
Filomat 30:9 (2016), 2503–2520
DOI 10.2298/FIL1609503H

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. The periodic matrix equations are strongly related to analysis of periodic control systems for
various engineering and mechanical problems. In this work, a matrix form of the conjugate gradient
for least squares (MCGLS) method is constructed for obtaining the least squares solutions of the general
discrete-time periodic matrix equations

t∑
j=1

(Ai, jXi, jBi, j + Ci, jXi+1, jDi, j) = Mi, i = 1, 2, ....

It is shown that the MCGLS method converges smoothly in a finite number of steps in the absence of
round-off errors. Finally two numerical examples show that the MCGLS method is efficient.

1. Introduction

The main aim of this work, is to find the least squares solutions of general discrete-time periodic matrix
equations

t∑
j=1

(Ai, jXi, jBi, j + Ci, jXi+1, jDi, j) = Mi, i = 1, 2, ..., (1.1)

where the coefficient matrices Ai, j,Ci, j ∈ Rp×n j , Bi, j,Di, j ∈ Rm j×q, Mi ∈ Rp×q and the solutions Xi, j ∈ Rn j×m j are
periodic with period ξ, i.e., Ai+ξ, j = Ai, j, Bi+ξ, j = Bi, j, Ci+ξ, j = Ci, j, Di+ξ, j = Di, j, Mi+ξ, j = Mi, j and Xi+ξ, j = Xi, j
for i = 1, 2, ... and j = 1, 2, ..., t.
The linear periodic systems are one of important topics in engineering [27–29]. In the last decades of the past
century the discrete-time periodic matrix equations have been used as a main tool of analysis and design
problems involving periodic systems [1, 5, 6, 8–10, 27]. For example, the periodic Lyapunov matrix equation
serves as a fundamental tool in the analysis of cyclostationary and stochastic processes [27]. Based on the
periodic Lyapunov matrix equation, the notion of the l2-norm for the periodic system can be characterized
in the time-domain [27]. The periodic Lyapunov matrix equations

AT
i XiAi − Xi+1 = Bi, i = 1, 2, ..., (1.2)
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and

AT
i Xi+1Ai − Xi = Bi, i = 1, 2, ..., (1.3)

have several important applications in the semi-global stabilization problem of discrete-time linear periodic
system

x(i + 1) = Aix(i) + Biu(i), i = 1, 2, ..., (1.4)

in the solution of state- and output-feedback optimal periodic control problems, in the stabilization by
periodic state feedback and in the square-root balancing of discrete-time periodic systems [11, 12]. When
dealing with Luenberger-type observers design problem for linear discrete-time periodic systems, the pe-
riodic Sylvester matrix equations is encountered [30]. The discrete-time periodic Sylvester matrix equation
[13]

AT
i Xi − Xi+1Bi = Ci, i = 1, 2, ..., (1.5)

has applications in computation and condition estimation of periodic invariant subspaces of square matrix
products of the form

AξAξ−1...A1.

Also a class of periodic robust state-feedback pole assignment problems can be reduced to the solution of
a discrete-time periodic Sylvester matrix equation [14, 15].
So far various methods for the solution of discrete-time periodic matrix equations have been considered
in some studies [16–19]. Based on the squared Smith iteration and Krylov subspaces, two methods were
respectively proposed for solving the discrete-time periodic Lyapunov matrix equations [20]. In [31], a
gradient based iterative method was proposed to find the solutions of the general Sylvester discrete-time
periodic matrix equations. Also Hajarian in [32] introduced a gradient based iterative algorithm to solve
general coupled discrete-time periodic matrix equations over generalized reflexive matrices. Byers and
Rhee developed the Bartels-Stewart and Hessenberg-Schur algorithms for solving the discrete-time periodic
Lyapunov and Sylvester matrix equations. In [22], the least-squares QR-factorization (LSQR) methods
were extended to solve the discrete-time periodic Sylvester matrix equations. Recently by extending the bi-
conjugate gradients (Bi-CG), bi-conjugate residual (Bi-CR), conjugate gradients squared (CGS), bi-conjugate
gradient stabilized (Bi-CGSTAB), biconjugate A-orthogonal residual (BiCOR) and conjugate A-orthogonal
residual squared (CORS) methods, Hajarian obtained effective iterative algorithms for finding the solutions
of periodic coupled matrix equations [33–35].
In this paper, we study the following both problems:

Problem 1. For given ξ-periodic matrices Ai, j,Ci, j ∈ Rp×n j , Bi, j,Di, j ∈ Rm j×q and Mi ∈ Rp×q where i = 1, 2, ..., ξ and
j = 1, 2, ..., t, find the ξ-periodic matrix group (X∗1,1,X

∗

1,2, ...,X
∗

1,t, ...,X
∗

ξ,t) such that

ξ∑
i=1

||Mi −

t∑
j=1

(Ai, jX∗i, jBi, j + Ci, jX∗i+1, jDi, j)||2

= min
(X1,1,X1,2,...,X1,t,...,Xξ,t)

ξ∑
i=1

||Mi −

t∑
j=1

(Ai, jXi, jBi, j + Ci, jXi+1, jDi, j)||2.

(1.6)

Problem 2. Let the solution set of Problem 1 be denoted by Sr. For a given matrix group
(X1,1,X1,2, ...,X1,t, ...,Xξ,t) find the matrix group (X̌1,1, X̌1,2, ..., X̌1,t, ..., X̌ξ,t) ∈ Sr such that

ξ∑
i=1

t∑
j=1

||X̌i, j − Xi, j||
2 = min

(X1,1,X1,2,...,X1,t,...,Xξ,t)∈Sr

ξ∑
i=1

t∑
j=1

||Xi, j − Xi, j||
2. (1.7)
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The remainder of this paper is organized as follows. In Section 2, we propose the MCGLS method to solve
Problems 1 and 2. The convergence results of the MCGLS method are presented in Section 3. In Section 4,
two numerical examples are solved by the proposed method. Section 5 concludes this paper with a brief
summary.
Throughout this paper, the notation Rm×n stands for the set of all m×n real matrices. For a real matrix A, the
symbols AT and tr(A) stand for the transpose and trace of A, respectively. The inner product of A ∈ Rm×n and
B ∈ Rm×n is defined by 〈A,B〉 = tr(BTA). The associated norm is the well-known Frobenius norm denoted
by ||.||. For matrices R,A,B and X with appropriate dimension, a well-known property of the inner product
is 〈R,AXB〉 = 〈ATRBT,X〉. We will apply the he above property many times in the rest of this paper. For a
matrix A ∈ Rm×n, the so-called vectorization operator vec(A) is defined by vec(A) = (aT

1 , aT
2 , ..., aT

n )T, where
ak is the k-th column of A. The symbol A ⊗ B stands for the Kronecker product of matrices A and B. For
matrices A,B and X with appropriate dimension, we have the following well-known results related to the
vectorization operator and Kronecker product:

vec(AXB) = (BT
⊗ A)vec(X).

