-1 / r}} \omega(2 Q)^{1 / p r} \omega(2 Q)^{1 / s} M_{\beta, s, \omega}\left(T^{k, 2}(f)\right)(\tilde{x}) \\
& \times|Q|^{1 / q r}\left(\frac{1}{|Q|} \int_{2 Q} \omega(y) d y\right)^{p_{0} / q r} \\
& \times C| | b \|_{L i p_{\beta}(\omega)} \sum_{j=1}^{\infty} 2^{j n} \rho\left(2^{2(j-1)}\right)\left(2^{j} l(Q)\right)^{-n / r} \omega(2 Q)^{1 / p r} \omega(2 Q)^{1 / s} M_{\beta, s, \omega}\left(T^{k, 2}(f)\right)(\tilde{x}) \\
& \times|Q|^{1 / q r}\left(\frac{1}{|Q|} \int_{2 Q} \omega(y) d y\right)^{p_{0} / q r} \\
& \leq C| | b \|_{L i p_{\beta}(\omega)} \omega(\tilde{x}) M_{\beta, s, \omega}\left(T^{k, 2}(f)\right)(\tilde{x}),
\end{aligned}
$$

thus

$$
\begin{aligned}
I_{5} & \leq C \sum_{k=1}^{m}\left(\frac{1}{|Q|} \int_{R^{n}}\left|A_{t_{Q}}\left(T^{k, 1} M_{\left(b-b_{2 \Omega}\right) x_{2 Q}} T^{k, 2}(f)\right)(x)\right|^{\eta} d x\right)^{1 / \eta} \\
& \leq C\|b\|_{L i p_{\beta}(\omega)} \omega(\tilde{x}) \sum_{k=1}^{m} M_{\beta, s, \omega}\left(T^{k, 2}(f)\right)(\tilde{x})
\end{aligned}
$$

For I_{6}, notice $w \in A_{1} \subset A_{s}$, we get, for $x \in Q$,

$$
\begin{aligned}
& \left|T^{k, 1} M_{\left(b-b_{Q}\right) x_{(2 Q) c}^{c}} T^{k, 2}(f)(x)-A_{t_{Q}}\left(T^{k, 1} M_{\left(b-b_{2 Q}\right) x_{(2 Q) c}^{c}} T^{k, 2}(f)\right)(x)\right| \\
\leq & \int_{(2 Q)^{c}}\left|b(y)-b_{2 Q}\left\|K(x-y)-K_{t_{Q}}(x-y)\right\| T^{k, 2}(f)(y)\right| d y \\
\leq & C \sum_{j=1}^{\infty} \int_{2^{j} d \leq\left|y-x_{0}\right|<2^{j+1} d} \frac{l(Q)^{\delta}}{\left|y-x_{0}\right|^{n+\delta}}\left|b(y)-b_{2 Q} \| T^{k, 2}(f)(y)\right| d y
\end{aligned}
$$

