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Abstract.
The concept of negative dependence for fuzzy random variables is introduced. The basic properties

of such random variables are investigated. Some results on weak and strong convergence for sums and
weighted sums of pairwise negatively dependent fuzzy random variables are derived. As a direct extension
of classical methods, some limit theorems are established based on the concept of variance and covariance.

1. Introduction

A fuzzy random variable has been extended as a vague perception of a real valued random variable
and subsequently redefined as a particular random set, see e.g. [15], [20], [28], [33], and [29]. Over the last
years, fuzzy random variable has been extensively applied in areas of stochastic process and probability
theory. For the purposes of this study, we review some works on this topic. By using a certain distance
on the space of fuzzy numbers, Miyakoshi and Shimbo [19] obtained a strong law of large numbers for
independent fuzzy random variables. Klement et al. [14] established a strong law of large numbers for
fuzzy random variables, based on embedding theorem as well as certain probability techniques in Banach
spaces. Taylor et al. [34] proved a weak law of large numbers for fuzzy random variables in separable
Banach spaces. Joo et al. [13] obtained Chung’s type strong law of large numbers for fuzzy random
variables based on isomorphic isometric embedding theorem. Guan and Li [9] presented weak and strong
law of large numbers for weighted sums of independent(not necessarily identical distributed) fuzzy random
variables in the sense of the extended Hausdorff metric. Based on the strong law of large numbers for fuzzy
random variables with respect to the uniform metric, Wang [36] established some asymptotical properties
of point estimation with fuzzy random samples. Fu and Zhang [8] obtained some strong limit theorems
for fuzzy random variables with slowly varying weight. Li and Zhung [18] and Hong [10] obtained a
general method for certain convergence theorems of fuzzy random variables based on Hausdorff metric.
It should be mentioned that, although the concept of variance has been found very convenient in studying
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limit theorems, but, as the authors know, it has not been developed the limit theorems for fuzzy random
variables based on the concept of variance, except the work by Feng [6]. Also, several authors studied
the concept of variance for fuzzy random variables, for instance [7, 24]. Based on a natural extension of
the concept of variance, he extended the Kolmogorov’s inequality to independent fuzzy random variables
and obtained some limit theorems. His method is a direct application of classical methods in probability
theory to fuzzy random variables. Hong and Kim [11] obtained weak laws of large numbers for sums of
independent and identically distributed fuzzy random variables. As an application in probability theory,
Yang and Liu [39] investigated some known inequalities such as Minkowski, Chebyshev and Jensen’s
inequalities for fuzzy random variables. It is mentioned that Mohiuddine et al.[21] studied the concepts of
statistically convergent and statistically Cauchy double sequences in the framework of fuzzy norm spaces
which provide better tool to study a more general class of sequences. Ahmadzade et al. [1] established
some limit theorems for independent fuzzy random variables. As everyone knows, selecting of suitable
metric spaces plays important role in studying of convergence theorems. Thus, Ahmadzade et al. [2]
derived several convergence theorems for fuzzy martingales based on Dp,q-metric.

On the other hand, in many practical stochastic models, the assumption of independence among the
random variables is not plausible. In fact, increases in some random variables are often related to de-
creases in other random variables and the assumption of negative dependence is more appropriate than
independence assumption. Lehmann [16], for the first time, introduced the concept of negatively quadrant
dependent random variables and considered some properties of such random variables. Newman [26]
derived some limit theorems for positively and negatively dependent random variables. Bozorgnia et al.
[5] obtained some limit theorems for pairwise negatively dependent random variables. Amini et al. [3]
proved a strong law of large number for negatively dependent generalized Guassian random variables.
Also, Amini et al. [4] derived some strong limit theorems of weighted sums for negatively dependent
generalized Gaussian random variables. Li and Yang [17] investigated a class of strong limit theorem for
negatively quadrant dependent random variables by using truncation methods and generalized three series
theorem. Wu and Guan [38] established mean convergence theorems and weak laws of large numbers for
weighted sums of dependent random variables which contained negatively quadrant dependent random
variables. Ranjbar et al. [30] studied asymptotic behavior of product of two heavy-tailed dependent ran-
dom variables. Shen et al. [31] established a Kolmogorov-type inequality for negatively superadditive
dependent (NSD) random variables. As a direct extension of negatively dependent random variables,
we introduce the concept of negative dependence for fuzzy random variables. By using definition of the
variance and covariance of fuzzy random variables, introduced by Feng et al. [7], we prove some limit
theorems for negatively dependent fuzzy random variables. Also, we generalize the various extended limit
theorems in classical probability to fuzzy random variables. The structure of this paper is as follows. In
Section 2, we recall some preliminaries of fuzzy arithmetic and fuzzy random variables. In Section 3, we
introduce the concept of negative dependence for fuzzy random variables and investigate some properties
of such random variables. Some weak and strong convergence theorems for negatively dependent fuzzy
random variables are studied and investigated, based on the concept of variance and covariance, in Section
4. In the final section, a brief conclusion and some proposals for future research are given.