2. The MCGLS Method

In this section, we first give some preliminary results related to the least squares solutions of general
discrete-time periodic matrix equations (1.1). Second we propose the MCGLS method for solving Problems
1 and 2.

Lemma 1. [23, 26] Let U be an inner product space, V be a subspace of U, and V⊥ be the orthogonal complement
subspace of V. For a given u ∈ U, if there exists an v0 ∈ V such that ||u − v0|| ≤ ||u − v|| holds for any v ∈ V, then v0
is unique and v0 ∈ V is the unique minimization vector in V if and only if (u − v0)⊥V, i.e., (u − v0) ∈ V⊥.

Lemma 2. Suppose that R̂i, i = 1, 2, ...., ξ, are the residuals of (1.1) corresponding to the matrices X̂i, j ∈ Rn j×m j for
i = 1, 2, ...., ξ and j = 1, 2, ..., t, that is,

R̂i = Mi −

t∑
j=1

(Ai, jX̂i, jBi, j + Ci, jX̂i+1, jDi, j), i = 1, 2, ...., ξ.

Then the matrix group (X̂1,1, X̂1,2, ..., X̂1,t, ..., X̂ξ,t) is the least squares solution group of (1.1) if

AT
i, jR̂iBT

i, j + CT
i−1, jR̂i−1DT

i−1, j = 0, j = 1, 2, ..., t, i = 1, 2, ...., ξ,

where R0 = Rξ, C0, j = Cξ, j and D0, j = Dξ, j for j = 1, 2, ..., t.

Proof. In order to prove this lemma, first we present the following operator

L(Xi,1, ...,Xi,t) =

t∑
j=1

(Ai, jXi, jBi, j + Ci, jXi+1, jDi, j),

for all ξ-periodic matrices Xi, j ∈ Rn j×m j , i = 1, 2, ..., ξ and j = 1, 2, ..., t. Now we define the linear subspace

S = {S|S = diag(L(X1,1, ...,X1,t),L(X2,1, ...,X2,t), ....,L(Xξ,1, ...,Xξ,t))}.

For ξ-periodic matrices X̂i, j ∈ Rn j×m j , i = 1, 2, ..., ξ and j = 1, 2, ..., t, we consider

Ŝ = diag(L(X̂1,1, ..., X̂1,t),L(X̂2,1, ..., X̂2,t), ....,L(X̂ξ,1, ..., X̂ξ,t)).
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It is obvious that Ŝ ∈ S. For any S ∈ S, we have

〈diag(M1,M2, ...,Mξ) − Ŝ,S〉 = 〈diag(R̂1, R̂2, ..., R̂ξ),S〉

=

ξ∑
i=1

〈R̂i,
t∑

j=1

(Ai, jXi, jBi, j + Ci, jXi+1, jDi, j)〉

=

ξ∑
i=1

t∑
j=1

〈AT
i, jR̂iBT

i, j + CT
i−1, jR̂i−1DT

i−1, j,Xi, j〉.

Now, if
AT

i, jR̂iBT
i, j + CT

i−1, jR̂i−1DT
i−1, j = 0, j = 1, 2, ..., t, i = 1, 2, ...., ξ,

then we deduce that
〈diag(M1,M2, ...,Mξ) − Ŝ,S〉 = 0.

From Lemma 1, we conclude that

(diag(M1,M2, ...,Mξ) − Ŝ) ∈ S⊥.

Therefore the matrix group (X̂1,1, X̂1,2, ..., X̂1,t, ..., X̂ξ,t) is the least squares solution group of (1.1).

Lemma 3. Suppose that that (X̃1,1, X̃1,2, ..., X̃1,t, ..., X̃ξ,t) is a solution group of Problem 1. Any arbitrary solution
group (X̂1,1, X̂1,2, ..., X̂1,t, ..., X̂ξ,t) of Problem 1 can be expressed as

(X̂1,1, X̂1,2, ..., X̂1,t, ..., X̂ξ,t) = (X̃1,1 + Y1,1, X̃1,2 + Y1,2, ..., X̃1,t + Y1,t, ..., X̃ξ,t + Yξ,t),

where the ξ-periodic matrices Yi, j ∈ Rn j×m j , i = 1, 2, ..., ξ and j = 1, 2, ..., t satisfy

t∑
j=1

(Ai, jYi, jBi, j + Ci, jYi+1, jDi, j) = 0, i = 1, 2, ..., ξ. (2.1)

Proof. For arbitrary solution group (X̂1,1, X̂1,2, ..., X̂1,t, ..., X̂ξ,t) of Problem 1, first we define the ξ-periodic
matrices

Yi, j = X̂i, j − X̃i, j, i = 1, 2, ..., ξ, j = 1, 2, ..., t.

From Lemma 2 and its proof, we observe that

ξ∑
i=1

||R̃i||
2 =

ξ∑
i=1

||̂Ri||
2

=

ξ∑
i=1

||Mi −

t∑
j=1

(Ai, jX̂i, jBi, j + Ci, jX̂i+1, jDi, j)||2

=

ξ∑
i=1

||Mi −

t∑
j=1

(Ai, j(X̃i, j + Yi, j)Bi, j + Ci, j(X̃i+1, j + Yi+1, j)Di, j)||2

=

ξ∑
i=1

||R̃i −

t∑
j=1

(Ai, jYi, jBi, j + Ci, jYi+1, jDi, j)||2
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=

ξ∑
i=1

[||R̃i||
2 + ||

t∑
j=1

(Ai, jYi, jBi, j + Ci, jYi+1, jDi, j)||2

−2〈R̃i,
t∑

j=1

(Ai, jYi, jBi, j + Ci, jYi+1, jDi, j)〉]

=

ξ∑
i=1

[||R̃i||
2 + ||

t∑
j=1

(Ai, jYi, jBi, j + Ci, jYi+1, jDi, j)||2

−2
t∑

j=1

〈AT
i, jR̃iBT

i, j + CT
i−1, jR̃i−1DT

i−1, j,Yi, j〉]

=

ξ∑
i=1

[||R̃i||
2 + ||

t∑
j=1

(Ai, jYi, jBi, j + Ci, jYi+1, jDi, j)||2].