$$
\begin{aligned}
& \leq C \sum_{j=1}^{\infty} \frac{d^{\delta}}{\left(2^{j+1} d\right)^{n+\delta}} \int_{2^{j+1} Q}\left|b(y)-b_{2^{j+1} Q}+b_{2^{j+1} Q}-b_{2 Q}\right| \omega(y)^{-1 / s}\left|T^{k, 2}(f)(y)\right| \omega(y)^{1 / s} d y \\
& \leq C \sum_{j=1}^{\infty} \frac{d^{\delta}}{\left(2^{j+1} d\right)^{n+\delta}}\left(\int_{2^{j+1} Q}\left|b(y)-b_{2^{j+1}} Q\right|^{s^{\prime}} \omega(y)^{1-s^{\prime}} d y\right)^{1 / s^{\prime}}\left(\int_{2^{j+1} Q}\left|T^{k, 2}(f)(y)\right|^{s} \omega(y) d y\right)^{1 / s} \\
& +C \sum_{j=1}^{\infty} \frac{d^{\delta}}{\left(2^{j+1} d\right)^{n+1}}\left|b_{2^{j+1}} Q-b_{2 Q}\right|\left(\int_{2^{j+1} Q} w(y)^{-1 /(s-1)} d y\right)^{1 / s^{\prime}}\left(\int_{2^{j+1} Q}\left|T^{k, 2}(f)(y)\right|^{s} \omega(y) d y\right)^{1 / s} \\
& \leq C \sum_{j=1}^{\infty} \frac{d^{\delta}}{\left(2^{j+1} d\right)^{n+\delta}}\|b\|_{L i i_{\beta}(\omega)} \omega\left(2^{j+1} Q\right)^{1 / s^{\prime}+\beta / n} \omega\left(2^{j+1} Q\right)^{1 / s-\beta / n} M_{\beta, s, \omega}\left(T^{k, 2}(f)\right)(\tilde{x}) \\
& +C \sum_{j=1}^{\infty} \frac{d^{\delta}}{\left(2^{j+1} d\right)^{n+\delta}}\|b\|_{L i_{\beta}(\omega)} \omega(\tilde{x}) j \omega\left(2^{j+1} Q\right)^{\beta / n} \omega\left(2^{j+1} Q\right)^{1 / s-\beta / n} M_{\beta, s, \omega}\left(T^{k, 2}(f)\right)(\tilde{x}) \\
& \times \frac{\left|2^{j+1} Q\right|}{\omega\left(2^{j+1} Q\right)^{1 / s}}\left(\frac{1}{\left|2^{j+1} Q\right|} \int_{2^{j+1} Q} \omega(y) d y\right)^{1 / s}\left(\frac{1}{\left|2^{j+1} Q\right|} \int_{2^{j+1} Q} \omega(y)^{-1 /(s-1)} d y\right)^{(s-1) / s} \\
& \leq C| | b \|_{L i p_{\beta}(\omega)} \sum_{j=1}^{\infty} \frac{\omega\left(2^{j+1} Q\right)}{\left|2^{j+1} Q\right|} 2^{-\delta j} M_{\beta, s, \omega}\left(T^{k, 2}(f)\right)(\tilde{x}) \\
& +C\|b\|_{L i p_{\beta}(\omega)} \sum_{j=1}^{\infty} \omega(\tilde{x}) 2^{-\delta j} M_{\beta, s, \omega}\left(T^{k, 2}(f)\right)(\tilde{x}) \\
& \leq C\|b\|_{L i p_{\beta}(\omega)} \omega(\tilde{x}) M_{\beta, s, \omega}\left(T^{k, 2}(f)\right)(\tilde{x}),
\end{aligned}
$$

thus

$$
\begin{aligned}
I_{3} & \leq \frac{C}{|Q|} \int_{Q} \sum_{k=1}^{m}\left|T^{k, 1} M_{\left(b-b_{Q}\right) x_{(2 Q)} T^{k, 2}} T^{k, 2}(f)(x)-A_{t_{Q}}\left(T^{k, 1} M_{\left.\left(b-b_{2 Q}\right) \chi_{(2 Q)}\right)} I_{\alpha} T^{k, 2}(f)\right)(x)\right| d x \\
& \leq C\|b\|_{L i p_{\beta}(\omega)} \omega(\tilde{x}) \sum_{k=1}^{m} M_{\beta, s, \omega}\left(T^{k, 2}(f)\right)(\tilde{x}) .
\end{aligned}
$$

These complete the proof of Theorem 1.
Proof of Theorem 3. Notice $v^{r^{\prime} / p} \in A_{r^{\prime}+1-r^{\prime} / p} \subset A_{p}$ and $v(x) d x \in A_{p / r^{\prime}}\left(v(x)^{r^{\prime} / p} d x\right)$ by Lemma 8 , thus, by Theorem 1 and Lemma 3, we have

$$
\begin{aligned}
& \int_{R^{n}}\left|T_{b}(f)(x)\right|^{p} v(x) d x \leq \int_{R^{n}}\left|M_{\eta}\left(T_{b}(f)\right)(x)\right|^{p} v(x) d x \leq C \int_{R^{n}}\left|M_{A, \eta}^{\#}\left(T_{b}(f)\right)(x)\right|^{p} v(x) d x \\
\leq & C\|b\|_{B M O(\omega)} \sum_{k=1}^{m} \int_{R^{n}}\left(\left[M_{v^{\prime} / p}\left(\left|\omega T^{k, 2}(f)\right|^{\prime}\right)(x)\right]^{p / r^{\prime}}+\left[M_{v}\left(\left|\omega T^{k, 2}(f)\right|^{q}\right)(x)\right]^{p / q}\right) v(x) d x \\
\leq & C\|b\|_{B M O(\omega)} \sum_{k=1}^{m} \int_{R^{n}}\left|\omega(x) T^{k, 2}(f)(x)\right|^{p} v(x) d x \\
= & C\|b\|_{B M O(\omega)} \sum_{k=1}^{m} \int_{R^{n}}\left|T^{k, 2}(f)(x)\right|^{p} \mu(x) d x \\
\leq & C\|b\|_{B M O(\omega)} \int_{R^{n}}|f(x)|^{p} \mu(x) d x .
\end{aligned}
$$

This completes the proof.