2. Preliminaries

In this section, we provide some definitions and elementary concepts of fuzzy set theory that will be
used in the next sections. For more details, the reader is referred to [7, 22, 35].

2.1. Fuzzy sets and fuzzy arithmetic

Define E = {ũ : R→ [0, 1]| ũ satisfies (i)-(iii) }, where (i)ũ is normal; (ii) ũ is convex fuzzy (iii) ũ is upper
semicontinuous. For ũ ∈ E, [ũ]r = {x ∈ R|ũ(x) ≥ r, 0 < r ≤ 1} is r-level set of ũ. We invoke the notations ⊕, 	,
� and further more we have
(i) [ũ ⊕ ṽ]r = [ũ−(r) + ṽ−(r), ũ+(r) + ṽ+(r)].
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(ii) [ũ 	 ṽ]r = [ũ−(r) − ṽ+(r), ũ+(r) − ṽ−(r)].
(iii) [a � ũ]r = [aũ−(r), aũ+(r)], if a > 0 and [a � ũ]r = [aũ+(r), aũ−(r)], if a < 0.
To prove main theorems we need to apply the order relation. Thus, we use notations ≺ ,�,� and � which
mean:
ã ≺ b̃ if and only if a−(r) < b−(r) and a+(r) < b+(r) ∀r ∈ [0, 1],
ã � b̃ if and only if a−(r) > b−(r) and a+(r) > b+(r) ∀r ∈ [0, 1],
ã � b̃ if and only if a−(r) ≤ b−(r) and a+(r) ≤ b+(r) ∀r ∈ [0, 1],
ã � b̃ if and only if a−(r) ≥ b−(r) and a+(r) ≥ b+(r) ∀r ∈ [0, 1].
It is assumed that 1̃{a} is a fuzzy number in E whose membership function equals 1 at a and zero otherwise,
on the other hand 1̃{a} is a crisp number. Let ũ, ṽ ∈ E, and set

dp(ũ, ṽ) = (
∫ 1

0
hp([ũ]r, [ṽ]r)dr)

1
p , 1 ≤ p < ∞

d∞(ũ, ṽ) = sup0<r≤1h([ũ]r, [ṽ]r), where h is Hausdorff metric i.e.
h([ũ]r, [ṽ]r) = max{|u−(r) − v−(r)|, |u+(r) − v+(r)|}. Norm ||ũ||p of a fuzzy number ũ ∈ E is defined by ||ũ||p =
dp(ũ, 0̃), where 0̃ is the fuzzy number in E whose membership function equals 1 at 0 and zero otherwise.
The norm of ũ is defined by ||ũ|| = d∞(ũ, 0̃). The operation 〈., .〉 : E × E→ [−∞,∞] is defined by

< ũ, ṽ >=

∫ 1

0
(ũ−(r)ṽ−(r) + ũ+(r)ṽ+(r))dr.

If the indeterminacy of the form∞−∞ arises in the Lebesgue integral, then we say that 〈ũ, ṽ〉 does not exist.
It is easy to see that the operation 〈., .〉 has following properties:

(i) 〈ũ, ũ〉 ≥ 0 and 〈ũ, ũ〉 = 0⇔ u = 0̃,
(ii) 〈ũ, ṽ〉 = 〈ṽ, ũ〉,
(iii) 〈ũ + ṽ, w̃〉 = 〈ũ, w̃〉 + 〈ṽ, w̃〉,
(iv) 〈λũ, ṽ〉 = λ〈ũ, ṽ〉,

(v) |〈ũ, ṽ〉| <
√
〈ũ, ũ〉〈ṽ, ṽ〉.