Now the proof is finished.

So far several iterative algorithms have been introduced to solve nonsymmetric linear system of equations
Ax = b [24, 38–41]. One of these algorithms is the CGLS method [24]. The CGLS method determines a
sequence of approximate solutions of the linear system of equations Ax = b without explicitly forming the
matrix ATA, but instead multiplying vectors with A and AT separately. The CGLS method is one of the
important methods for solving large non square linear systems. The CGLS method for solving Ax = b can
be summarized as following [24]:
CGLS method
For the initial vector x(1), compute r(1) = b − Ax(1), z(1) = ATr(1), p(1) = z(1),
For i = 1, 2, ... until convergence Do:
u(i) = Ap(i), α(i) = ‖z(i)‖2

‖u(i)‖2 , x(i + 1) = x(i) + α(i)p(i), r(i + 1) = r(i) − α(i)u(i),

z(i + 1) = ATr(i + 1), β(i) = ‖z(i+1)‖2

‖z(i)‖2 , p(i + 1) = z(i + 1) + β(i)p(i).
In recent years, the CGLS method was developed to find least squares solutions of several linear matrix
equations [26, 42–44]. Our purpose in the current paper is to develop the CGLS method to solve Problems
1 and 2. First we obtain a Sylvester matrix equation and a linear system of equations equivalent to the
general discrete-time periodic matrix equations (1.1). We can easily show that the general discrete-time
periodic matrix equations (1.1) can be transformed into the following Sylvester matrix equation:

t∑
j=1

(A jX jB j + C jX jD j) =M, (2.2)

where

A j =


0 · · · 0 A1, j

A2, j 0
. . .

...
0 Aξ, j 0

 , B j =


0 B2, j 0
...

. . .
0 Bξ, j

B1, j 0 · · · 0

 , C j = diag
(
C1, j,C2, j, ...,Cξ, j

)
,

D j = diag
(
D1, j,D2, j, ...,Dξ, j

)
, M = diag

(
M1,M2, ...,Mξ

)
, X j = diag

(
X1, j,X2, j, ...,Xξ, j

)
,

for j = 1, 2, ..., t. Also by means of Kronecker product, vectorization operator and the Sylvester matrix
equation (2.2), we can transform the general discrete-time periodic matrix equations (1.1) into the following
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linear system:

(
(BT

1 ⊗A1) + (DT
1 ⊗ C1) (BT

2 ⊗A2) + (DT
2 ⊗ C2) . . . (BT

t ⊗At) + (DT
t ⊗ Ct)

)
︸                                                                                                     ︷︷                                                                                                     ︸

A


vec(X1)
vec(X2)

...
vec(Xt)

︸     ︷︷     ︸
x

= vec(M)︸  ︷︷  ︸
b

. (2.3)

Obviously the sizes of coefficient matrices of the Sylvester matrix equation (2.2) and the linear system (2.3)
are very larger than sizes of coefficient matrices of the general discrete-time periodic matrix equations (1.1).
Iterative algorithms such as CGLS method and algorithms proposed in [2–4, 25, 26, 36, 37] are slow and
inefficient to solve the large-scale Sylvester matrix equation (2.2) and large-scale linear system (2.3). In order
to overcome this challenge, we directly develop the CGLS method to solve Problems 1 and 2 as follows.

Algorithm 1. Choose the initial matrices Xi, j(1) ∈ Rn j×m j for i = 1, 2, ..., ξ and j = 1, 2, ..., t,
Set Xξ+1, j(1) = X1, j(1) for j = 1, 2, ..., t;
Compute

Ri(1) = Mi −

t∑
j=1

(Ai, jXi, j(1)Bi, j + Ci, jXi+1, j(1)Di, j), i = 1, 2, ..., ξ;

Set R0(1) = Rξ(1), C0, j = Cξ, j and D0, j = Dξ, j for j = 1, 2, ..., t;
Compute

Zi, j(1) = AT
i, jRi(1)BT

i, j + CT
i−1, jRi−1(1)DT

i−1, j i = 1, 2, ..., ξ, j = 1, 2, ...., t,

Pi, j(1) = Zi, j(1), i = 1, 2, ..., ξ, j = 1, 2, ...., t;

Set Pξ+1, j(1) = P1, j(1) for j = 1, 2, ..., t;
For k = 1, 2, 3, ..., repeat the following;
If

∑ξ
i=1 ‖Ri(k)‖2 = 0, then (X1,1(k),X1,2(k), ...,X1,t(k), ...,Xξ,t(k)) is the solution group of (1.1), break;

If
∑ξ

i=1 ‖Ri(k)‖2 , 0 and
∑t

j=1
∑ξ

i=1 ‖Zi, j(k)‖2 = 0, then (X1,1(k),X1,2(k), ...,X1,t(k), ...,Xξ,t(k)) is the solution group
of Problem 1, break;
Compute

Ui(k) =

t∑
j=1

(Ai, jPi, j(k)Bi, j + Ci, jPi+1, j(k)Di, j), i = 1, 2, ..., ξ,

Set U0(k) = Uξ(k);

α(k) =

∑t
j=1

∑ξ
i=1 ‖Zi, j(k)‖2∑ξ

i=1 ‖Ui(k)‖2
,

Xi, j(k + 1) = Xi, j(k) + α(k)Pi, j(k), i = 1, 2, ..., ξ, j = 1, 2, ...., t;

Set Xξ+1, j(k + 1) = X1, j(k + 1), j = 1, 2, ...., t;

Ri(k + 1) =Mi −

t∑
j=1

(Ai, jXi, j(k + 1)Bi, j + Ci, jXi+1, j(k + 1)Di, j)

=Ri(k) − α(k)Ui(k), i = 1, 2, ..., ξ;
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Set R0(k + 1) = Rξ(k + 1);

Zi, j(k + 1) =AT
i, jRi(k + 1)BT

i, j + CT
i−1, jRi−1(k + 1)DT

i−1, j

=Zi, j(k) − α(k)[AT
i, jUi(k)BT

i, j + CT
i−1, jUi−1(k)DT

i−1, j], i = 1, 2, ..., ξ, j = 1, 2, ...., t,

β(k) =

∑t
j=1

∑ξ
i=1 ‖Zi, j(k + 1)‖2∑t

j=1
∑ξ

i=1 ‖Zi, j(k)‖2
,

Pi, j(k + 1) = Zi, j(k + 1) + β(k)Pi, j(k), i = 1, 2, ..., ξ, j = 1, 2, ...., t;

Set Pξ+1, j(k + 1) = P1, j(k + 1).