Proof of Theorem 4. Choose $1<s<p$ in Theorem 2 and notice $w^{1-q} \in A_{\infty}$, then we have, by Lemmas 3 and 9,

$$
\begin{aligned}
& \left\|T_{b}(f)\right\|_{L^{q}\left(\omega^{1-q}\right.} \leq\left\|M_{\eta}\left(T_{b}(f)\right)\right\|_{L^{q}\left(\omega^{1-q}\right)} \leq C\left\|M_{A, \eta}^{\#}\left(T_{b}(f)\right)\right\|_{L^{q}\left(\omega^{1-q}\right)} \\
\leq & C\|b\|_{L i p_{\beta}(\omega)} \sum_{k=1}^{m}\left\|\omega M_{\beta, s, \omega}\left(T^{k, 2}(f)\right)\right\|_{L^{q}\left(\omega^{1-q}\right)} \\
= & C\|b\|_{L i p_{\beta}(\omega)} \sum_{k=1}^{m}\left\|M_{\beta, s, \omega}\left(T^{k, 2}(f)\right)\right\|_{L^{q}(\omega)} \\
\leq & C\|b\|_{L i p_{\beta}(\omega)} \sum_{k=1}^{m}\left\|T^{k, 2}(f)\right\|_{L^{p}(\omega)} \\
\leq & C\|b\|_{L i p_{\beta}(\omega)}\|f\|_{L^{p}(\omega)} .
\end{aligned}
$$

This completes the proof.

5. Applications

In this section we shall apply Theorems 1-4 of the paper to the holomorphic functional calculus of linear elliptic operators. First, we review some definitions regarding the holomorphic functional calculus (see [5][16]). Given $0 \leq \theta<\pi$. Define

$$
S_{\theta}=\{z \in C:|\arg (z)| \leq \theta\} \bigcup\{0\}
$$

and its interior by S_{θ}^{0}. Set $\tilde{S}_{\theta}=S_{\theta} \backslash\{0\}$. A closed operator L on some Banach space E is said to be of type θ if its spectrum $\sigma(L) \subset S_{\theta}$ and for every $v \in(\theta, \pi]$, there exists a constant C_{v} such that

$$
|\eta|\left\|(\eta I-L)^{-1}\right\| \leq C_{v}, \quad \eta \notin \tilde{S}_{\theta}
$$

For $v \in(0, \pi]$, let

$$
H_{\infty}\left(S_{\mu}^{0}\right)=\left\{f: S_{\theta}^{0} \rightarrow C: f \text { is holomorphic and }\|f\|_{L^{\infty}}<\infty\right\}
$$

where $\|f\|_{L^{\infty}}=\sup \left\{|f(z)|: z \in S_{\mu}^{0}\right\}$. Set

$$
\Psi\left(S_{\mu}^{0}\right)=\left\{g \in H_{\infty}\left(S_{\mu}^{0}\right): \exists s>0, \exists c>0 \text { such that }|g(z)| \leq c \frac{|z|^{s}}{1+|z|^{2 s}}\right\}
$$

If L is of type θ and $g \in H_{\infty}\left(S_{\mu}^{0}\right)$, we define $g(L) \in L(E)$ by

$$
g(L)=-(2 \pi i)^{-1} \int_{\Gamma}(\eta I-L)^{-1} g(\eta) d \eta
$$

where Γ is the contour $\left\{\xi=r e^{ \pm i \phi}: r \geq 0\right\}$ parameterized clockwise around S_{θ} with $\theta<\phi<\mu$. If, in addition, L is one-one and has dense range, then, for $f \in H_{\infty}\left(S_{\mu}^{0}\right)$,

$$
f(L)=[h(L)]^{-1}(f h)(L)
$$

where $h(z)=z(1+z)^{-2}$. L is said to have a bounded holomorphic functional calculus on the sector S_{μ}, if

$$
\|g(L)\| \leq N\|g\|_{L^{\infty}}
$$

for some $N>0$ and for all $g \in H_{\infty}\left(S_{\mu}^{0}\right)$.
Now, let L be a linear operator on $L^{2}\left(R^{n}\right)$ with $\theta<\pi / 2$ so that $(-L)$ generates a holomorphic semigroup $e^{-z L}, 0 \leq|\arg (z)|<\pi / 2-\theta$. Applying Theorem 6 of [16] and Theorems 1-4, we get