For all ũ, ṽ ∈ E, if 〈ũ, ũ〉 < ∞ and 〈ṽ, ṽ〉 < ∞ then the property (v) implies that 〈ũ, ṽ〉 < ∞. So, we can define

d∗(ũ, ṽ) =
√
〈ũ, ũ〉 − 2〈ũ, ṽ〉 + 〈ṽ, ṽ〉.

In fact, d∗ is a metric in {ũ ∈ E|〈ũ, ũ〉 < ∞} i.e. for x̃, ỹ, z̃ in E, the metric d∗ satisfies the following conditions.
i) d∗(x̃, ỹ) ≥ 0
ii) d∗(x̃, ỹ) = 0 iff x̃ = ỹ,
iii) d∗(x̃, z̃) ≤ d∗(x̃, ỹ) + d∗(ỹ, z̃) (subadditivity or triangle inequality).
Moreover, the norm ||ũ||∗ of fuzzy number ũ ∈ E is defined by ||ũ||∗ = d∗(ũ, 0̃).

2.2. Fuzzy random variables

Let (Ω,A,P) be a complete probability space. A fuzzy random variable (briefly: f.r.v.) is a Borel measur-
able function X̃ : (Ω,A)→ (E, d∞). Let X̃ be a f.r.v. is defined on (Ω,A,P) then [X̃]r = [X̃−(r), X̃+(r)], r ∈ (0, 1],
is a random closed interval set, and X̃−(r) and X̃+(r) are real valued random variables. A f.r.v. X̃ is called
integrably bounded if E||X̃||∞ < ∞ and the expectation value EX̃ is defined as the unique fuzzy number
which satisfies the property [EX̃]r = E[X̃]r, 0 < r ≤ 1 [28].
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Example 2.1. Let X̃ be a fuzzy random variable with the following membership function

µX̃(x) =



x − ξ
γ

, ξ < x ≤ ξ + γ,

ξ + γ + ζ − x
ζ

, ξ + γ < x < ξ + γ + ζ,

0, otherwise,

where ξ, γ and ζ are random variables. It is easy to see that

[X̃]r = [ξ + rγ, ξ + γ + (1 − r)ζ].

By invoking the equation [EX̃]r = E[X̃]r, ∀r ∈ [0, 1], we can write EX̃ has the following membership function

µX̃(x) =



x − Eξ
Eγ

, Eξ < x ≤ Eξ + Eγ,

Eξ + Eγ + Eζ − x
Eζ

, Eξ + Eγ < x < Eξ + Eγ + Eζ,

0, otherwise.

Definition 2.2. ([7]) Let X̃ and Ỹ be two f.r.v.’s in L2 (L2 = {X̃|X̃ is f.r.v. and E||X̃||22 < ∞}). The covariance of X̃
and Ỹ is defined as

Cov(X̃, Ỹ) =
1
2

∫ 1

0
(Cov(X̃−(r), Ỹ−(r)) + Cov(X̃+(r), Ỹ+(r)))dr.

Specially, the variance of X̃ is defined by Var(X̃) = Cov(X̃, X̃).

Theorem 2.3. ([7]) Let X̃ and Ỹ be f.r.v.’s in L2 and ũ, ṽ ∈ E and λ ∈ R , then

(i) Cov(X̃, Ỹ) =
1
2

(E〈X̃, Ỹ〉 − 〈EX̃,EỸ〉)

(ii) Var(X̃) =
1
2

Ed2
∗ (X̃,EX̃)

(iii) Cov(λX̃ ⊕ ũ, kỸ ⊕ ṽ) = λkCov(X̃, Ỹ)
(iv) Var(λX̃ ⊕ ũ) = λ2Var(X̃);
(v) Var(X̃ ⊕ Ỹ) = Var(X̃) + Var(Ỹ) + 2Cov(X̃, Ỹ).

The following Lemma which is due to Hoeffding shows the relationship between quadrant dependent and
correlated real valued random variables.

Lemma 2.4. ([12]) Let X and Y be real valued random variables with joint distribution F and margins F1 and F2,
respectively, then

Cov(X,Y) =

∫
∞

−∞

∫
∞

−∞

{F(x, y) − F1(x)F2(y)}dxdy

=

∫
∞

−∞

∫
∞

−∞

{P(X > x,Y > y) − P(X > x)P(Y > y)}dxdy.