Remark 1. Algorithm 1 implies that if
∑ξ

i=1 ‖Ri(k)‖2 = 0, then (X1,1(k),X1,2(k), ...,X1,t(k), ...,Xξ,t(k)) is the solution
group of (1.1).

Remark 2. Because of the influence of the error of calculation, we regard the arbitrary matrix M as a zero matrix if
||M|| < ε where ε is a small positive number.

3. Convergence Results

In this section, we establish convergence results of Algorithm 1. To this purpose, we first propose some
properties of sequences generated by Algorithm 1.

Lemma 4. For the sequences {Zi, j(k)}, {Pi, j(k)} {Ui(k)}, i = 1, 2, ..., ξ, j = 1, 2, ...., t generated by Algorithm 1, if
there exists a positive number r such that

∑t
j=1

∑ξ
i=1 ‖Zi, j(u)‖2 , 0, α(u) , 0 and α(u) , ∞ ∀u = 1, 2, ..., r, then the

following statements hold for u, v = 1, 2, ..., r and u , v

(I)
∑t

j=1
∑ξ

i=1〈Zi, j(u),Zi, j(v)〉 = 0,

(II)
∑ξ

i=1〈Ui(u),Ui(v)〉 = 0,

(III)
∑t

j=1
∑ξ

i=1〈Pi, j(u),Zi, j(v)〉 = 0.

The proof of Lemma 4 is derived in the Appendix.

Lemma 5. In Algorithm 1, if there exists a positive number l such that α(l) = 0 or α(l) = ∞ then
(X1,1(l),X1,2(l), ...,X1,t(l), ...,Xξ,t(l)) is the solution group of Problem 1.

Proof. We can see if α(l) = 0 then
∑t

j=1
∑ξ

i=1 ‖Zi, j(l)‖2 = 0. Also if α(l) = ∞, then we have
∑ξ

i=1 ‖Ui(l)‖2 = 0. It
follows from

∑ξ
i=1 ‖Ui(l)‖2 = 0 that

t∑
j=1

ξ∑
i=1

‖Zi, j(l)‖2 =

t∑
j=1

ξ∑
i=1

〈Zi, j(l),Zi, j(l)〉

=

t∑
j=1

ξ∑
i=1

〈Zi, j(l) + β(l − 1)Zi, j(l − 1) + β(l − 1)β(l − 2)Zi, j(l − 2) + ... + β(l − 1)...β(1)Zi, j(1),Zi, j(l)〉

=

t∑
j=1

ξ∑
i=1

〈Pi, j(l),Zi, j(l)〉 =

t∑
j=1

ξ∑
i=1

〈Pi, j(l),AT
i, jRi(l)BT

i, j + CT
i−1, jRi−1(l)DT

i−1, j〉

=

ξ∑
i=1

〈

t∑
j=1

(Ai, jPi, j(l)Bi, j + Ci, jPi+1, j(l)Di, j),Ri(l)〉 =

ξ∑
i=1

〈Ui(l),Ri(l)〉 = 0.
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Hence in two cases α(l) = 0 or α(l) = ∞, we conclude that

Zi, j(l) = AT
i, jRi(l)BT

i, j + CT
i−1, jRi−1(l)DT

i−1, j = 0 i = 1, 2, ..., ξ, j = 1, 2, ...., t.

Now Lemma 2 implies that (X1,1(l),X1,2(l), ...,X1,t(l), ...,Xξ,t(l)) is the solution group of Problem 1.

Here we introduce the convergence theorem of Algorithm 1. In this theorem, we show that Algorithm 1
can obtain the solution group of Problem 1 in a finite number of steps in the absence of round-off errors.

Theorem 1. Algorithm 1 with any arbitrary initial matrix group
(X1,1(1),X1,2(1), ...,X1,t(1), ...,Xξ,t(1)), Xi, j(1) ∈ Rn j×m j , i = 1, 2, ..., ξ, j = 1, 2, ...., t can obtain the solution group
(X∗1,1,X

∗

1,2, ...,X
∗

1,t, ...,X
∗

ξ,t) of Problem 1 within a finite number of iterations in the absence of round-off errors.

Proof. By using the sequences {Zi, j(i)} generated by Algorithm 1, first we define the following sequences

Fi(k) := diag(Zi,1(k),Zi,2(k), ...,Zi,t(k)) ∈ R(
∑t

j=1 m j)×(
∑t

j=1 n j), for i = 1, 2, ..., ξ. (3.1)

From (3.1) we have

ξ∑
i=1

〈Fi(u),Fi(v)〉 =

ξ∑
i=1

t∑
j=1

〈Zi, j(u),Zi, j(v)〉 for any u and v. (3.2)

Using Lemma 2 and (3.2) gives us that the set (F1(k),F2(k), ...,Fξ(k)), k = 1, 2, 3, ..., ξ(
∑t

j=1 m j) × (
∑t

j=1 n j)

is an orthogonal basis of the inner product space R(
∑t

j=1 m j)×(
∑t

j=1 n j) × ... × R(
∑t

j=1 m j)×(
∑t

j=1 n j) with dimension
ξ(

∑t
j=1 m j) × (

∑t
j=1 n j) := m. This implies that (F1(m + 1),F2(m + 1), ...,Fξ(m + 1)) = 0. Then from (3.2), we

have

(Z1,1(m + 1),Z1,2(m + 1), ...,Z1,t(m + 1), ...,Zξ,t(m + 1)) = 0.

This implies that (X1,1(m + 1),X1,2(m + 1), ...,X1,t(m + 1), ...,Xξ,t(m + 1)) is the solution group of Problem 1 in
the absence of round-off errors.

In the next theorem, we obtain the least norm solution group of Problem 1 by Algorithm 1.

Theorem 2. If we take the initial matrices

Xi, j(1) = AT
i, jZi(1)BT

i, j + CT
i−1, jZi−1(1)DT

i−1, f or i = 1, 2, ..., ξ, j = 1, 2, ...., t, (3.3)

where Zi(1) ∈ Rp×q are arbitrary ξ-periodic matrices for i = 1, 2, ..., ξ (Z0(1) = Zξ(1)), or especially Xi, j(1) = 0 for
i = 1, 2, ..., ξ and j = 1, 2, ...., t, then the solution group (X∗1,1,X

∗

1,2, ...,X
∗

1,t, ...,X
∗

ξ,t) obtained by Algorithm 1, is the
least norm solution group of Problem 1.