Corollary 2. Assume the following conditions are satisfied:
(i) The holomorphic semigroup $e^{-z L}, 0 \leq|\arg (z)|<\pi / 2-\theta$ is represented by the kernels $a_{z}(x, y)$ which satisfy, for all $v>\theta$, an upper bound

$$
\left|a_{z}(x, y)\right| \leq c_{v} h_{|z|}(x, y)
$$

for $x, y \in R^{n}$, and $0 \leq|\arg (z)|<\pi / 2-\theta$, where $h_{t}(x, y)=C t^{-n / 2} s\left(|x-y|^{2} / t\right)$ and s is a positive, bounded and decreasing function satisfying

$$
\lim _{r \rightarrow \infty} r^{n+\epsilon} s\left(r^{2}\right)=0
$$

(ii) The operator L has a bounded holomorphic functional calculus in $L^{2}\left(R^{n}\right)$, that is, for all $v>\theta$ and $g \in H_{\infty}\left(S_{\mu}^{0}\right)$, the operator $g(L)$ satisfies

$$
\|g(L)(f)\|_{L^{2}} \leq c_{v}\|g\|_{L^{\infty}}\|f\|_{L^{2}}
$$

Let $g(L)_{b}$ be the Toeplitz type operator associated to $g(L)$. Then Theorems 1-4 hold for $g(L)_{b}$.

References

[1] S. Bloom, A commutator theorem and weighted BMO, Trans. Amer. Math. Soc. 292 (1985) 103-122.
[2] S. Chanillo, A note on commutators, Indiana Univ. Math. J. 31(1982) 7-16.
[3] R. R. Coifman, R. Rochberg and G. Weiss, Fractorization theorems for Hardy spaces in several variables, Ann. of Math. 103(1976) 611-635.
[4] D. G. Deng and L. X. Yan, Commutators of singular integral operators with non-smooth kernels, Acta Math Scientia 25(2005) 137-144.
[5] X. T. Duong and A. McIntosh, Singular integral operators with non-smooth kernels on irregular domains, Rev. Mat. Iberoamericana 15(1999) 233-265.
[6] X. T. Duong and L. X. Yan, On commutators of BMO function and singular integral operators with non-smooth kernels, Bull. Aus. Math. Soc. 67(2003) 187-200.
[7] J. Garcia-Cuerva, Weighted H^{p} spaces, Dissert. Math. 162(1979) 1-66.
[8] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Math. 16, Amsterdam, 1985.
[9] Y. X. He and Y. S. Wang, Commutators of Marcinkiewicz integrals and weighted BMO, Acta Math. Sinica (Chinese Series) 54(2011) 513-520.
[10] B. Hu and J. Gu, Necessary and sufficient conditions for boundedness of some commutators with weighted Lipschitz spaces, J. of Math. Anal. and Appl. 340(2008) 598-605.
[11] S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Math. 16(1978) 263-270.
[12] S. Krantz and S. Li, Boundedness and compactness of integral operators on spaces of homogeneous type and applications, J. of Math. Anal. Appl. 258(2001) 629-641.
[13] Y. Lin and S. Z. Lu, Toeplitz type operators associated to strongly singular integral operator, Sci. in China(ser. A) 36(2006) 615-630.
[14] L. Z. Liu, Sharp function boundedness for vector-valued multilinear singular integral operators with non-smooth kernels, J. of Contemporary Math. Anal. 45(2010) 185-196.
[15] S. Z. Lu and H. X. Mo, Toeplitz type operators on Lebesgue spaces, Acta Math. Scientia 29(B)(2009) 140-150.
[16] J. M. Martell, Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications, Studia Math. 161(2004) 113-145.
[17] M. Paluszynski, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, Indiana Univ. Math. J. 44(1995) 1-17.
[18] C. Pérez and R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators, J. London Math. Soc. 65(2002) 672-692.
[19] E. M. Stein, Harmonic analysis: real variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton NJ, 1993.
[20] X. S. Zhou and L. Z. Liu, Weighted boundedness for multilinear singular integral operators with non-smooth kernels on Morrey space, Revista de la Real Academia de Ciencias Exactas, Series A: Mate. 104(2010) 115-127.

[^0]: 2010 Mathematics Subject Classification. Primary 42B20; Secondary 42B25
 Keywords. Toeplitz type operator; Singular integral operator; Sharp maximal function; Weighted BMO; Weighted Lipschitz function.

 Received: 05 August 2013; Accepted: 04 May 2016
 Communicated by Dragan S. Djordjević
 Research supported by the Scientific Research Fund of Hunan Provincial Education Departments(13K013)
 Email address: lanzheliu@163.com (Lanzhe Liu)