In order to establish strong and weak convergence, we need the following definitions.
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Definition 2.5. ([37]) Let X̃ and X̃n be f.r.v.’s are defined on the same probability space (Ω,A,P). i) We say that
{X̃n} converges to X̃ in probability with respect to the metric d∗ if, for all ε > 0, limn→∞P(ω : d∗(X̃n(ω), X̃(ω)) > ε) = 0.
ii) We say that {X̃n} converges to X̃ almost surely (briefly: a.s.) with respect to the metric d∗ if P(ω : limn→∞d∗(X̃n(ω), X̃(ω)) =
0) = 1.

Statistical convergence and limit theorems with respect to the fuzzy normed space play important roles in
mathematical analysis, for more details, see [23]. Throughout this paper it is assumed that all of f.r.v.’s are
defined on the probability space (Ω,A,P).

3. Negatively Dependent f.r.v.’s: Definition and Some Properties

In the following, we introduce and investigate the concept of negatively dependent f.r.v.’s. It should be
mentioned that, in order to prove a generalized law of large numbers for fuzzy valued random variables,
Viertl [35] introduced the concept of independence for f.r.v.’s based on random sets as follows.

Definition 3.1. [35] Two f.r.v.’s X̃ and Ỹ are said independent if for any Borel sets B1 and B2 and all r ∈ (0, 1]

P([X̃]r
⊂ B1, [Ỹ]r

⊂ B2) = P([X̃]r
⊂ B1)P([Ỹ]r

⊂ B2),

where, P([X̃]r
⊂ B) = P(ω : [X̃]r(ω) ⊂ B).

By inception of Viertl’s definition, we introduce the concept of negatively dependent for f.r.v.’s.

Definition 3.2. Two f.r.v.’s X̃ and Ỹ are said negatively dependent if for any Borel sets B1 and B2 and all r ∈ (0, 1]

P([X̃]r
⊂ B1, [Ỹ]r

⊂ B2) ≤ P([X̃]r
⊂ B1)P([Ỹ]r

⊂ B2),

where, P([X̃]r
⊂ B) = P(ω : [X̃]r(ω) ⊂ B).

Remark 3.3. If X̃ and Ỹ reduce to real valued random variables and B1 = (−∞, x1] or (x2,∞) and B2 = (−∞, y1] or
(y2,+∞), Definition 3.2 conclude the concept of negatively dependence in the case of real valued random variables.
Note that, in the ordinary case, two real valued random variables X and Y are said to be negatively dependent random
variables if

P(X ≤ x,Y ≤ y) ≤ P(X ≤ x)P(Y ≤ y) ∀ x and y ∈ R.

For more details, see [25].

The following example explains a case where we have two f.r.v.s which are not independent but negatively
dependent.

Example 3.4. If X̃ and Ỹ have following probability mass, then X̃ and Ỹ are ND f.r.v.’s,

P(X̃ = ṽ, Ỹ = ũ) =
1
2
,P(X̃ = ṽ, Ỹ = ṽ) = 0,

P(X̃ = ũ, Ỹ = ṽ) =
1
2
,P(X̃ = ũ, Ỹ = ũ) = 0,

where ũ and ṽ are fuzzy numbers with the following membership function respectively

µũ(x) =


x, 0 ≤ x < 1,
1, 1 ≤ x ≤ 2,
3 − x, 2 < x < 3,
0, otherwise,

and

µṽ(x) =


2x − 2, 1 ≤ x < 3

2 ,
4 − 2x, 3

2 ≤ x ≤ 2,
0, otherwise.
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The membership functions of ũ and ṽ are presented in Figure 1.

Figure 1: The membership functions of ũ and ṽ in Example 1

Then, X̃ and Ỹ are ND f.r.v.s. Since, for B1 = [x, y], (x, y], [x, y), (x, y), (x,+∞), [x,+∞), (−∞, y), (−∞, y] where
1 ≤ x ≤ 3

2 and 3
2 ≤ y ≤ 2 also B2 = [z,w], (z,w], [z,w), (z,w), (z,+∞), [z,+∞), (−∞,w), (−∞,w] where 1 ≤ z ≤ 3

2
and 3

2 ≤ w ≤ 2, we obtain

P([X̃]r
⊂ B1, [Ỹ]r

⊂ B2) = P(X̃ = ṽ, Ỹ = ṽ) = 0
< P([X̃]r

⊂ B1)P([Ỹ]r
⊂ B2)

= P(X̃ = ṽ)P(Ỹ = ṽ) =
1
2
×

1
2

=
1
4
.