Proof. By taking the initial matrices (3.3), we can easily observe that the generated matrices Xi, j(k) by
Algorithm 1 can be expressed as

Xi, j(k) = AT
i, jZi(k)BT

i, j + CT
i−1, jZi−1(k)DT

i−1, j, f or i = 1, 2, ..., ξ, j = 1, 2, ...., t, (3.4)

for certain matrices Zi(k) ∈ Rp×q for i = 1, 2, ..., ξ. This concludes that there exist matrices Z∗i ∈ Rp×q for
i = 1, 2, ..., ξ such that

X∗i, j = AT
i, jZ
∗

i B
T
i, j + CT

i−1, jZ
∗

i−1DT
i−1, j, f or i = 1, 2, ..., ξ, j = 1, 2, ...., t. (3.5)

Now we suppose that (X̃∗1,1, X̃
∗

1,2, ..., X̃
∗

1,t, ..., X̃
∗

ξ,t) is an arbitrary solution group of Problem 1. By using Lemma
3, there exists the ξ-periodic matrices Yi, j ∈ Rn j×m j for i = 1, 2, ..., ξ and j = 1, 2, ...., t such that

(X̃∗1,1, X̃
∗

1,2, ..., X̃
∗

1,t, ..., X̃
∗

ξ,t) = (X∗1,1 + Y∗1,1,X
∗

1,2 + Y∗1,2, ...,X
∗

1,t + Y∗1,t, ...,X
∗

ξ,t + Y∗ξ,t),
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and
t∑

j=1

(Ai, jY∗i, jBi, j + Ci, jY∗i+1, jDi, j) = 0, i = 1, 2, ..., ξ. (3.6)

We can obtain
t∑

j=1

〈X∗i, j,Y
∗

i, j〉 =

t∑
j=1

〈AT
i, jZ
∗

i B
T
i, j + CT

i−1, jZ
∗

i−1DT
i−1, j,Y

∗

i, j〉

= 〈Z∗i ,
t∑

j=1

(Ai, jY∗i, jBi, j + Ci, jY∗i+1, jDi, j)〉 = 0, f or i = 1, 2, ..., ξ, j = 1, 2, ...., t. (3.7)

Using (3.7) gives us
t∑

j=1

ξ∑
i=1

||X̃∗i, j||
2 =

t∑
j=1

ξ∑
i=1

||X∗i, j + Y∗i, j||
2

=

t∑
j=1

ξ∑
i=1

[||X∗i, j||
2 + ||Y∗i, j||

2 + 2〈X∗i, j,Y
∗

i, j〉] ≥
t∑

j=1

ξ∑
i=1

||X∗i, j||
2.

This implies that the solution group (X∗1,1,X
∗

1,2, ...,X
∗

1,t, ...,X
∗

ξ,t) is the least norm solution group of Problem
1.

Now we obtain the residual reducing property of Algorithm 1, which ensures that Algorithm 1 possesses
smoothly convergence.

Theorem 3. For any arbitrary initial matrix group (X1,1(1),X1,2(1), ...,X1,t(1), ...,Xξ,t(1)) with Xi, j(1) ∈ Rn j×m j , i =
1, 2, ..., ξ, j = 1, 2, ...., t we have

ξ∑
i=1

||Mi −

t∑
j=1

(Ai, jXi, j(k + 1)Bi, j + Ci, jXi+1, j(k + 1)Di, j)||2

= min
(X1,1,X1,2,...,X1,t,...,Xξ,t)∈Υk

ξ∑
i=1

||Mi −

t∑
j=1

(Ai, jXi, jBi, j + Ci, jXi+1, jDi, j)||2,

where (X1,1(k + 1),X1,2(k + 1), ...,X1,t(k + 1), ...,Xξ,t(k + 1)) is generated by Algorithm 1 at the k + 1-th iteration and
Υk presents an affine subspace which has the following form:

Υk = (X1,1(1),X1,2(1), ...,X1,t(1), ...,Xξ,t(1))

+span{(P1,1(1),P1,2(1), ...,P1,t(1), ...,Pξ,t(1)), (P1,1(2),P1,2(2), ...,P1,t(2), ...,Pξ,t(2)), ...,

(P1,1(k),P1,2(k), ...,P1,t(k), ...,Pξ,t(k))}. (3.8)

Proof. First from (3.8), we can get that for any matrix group (X1,1,X1,2, ...,X1,t, ...,Xξ,t) ∈ Υk there exist
numbers δs for s = 1, 2, ..., k such that

Xi, j = Xi, j(1) +

k∑
s=1

δsPi, j(s), f or i = 1, 2, ..., ξ, j = 1, 2, ...., t. (3.9)

We define the continuous and differentiable function f with respect to the variable δ1, δ2, ..., δk as

f (δ1, δ2, ..., δk) =

ξ∑
i=1

||Mi −

t∑
j=1

(Ai, jXi, jBi, j + Ci, jXi+1, jDi, j)||2
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=

ξ∑
i=1

||Mi −

t∑
j=1

[Ai, j(Xi, j(1) +

k∑
s=1

δsPi, j(s))Bi, j + Ci, j(Xi+1, j(1) +

k∑
s=1

δsPi+1, j(s))Di, j]||2.

Here we can write

f (δ1, δ2, ..., δk) =

ξ∑
i=1

||Ri(1) −
k∑

s=1

δsUi(s)||2

=

ξ∑
i=1

[||Ri(1)||2 +

k∑
s=1

δ2
s ||Ui(s)||2 − 2

k∑
s=1

δs〈Ui(s),Ri(1)〉].

Now we consider the problem of minimizing the function f (δ1, δ2, ..., δk). It is obvious that

min
δs

f (δ1, δ2, ..., δk) = min
(X1,1,X1,2,...,X1,t,...,Xξ,t)∈Υk

ξ∑
i=1

||Mi −

t∑
j=1

(Ai, jXi, jBi, j + Ci, jXi+1, jDi, j)||2.

For this function, the minimum occurs when

∂ f (δ1, δ2, ..., δk)
∂δs

= 0, for s = 1, 2, ..., k. (3.10)

This implies that

δs =

∑ξ
i=1〈Ui(s),Ri(1)〉∑ξ

i=1 ||Ui(s)||2
.