For B3 = [x, y], (x, y], [x, y), (x, y), (x,+∞), [x,+∞), (−∞, y), (−∞, y] where 0 ≤ x ≤ 1 and 2 ≤ y ≤ 3 also B4 =
[z,w], (z,w], [z,w), (z,w), (z,+∞), [z,+∞), (−∞,w), (−∞,w] where 0 ≤ z ≤ 1 and 2 ≤ w ≤ 3, we obtain

P([X̃]r
⊂ B1, [Ỹ]r

⊂ B3) = P(X̃ = ṽ, Ỹ = ṽ) + P(X̃ = ṽ, Ỹ = ũ)
3

10
+

2
10

=
5

10
= P([X̃]r

⊂ B1)P([Ỹ]r
⊂ B3)

= P(X̃ = ṽ){P(Ỹ = ũ) + P(Ỹ = ṽ)}

=
5

10
× 1.
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Also,

P([X̃]r
⊂ B3, [Ỹ]r

⊂ B1) = P(X̃ = ṽ, Ỹ = ṽ) + P(X̃ = ũ, Ỹ = ṽ)

= 0 +
1
2

=
1
2

= P([X̃]r
⊂ B3)P([Ỹ]r

⊂ B1)
= P(Ỹ = ṽ){P(X̃ = ũ) + P(X̃ = ṽ)}

=
1
2
× 1.

Furthermore,

P([X̃]r
⊂ B3, [Ỹ]r

⊂ B4) = P(X̃ = ṽ, Ỹ = ṽ) + P(X̃ = ũ, Ỹ = ṽ)
+ P(X̃ = ṽ, Ỹ = ũ) + P(X̃ = ũ, Ỹ = ũ) = 1
= P([X̃]r

⊂ B3)P([Ỹ]r
⊂ B4)

= {P(Ỹ = ṽ) + P(Ỹ = ũ)}{P(X̃ = ũ) + P(X̃ = ṽ)}
= 1 × 1.

Definition 3.5. A finite collection of f.r.v.’s X̃1, ..., X̃m is said to be pairwise negatively dependent if for every Borel
sets B1, ...,Bm

P([X̃i]r
⊂ Bi, [X̃ j]r

⊂ B j]) ≤ P([X̃i]r
⊂ Bi)P([X̃ j]r

⊂ B j), ∀ i , j.

An infinite sequence of f.r.v.’s {X̃n,n ≥ 1} is said pairwise negatively dependent if every finite sub collection
of it, is pairwise negatively dependent.

Nondecreasing continuous functions play important roles in convergence of negative dependent random
variables. Thus, we need the following lemma to prove the main theorems.

Lemma 3.6. Let X̃ and Ỹ be negatively dependent f.r.v.’s and f and 1 be nondecreasing continuous functions. Then,
f (X̃) and 1(Ỹ) are negatively dependent f.r.v.’s.

Proof. Continuity and monotonicity of f imply that [ f (X̃)]r = f ([X̃]r) = [ f (X−(r)), f (X+(r))] [22, 27]. So, for
all Borel sets B1 and B2 we have

P([ f (X̃)]r
⊂ B1, [1(Ỹ)]r

⊂ B2) = P( f ([X̃]r) ⊂ B1, 1([Ỹ]r) ⊂ B2)
= P([X̃]r

⊂ f−1(B1), [Ỹ]r
⊂ 1−1(B2))

≤ P([X̃]r
⊂ f−1(B1))P([Ỹ] ⊂ 1−1(B2))

= P( f ([X̃]r) ⊂ B1)P(1([Ỹ]r) ⊂ B2)
= P([ f (X̃)]r

⊂ B1)P([1(Ỹ)]r
⊂ B2),

where f−1 and 1−1 are inverse images of f and 1, respectively.

Lemma 3.7. Let X̃ and Ỹ be two f.r.v.’s, then

Cov(X̃, Ỹ) =
1
2

∫ 1

0

∫
∞

−∞

∫
∞

−∞

P([X̃]r
⊂ (x,∞), [Ỹ]r

⊂ (y,∞))

− P([X̃]r
⊂ (x,∞))P([Ỹ]r

⊂ (y,∞))dxdydr

+
1
2

∫ 1

0

∫
∞

−∞

∫
∞

−∞

P([X̃]r
⊂ (−∞,w), [Ỹ]r

⊂ (−∞, z))

− P([X̃]r
⊂ (−∞,w))P([Ỹ]r

⊂ (−∞, z))dwdzdr.
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Proof. By Definition 2.2, we have

Cov(X̃, Ỹ) =
1
2

∫ 1

0
{Cov(X̃−(r), Ỹ−(r)) + Cov(X̃+(r), Ỹ+(r))}dr.

But, by Lemma 2.4,

Cov(X̃−(r), Ỹ−(r)) =

∫
∞

−∞

∫
∞

−∞

P(X̃−(r) > x, Ỹ−(r) > y)dxdy

−

∫
∞

−∞

∫
∞

−∞

P(X̃−(r) > x)P(Ỹ−(r) > y)dxdy

=

∫
∞

−∞

∫
∞

−∞

P([X̃]r
⊂ (x,∞), [Ỹ]r

⊂ (y,∞))dxdy

−

∫
∞

−∞

∫
∞

−∞

P([X̃]r
⊂ (x,∞))P([Ỹ]r

⊂ (y,∞))dxdy,

and

Cov(X̃+(r), Ỹ+(r)) =

∫
∞

−∞

∫
∞

−∞

P(X̃+(r) ≤ w, Ỹ+(r) ≤ z)dwdz

−

∫
∞

−∞

∫
∞

−∞

P(X̃+(r) ≤ w)P(Ỹ+(r) ≤ z)dwdz

=

∫
∞

−∞

∫
∞

−∞

P([X̃]r
⊂ (−∞,w], [Ỹ]r

⊂ (−∞, z])dwdz

−

∫
∞

−∞

∫
∞

−∞

P([X̃]r
⊂ (−∞,w])P([Ỹ]r

⊂ (−∞, z])dwdz.

These complete the proof.

Corollary 3.8. Let X̃ and Ỹ be two negatively dependent fuzzy random variables, then

i) Cov(X̃, Ỹ) ≤ 0, ii) E〈X̃, Ỹ〉 ≤ 〈EX̃,EỸ〉.

Proof. The proofs are straightforward.

Remark 3.9. Ziaei and Deiri [40] defined negatively dependent f.r.v.’s based on α-cuts. In their method, two f.r.v.s
X̃ and Ỹ are called negatively dependent f.r.v.’s if ∀ x and y ∈ R and ∀ r ∈ [0, 1]

P(X̃+(r) ≤ x, Ỹ+(r) ≤ y) ≤ P(X̃+(r) ≤ x)P(Ỹ+(r) ≤ y),

and

P(X̃−(r) ≤ x, Ỹ−(r) ≤ y) ≤ P(X̃−(r) ≤ x)P(Ỹ−(r) ≤ y).

The following proposition displays that Definition 3.2 is stronger than the above definition.

Proposition 3.10. Let (Ω,A,P) be a complete probability space and X̃ and Ỹ be negatively dependent f.r.v.’s. Then,
X̃−(r) and Ỹ−(r) as well as X̃+(r) and Ỹ+(r) are negatively dependent real valued random variables.

Proof. For all x, y ∈ R and r ∈ (0, 1], we have

P(X̃−(r) > x, Ỹ−(r) > y) = P([X̃]r
⊂ (x,∞), [Ỹ]r

⊂ (y,∞))
≤ P([X̃]r

⊂ (x,∞))P([Ỹ]r
⊂ (y,∞))

= P(X̃−(r) > x)P(Ỹ−(r) > y).

A similar proof can be stated for X̃+(r) and Ỹ+(r).
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Counterexample

Example 3.11. Let X̃ and Ỹ have the following probability mass

P(X̃ = −ũ, Ỹ = −ũ) = 0,P(X̃ = 0̃, Ỹ = −ũ) =
1
9
,P(X̃ = ũ, Ỹ = −ũ) =

2
9
,

P(X̃ = −ũ, Ỹ = 0̃) =
1
9
,P(X̃ = 0̃, Ỹ = 0̃) =

1
9
,P(X̃ = ũ, Ỹ = 0̃) = 0,

P(X̃ = −ũ, Ỹ = ũ) =
2
9
,P(X̃ = 0̃, Ỹ = ũ) =

1
9
,P(X̃ = ũ, Ỹ = ũ) =

1
9
,

where,

µũ(x) =



x, 0 < x ≤ 1,

2 − x, 1 < x ≤ 2,

0, otherwise.