From Algorithm 1, we can get

Ri(1) = Ri(s) + α(s − 1)Ui(s − 1) + α(s − 2)Ui(s − 2) + ... + α(1)Ui(1), for i = 1, 2, ..., ξ. (3.11)

By applying Lemma 4 and (3.11), we have

δs =

∑ξ
i=1〈Ui(s),Ri(1)〉∑ξ

i=1 ||Ui(s)||2
=

∑ξ
i=1〈Ui(s),Ri(s)〉∑ξ

i=1 ||Ui(s)||2
=

∑ξ
i=1

∑t
j=1〈Pi, j(s),Zi, j(s)〉∑ξ
i=1 ||Ui(s)||2

=

∑ξ
i=1

∑t
j=1〈Zi, j(s) + β(s − 1)Pi, j(s − 1),Zi, j(s)〉∑ξ

i=1 ||Ui(s)||2
=

∑ξ
i=1

∑t
j=1 ||Zi, j(s)||2∑ξ

i=1 ||Ui(s)||2
= α(s).

This completes the proof.

Now we study Problem 2. For a given matrix group (X1,1,X1,2, ...,X1,t, ...,Xξ,t), we can write

min
(X1,1,X1,2,...,X1,t,...,Xξ,t)

ξ∑
i=1

||Mi −

t∑
j=1

(Ai, jXi, jBi, j + Ci, jXi+1, jDi, j)||2

= min
(X1,1,X1,2,...,X1,t,...,Xξ,t)

ξ∑
i=1

||Mi −

t∑
j=1

(Ai, jXi, jBi, j + Ci, jXi+1, jDi, j)

−

t∑
j=1

[Ai, j(Xi, j − Xi, j)Bi, j + Ci, j(Xi+1, j − Xi+1, j)Di, j]||2.
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Set

M̂i = Mi −

t∑
j=1

(Ai, jXi, jBi, j + Ci, jXi+1, jDi, j), X̂i, j = Xi, j − Xi, j,

for i = 1, 2, ..., ξ. Now Problem 2 is equivalent to find the least norm solution group
(X̂∗1,1, X̂

∗

1,2, ..., X̂
∗

1,t, ..., X̂
∗

ξ,t) of

min
(X̂1,1,X̂1,2,...,X̂1,t,...,X̂ξ,t)

ξ∑
i=1

||M̂i −

t∑
j=1

(Ai, jX̂i, jBi, j + Ci, jX̂i+1, jDi, j)||2,

which can be computed applying Algorithm 1 with the initial matrices

X̂i, j(1) = AT
i, jZi(1)BT

i, j + CT
i−1, jZi−1(1)DT

i−1, f or i = 1, 2, ..., ξ, j = 1, 2, ...., t,

where Zi(1) ∈ Rp×q are arbitrary ξ-periodic matrices for i = 1, 2, ..., ξ (Z0(1) = Zξ(1)), or especially X̂i, j(1) = 0
for i = 1, 2, ..., ξ and j = 1, 2, ...., t. Hence the solution of Problem 2 can be presented as

(X̌1,1, X̌1,2, ..., X̌1,t, ..., X̌ξ,t) = (X̂∗1,1 + X1,1, X̂∗1,2 + X1,2, ..., X̂∗1,t + X1,t, ..., X̂∗ξ,t + Xξ,t). (3.12)

4. Numerical Examples

This section gives two numerical examples to illustrate the validity of the results presented in the
previous sections. The numerical results are carried out using MATLAB with machine precision around
10−16.

Example 1. As the first example we study the periodic discrete-time matrix equations

AiXi + Xi+1 + YiBi + Yi+1 = Ci f or i = 1, 2, 3,

with

A1 =



4 2 6 15 15 3
−2 1 0 1 1 7
5 5 0 9 8 4

10 12 1 4 0 −4
−2 −10 7 1 −4 10
8 4 3 4 5 7


, A2 =



−1 −5 1 0 2 1
2 −3 0 −10 7 10
3 0 0 0 0 −1
3 7 −10 0 0 −2
−9 −10 0 −6 5 2
1 −7 −5 10 −3 10


,

A3 =



−5 −7 −5 −15 −13 −2
4 −4 0 −11 6 3
−2 −5 0 −9 −8 −5
−7 −5 −11 −4 0 2
−7 0 −7 −7 9 −8
−7 −11 −8 6 −8 3


, B1 =



7 0 −1 9 15 3
−4 3 2 2 2 0
−4 2 2 7 8 −3
−3 −7 8 5 0 −12
3 3 7 11 −4 5
2 3 −1 −9 11 −5


,

B2 =



11 2 5 24 30 6
−6 4 2 3 3 7
1 7 2 16 16 1
7 5 9 9 0 −16
1 −7 14 12 −8 15
10 7 2 −5 16 2


,B3 =



6 −5 0 9 17 4
−2 0 2 −8 9 10
−1 2 2 7 8 −4
0 0 −2 5 0 −14
−6 −7 7 5 1 7
3 −4 −6 1 8 5


,

C1 = C2 = C3 = rand(6).

We apply Algorithm 1 with the initial matrices X1(1) = X2(1) = X3(1) = Y1(1) = Y2(1) = Y3(1) = 0 to obtain the
sequences {X1(k)}, {X2(k)}, {X3(k)}, {Y1(k)}, {Y2(k)} and {Y3(k)}. The numerical results are depicted in Figure 1 where

ri(k) = log ||Ci − AiXi(k) − Xi+1(k) − Yi(k)Bi − Yi+1(k)||, f or i = 1, 2, 3.
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Figure 1: The residuals for Example 1
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Example 2. Here we consider the periodic discrete-time matrix equations

AiXi + Xi+1Bi = Ci f or i = 1, 2, 3,

with

A1 =



1 1 1 −4 0 −3 −1
−2 −6 1 0 0 −7 0
−3 7 0 0 0 0 −1
−3 −4 7 0 0 −2 −1
10 11 −3 3 −4 0 4
0 4 5 −10 −2 −13 −3
2 4 −1 1 −3 −8 3


, A2 =



0 8 −1 −4 3 −1 −1
−2 3 0 10 −7 −10 −2
−3 0 0 0 0 1 3
−3 −7 10 0 0 2 3
9 10 0 6 −5 −2 0
−1 7 5 −10 −1 −10 −3
4 1 0 0 −6 −1 1


,

A3 =



1 −7 2 0 −3 −2 0
0 −9 1 −10 7 3 2
0 7 0 0 0 −1 −4
0 3 −3 0 0 −4 −4
1 1 −3 −3 1 2 4
1 −3 0 0 −1 −3 0
−2 3 −1 1 3 −7 2


, B1 =



−6 −3 1 −5 −15 −3 −5
−8 7 −2 −2 −2 0 −5
4 −2 −2 −7 −8 3 −5
3 7 −8 9 0 12 −6
−3 −3 −7 −11 4 −5 −4
−2 −5 1 9 −7 5 −4
−4 −8 −1 −8 −4 −2 0


,

B2 =



−7 −4 0 −1 −15 0 −4
−6 13 −3 −2 −2 7 −5
7 −9 −2 −7 −8 3 −4
6 11 −15 9 0 14 −5
−13 −14 −4 −14 8 −5 −8
−2 −9 −4 19 −5 18 −1
−6 −12 0 −9 −1 6 −3


,B3 =



6 11 −2 1 18 2 4
6 −4 2 12 −5 −10 3
−7 2 2 7 8 −2 8
−6 −14 18 −9 0 −10 9
12 13 7 17 −9 3 4
1 12 4 −19 6 −15 1
8 9 1 8 −2 1 1


,
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C1 = C2 = C3 = rand(7).