It is easy to see that X̃ and Ỹ are not ND f.r.v.’s, since

P([X̃]r
⊂ [

1
2
,

3
2

], [Ỹ]r
⊂ [−

3
2
,−

1
2

]) =
2
9
> P([Ỹ]r

⊂ [−
3
2
,−

1
2

])P([X̃]r
⊂ [

1
2
,

3
2

]) =
1
3
×

1
3

=
1
9
.

But, X̃+(r) and Ỹ+(r) are ND random variables also X̃−(r) and Ỹ−(r) are ND random variables. Since, for x ∈ (−∞, 0)
and y ∈ (−∞, 0)

P(X̃−(r) ≤ x, Ỹ−(r) ≤ y) = P(X̃ = −ũ, Ỹ = −ũ) = 0
< P(X̃−(r) ≤ x)P(Ỹ−(r) ≤ y)

= P(X̃ = −ũ)P(Ỹ = −ũ) =
3
9
×

3
9

=
1
9
.

Also, for x ∈ [0, 1) and y ∈ (−∞, 0)

P(X̃−(r) ≤ x, Ỹ−(r) ≤ y) = P(X̃ = −ũ, Ỹ = −ũ) + P(X̃ = 0̃, Ỹ = −ũ)

= 0 +
1
9

< P(X̃−(r) ≤ x)P(Ỹ−(r) ≤ y)
= {P(X̃ = −ũ) + P(X̃ = 0̃)} × P(Ỹ = −ũ)

= (
3
9

+
2
9

) ×
3
9

=
5

27
.

For x ∈ [0, 1) and y ∈ [0, 1)

P(X̃−(r) ≤ x, Ỹ ≤ y) = P(X̃ = −ũ, Ỹ = −ũ) + P(X̃ = −ũ, Ỹ = 0̃)
+ P(X̃ = 0̃, Ỹ = −ũ) + P(X̃ = 0̃, Ỹ = 0̃)

= 0 +
1
9

+
1
9

+
1
9

=
3
9

< P(X̃−(r) ≤ x)P(Ỹ−(r) ≤ y)
= {P(X̃ = −ũ) + P(X̃ = 0̃)} × {P(Ỹ = −ũ) + P(Ỹ = 0̃)}

=
5
9
×

2
3
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For x ∈ [0, 1) and y,∈ [1,∞)

P(X̃−(r) ≤ x, Ỹ−(r) ≤ y) = P(X̃ = −ũ, Ỹ = −ũ) + P(X̃ = −ũ, Ỹ = 0̃)
+ P(X̃ = −ũ, Ỹ = ũ) + P(X̃ = 0̃, Ỹ = −ũ)
+ P(X̃ = 0̃, Ỹ = 0̃) + P(X̃ = 0̃, Ỹ = ũ)

=
2
3

= P(X̃−(r) ≤ x)P(Ỹ−(r) ≤ y)
= {P(X̃ = −ũ) + P(X̃ = 0̃)}
× {P(Ỹ = −ũ) + P(Ỹ = 0̃) + P(Ỹ = ũ)}

=
2
3
.

And finally, x ∈ [1,∞) and y ∈ [1,∞), we obtain

P(X̃−(r) ≤ x, Ỹ−(r) ≤ y) = 1 = P(X̃−(r) ≤ x)P(Ỹ−(r) ≤ y) = 1 × 1.

4. Some Limit Theorems

In this section, by using the concept of variance and covariance of f.r.v.’s, we obtain some limit theorems
for negatively dependent f.r.v.’s.

Theorem 4.1. Let {X̃n,i, 1 ≤ i ≤ n} be an array of pairwise negatively dependent f.r.v.’s such that P(||X̃n,i||∗ > λ) ≤
P(X > λ), where X is a nonnegative random variable for which nP(X > n)→ 0. Then

1
n

d∗(⊕n
i=1X̃n,i,⊕

n
i=1C̃n,i)→ 0 in probability, (1)

where C̃n,i = EX̃n,iI{1̃
{
−n√

2
}
�X̃n,i�1̃

{
n√
2
}
}
.

Proof. Set, for i = 1, 2, ...,n, n ≥ 1,

Ỹn,i = X̃n,iI{1̃
{
−n√

2
}
�X̃n,i�1̃

{
n√
2
}
}
⊕ 1̃{ n

√
2
}I{X̃n,i�1̃

{
n√
2
}
}
⊕ 1̃{ −n

√
2
}I{X̃n,i≺1̃

{
−n√

2
}
}
.