By using Algorithm 1 with the initial matrices X1(1) = X2(1) = X3(1) = 0, we compute the sequences {X1(k)}, {X2(k)}
and {X3(k)}. The numerical results are presented in Figure 2 where

ri(k) = log ||Ci − AiXi(k) − Xi+1(k)Bi||, f or i = 1, 2, 3.

Figure 2: The residuals for Example 2
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The above numerical examples demonstrate the good accuracy of Algorithm 1.

5. Conclusions

In this paper, the least squares solutions of general discrete-time periodic matrix equations (1.1) have
been discussed. Algorithm 1 has been introduced to find the solutions of Problems 1 and 2 corresponding
to the general discrete-time periodic matrix equations (1.1). We have proven that Algorithm 1 converges
in a finite number of steps in the absence of round-off errors and the norms of the residual matrices of
this algorithm decrease monotonically during its iteration. Two numerical examples have been given to
illustrate the efficiency of Algorithm 1.
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Appendix

The proof of Lemma 4
Step 1. Obviously it is enough to prove three statements of Lemma 4 for 1 ≤ u < v ≤ r. For u = 1 and

v = 2, we have

t∑
j=1

ξ∑
i=1

〈Zi, j(1),Zi, j(2)〉 =

t∑
j=1

ξ∑
i=1

〈Zi, j(1),Zi, j(1) − α(1)[AT
i, jUi(1)BT

i, j + CT
i−1, jUi−1(1)DT

i−1, j]〉

=

t∑
j=1

ξ∑
i=1

[||Zi, j(1)||2 − α(1)〈Zi, j(1),AT
i, jUi(1)BT

i, j + CT
i−1, jUi−1(1)DT

i−1, j〉]

=

t∑
j=1

ξ∑
i=1

||Zi, j(1)||2 − α(1)
ξ∑

i=1

〈

t∑
j=1

(Ai, jPi, j(1)Bi, j + Ci, jPi+1, j(1)Di, j),Ui(1)〉

=

t∑
j=1

ξ∑
i=1

||Zi, j(1)||2 − α(1)
ξ∑

i=1

〈Ui(1),Ui(1)〉 = 0,

ξ∑
i=1

〈Ui(1),Ui(2)〉

=

ξ∑
i=1

〈Ui(1),
t∑

j=1

[Ai, j(Zi, j(2) + β(1)Pi, j(1))Bi, j + Ci, j(Zi+1, j(2) + β(1)Pi+1, j(1))Di, j]〉

= β(1)
ξ∑

i=1

||Ui(1)||2 +

ξ∑
i=1

〈Ui(1),
t∑

j=1

(Ai, jZi, j(2)Bi, j + Ci, jZi+1, j(2)Di, j)〉

= β(1)
ξ∑

i=1

||Ui(1)||2 +
1
α(1)

ξ∑
i=1

〈Ri(1) − Ri(2),
t∑

j=1

(Ai, jZi, j(2)Bi, j + Ci, jZi+1, j(2)Di, j)〉

= β(1)
ξ∑

i=1

||Ui(1)||2 +
1
α(1)

t∑
j=1

ξ∑
i=1

〈Ai, j(Ri(1) − Ri(2))Bi, j + Ci−1, j(Ri−1(1) − Ri−1(2))Di−1, j,Zi, j(2)〉

= β(1)
ξ∑

i=1

||Ui(1)||2 +
1
α(1)

t∑
j=1

ξ∑
i=1

〈Zi, j(1) − Zi, j(2),Zi, j(2)〉

= β(1)
ξ∑

i=1

||Ui(1)||2 −
1
α(1)

t∑
j=1

ξ∑
i=1

||Zi, j(2)||2 = 0,

t∑
j=1

ξ∑
i=1

〈Pi, j(1),Zi, j(2)〉 =

t∑
j=1

ξ∑
i=1

〈Zi, j(1),Zi, j(2)〉 = 0.

Hence (I)-(III) hold for u = 1 and v = 2.
Step 2. In this step, for u < w < r we suppose that

t∑
j=1

ξ∑
i=1

〈Zi, j(u),Zi, j(w)〉 = 0,
ξ∑

i=1

〈Ui(u),Ui(w)〉 = 0,
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t∑
j=1

ξ∑
i=1

〈Pi, j(u),Zi, j(w)〉 = 0.

Now we can obtain
t∑

j=1

ξ∑
i=1

〈Zi, j(u),Zi, j(w + 1)〉

t∑
j=1

ξ∑
i=1

〈Zi, j(u),Zi, j(w) − α(w)[AT
i, jUi(w)BT

i, j + CT
i−1, jUi−1(w)DT

i−1, j]〉

= −α(w)
t∑

j=1

ξ∑
i=1

〈Zi, j(u),AT
i, jUi(w)BT

i, j + CT
i−1, jUi−1(w)DT

i−1, j〉

= −α(w)
t∑

j=1

ξ∑
i=1

〈Ai, jZi, j(u)Bi, j + Ci, jZi+1, j(u)Di, j,Ui(w)〉

= −α(w)
ξ∑

i=1

〈

t∑
j=1

[Ai, j(Pi, j(u) − β(u − 1)Pi, j(u − 1))Bi, j + Ci, j(Pi+1, j(u) − β(u − 1)Pi+1, j(u − 1))Di, j],Ui(w)〉

= −α(w)
ξ∑

i=1

〈Ui(u) − β(u − 1)Ui(u − 1),Ui(w)〉 = 0,

ξ∑
i=1

〈Ui(u),Ui(w + 1)〉

=

ξ∑
i=1

〈Ui(u),
t∑

j=1

[Ai, j(Zi, j(w + 1) + β(w)Pi, j(w))Bi, j + Ci, j(Zi+1, j(w + 1) + β(w)Pi+1, j(w))Di, j]〉

=

ξ∑
i=1

〈Ui(u),
t∑

j=1

(Ai, jZi, j(w + 1)Bi, j + Ci, jZi+1, j(w + 1)Di, j)〉

=
1
α(u)

ξ∑
i=1

〈Ri(u) − Ri(u + 1),
t∑

j=1

(Ai, jZi, j(w + 1)Bi, j + Ci, jZi+1, j(w + 1)Di, j)〉

=
1
α(u)

t∑
j=1

ξ∑
i=1

〈Ai, j(Ri(u) − Ri(u + 1))Bi, j + Ci−1, j(Ri−1(u) − Ri−1(u + 1))Di−1, j,Zi, j(w + 1)〉

=
1
α(u)

t∑
j=1

ξ∑
i=1

〈Zi, j(u) − Zi, j(u + 1),Zi, j(w + 1)〉 = −
1
α(u)

t∑
j=1

ξ∑
i=1

〈Zi, j(u + 1),Zi, j(w + 1)〉, (5.1)

t∑
j=1

ξ∑
i=1

〈Pi, j(u),Zi, j(w + 1)〉

=

t∑
j=1

ξ∑
i=1

〈Pi, j(u),Zi, j(w) − α(w)[AT
i, jUi(w)BT

i, j + CT
i−1, jUi−1(w)DT

i−1, j]〉
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= −α(w)
t∑

j=1

ξ∑
i=1

〈Pi, j(u),AT
i, jUi(w)BT

i, j + CT
i−1, jUi−1(w)DT

i−1, j〉

= −α(w)
ξ∑

i=1

〈

t∑
j=1

(Ai, jPi, j(u)Bi, j + Ci, jPi+1, j(u)Di, j),Ui(w)〉

= −α(w)
ξ∑

i=1

〈Ui(u),Ui(w)〉 = 0.

Also for u = w, we deduce that

t∑
j=1

ξ∑
i=1

〈Zi, j(w),Zi, j(w + 1)〉 =

t∑
j=1

ξ∑
i=1

〈Zi, j(w),Zi, j(w) − α(w)[AT
i, jUi(w)BT

i, j + CT
i−1, jUi−1(w)DT

i−1, j]〉

=

t∑
j=1

ξ∑
i=1

[||Zi, j(w)||2 − α(w)〈Zi, j(w),AT
i, jUi(w)BT

i, j + CT
i−1, jUi−1(w)DT

i−1, j〉]

=

t∑
j=1

ξ∑
i=1

||Zi, j(w)||2 − α(w)
t∑

j=1

ξ∑
i=1

〈Ai, jZi, j(w)Bi, j + Ci, jZi+1, j(w)Di, j,Ui(w)〉

=

t∑
j=1

ξ∑
i=1

||Zi, j(w)||2 − α(w)
ξ∑

i=1

〈

t∑
j=1

[Ai, j(Pi, j(w) − β(w − 1)Pi, j(w − 1))Bi, j

+Ci, j(Pi+1, j(w) − β(w − 1)Pi+1, j(w − 1))Di, j],Ui(w)〉

=

t∑
j=1

ξ∑
i=1

||Zi, j(w)||2 − α(w)
ξ∑

i=1

〈Ui(w) − β(w − 1)Ui(w − 1),Ui(w)〉

=

t∑
j=1

ξ∑
i=1

||Zi, j(w)||2 − α(w)
ξ∑

i=1

||Ui(w)||2 = 0,

ξ∑
i=1

〈Ui(w),Ui(w + 1)〉

=

ξ∑
i=1

〈Ui(w),
t∑

j=1

[Ai, j(Zi, j(w + 1) + β(w)Pi, j(w))Bi, j + Ci, j(Zi+1, j(w + 1) + β(w)Pi+1, j(w))Di, j]〉

= β(w)
ξ∑

i=1

||Ui(w)||2 +

ξ∑
i=1

ξ∑
i=1

〈Ui(w),
t∑

j=1

(Ai, jZi, j(w + 1)Bi, j + Ci, jZi+1, j(w + 1)Di, j)〉

= β(w)
ξ∑

i=1

||Ui(w)||2 +
1

α(w)

ξ∑
i=1

〈Ri(w) − Ri(w + 1),
t∑

j=1

(Ai, jZi, j(w + 1)Bi, j + Ci, jZi+1, j(w + 1)Di, j)〉

= β(w)
ξ∑

i=1

||Ui(w)||2 +
1

α(w)

t∑
j=1

ξ∑
i=1

〈Ai, j(Ri(w) − Ri(w + 1))Bi, j + Ci−1, j(Ri−1(w) − Ri−1(w + 1))Di−1, j,Zi, j(w + 1)〉

= β(w)
ξ∑

i=1

||Ui(w)||2 +
1

α(w)

t∑
j=1

ξ∑
i=1

〈Zi, j(w) − Zi, j(w + 1),Zi, j(w + 1)〉
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= β(w)
ξ∑

i=1

||Ui(w)||2 −
1

α(w)

t∑
j=1

ξ∑
i=1

||Zi, j(w + 1)||2 = 0,

and
t∑

j=1

ξ∑
i=1

〈Pi, j(w),Zi, j(w + 1)〉

=

t∑
j=1

ξ∑
i=1

〈Pi, j(w),Zi, j(w) − α(w)[AT
i, jUi(w)BT

i, j + CT
i−1, jUi−1(w)DT

i−1, j]〉

=

t∑
j=1

ξ∑
i=1

〈Zi, j(w) + β(w − 1)Zi, j(w − 1) + β(w − 1)β(w − 2)Zi, j(w − 2) + ... + β(w − 1)...β(1)Zi, j(1),Zi, j(w)〉

−α(w)
t∑

j=1

ξ∑
i=1

〈Pi, j(w),AT
i, jUi(w)BT

i, j + CT
i−1, jUi−1(w)DT

i−1, j〉

=

t∑
j=1

ξ∑
i=1

||Zi, j(w)||2 − α(w)
ξ∑

i=1

〈

t∑
j=1

(Ai, jPi, j(w)Bi, j + Ci, jPi+1, j(w)Di, j),Ui(w)〉

=

t∑
j=1

ξ∑
i=1

||Zi, j(w)||2 − α(w)
ξ∑

i=1

||Ui(w)||2 = 0.

By taking into account that

ξ∑
i=1

〈Ui(u),Ui(w)〉 = 0,
t∑

j=1

ξ∑
i=1

〈Zi, j(w),Zi, j(w + 1)〉 = 0,

and (5.1), we have
ξ∑

i=1

〈Ui(u),Ui(w + 1)〉 = 0.

By considering Steps 1 and 2, three statements of Lemma 4 hold by the principle of induction.
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