By subadditivity property of the metric d∗, it is easy to see that

d∗(⊕n
i=1X̃n,i,⊕

n
i=1C̃n,i) ≤ d∗(⊕n

i=1X̃n,i,⊕
n
i=1Ỹn,i)

+ d∗(⊕n
i=1Ỹn,i,⊕

n
i=1EỸn,i)

+ d∗(⊕n
i=1EỸn,i,⊕

n
i=1C̃n,i).

But, i)

P(
1
n

d∗(⊕n
i=1X̃n,i,⊕

n
i=1Ỹn,i) > ε) ≤ P(∪n

i=1[{X̃n,i � 1̃{ n
√

2
}} ∪ {X̃n,i ≺ 1̃{ −n

√
2
}}])

≤ P(∪n
i=1||X̃n,i||∗ > n)

≤

n∑
i=1

P(||X̃n,i||∗ > n)

≤ nP(X > n)→ 0.



H. Ahmadzade et al. / Filomat 30:9 (2016), 2535–2549 2545

ii) By Markov’s inequality and Theorem 2.3, we can see that

P(
1
n

d∗(⊕n
i=1Ỹn,i,⊕

n
i=1EỸn,i) > ε) ≤

2
n2ε2 Var(⊕n

i=1Ỹn,i)

≤
2

n2ε2

n∑
i=1

Var(Ỹn,i)

≤
2

n2ε2

n∑
i=1

E||Ỹn,i||
2
∗

=
2

n2ε2

n∑
i=1

E||X̃n,i||
2
∗ I{||X̃n,i ||∗≤n}

+
2

n2ε2

n∑
i=1

n2P(||X̃n,i||∗ > n), (2)

the last term in (2) goes to 0 as n→∞, but

1
n2

n∑
i=1

E||X̃n,i||
2
∗ I{||X̃n,i ||∗≤n} =

1
n2

n∑
i=1

n∑
j=1

E||X̃n,i||
2
∗ I{ j−1<||X̃n,i ||∗≤ j}

≤
1
n2

n∑
i=1

n∑
j=1

j2(P(||X̃n,i||∗ > j − 1) − P(||X̃n,i||∗ > j))

=
1
n2

n∑
i=1

{(P(||X̃n,i||∗ > 0) − n2P(||X̃n,i||∗ > n))

+

n−1∑
j=1

(( j − 1)2
− j2)P(||X̃n,i||∗ > j)}

≤
1
n2

n∑
i=1

(1 +

n−1∑
j=1

(2 j − 1)P(||X̃n,i||∗ > j))

≤
1
n

+ 2
1
n

n−1∑
j=1

jP(X > j) +
1
n

n∑
j=1

P(X > j)→ 0.

iii) By definitions of d∗, C̃n,i and EỸn,i, we have

1
n

d∗(⊕n
i=1EỸn,i,⊕

n
i=1C̃n,i) =

1
n
|

n∑
i=1

nP(X̃n,i � 1̃{ n
√

2
}) −

n∑
i=1

nP(X̃n,i ≺ 1̃{ −n
√

2
})|

≤
1
n

n∑
i=1

n{P(X̃n,i � 1̃{ n
√

2
}) + P(X̃n,i ≺ 1̃{ −n

√
2
})}

≤
1
n

n∑
i=1

nP(||X̃n,i||∗ > n) ≤ nP(X > n)→ 0.

This completes the proof.

Lemma 4.2. If X̃ is a f.r.v., then ||EX̃||2∗ ≤ E||X̃||2∗ .
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Proof. By applying Jensen’s inequality and Fubini’s theorem, we obtain

||EX̃||2∗ =

∫ 1

0
{(EX−(r))2 + (EX+(r))2

}dr

≤

∫ 1

0
{E(X−(r))2 + E(X+(r))2

}dr

= E
∫ 1

0
{(X−(r))2 + (X+(r))2

}dr = E||X̃||2∗ ,

this inequality follows from the fact that [EX̃]r = E[X̃]r,∀r ∈ (0, 1] [28], and convexity of the function
ϕ(x) = x2.

Remark 4.3. In Lemma 4.2, If fuzzy random variable reduces to random one, then Jensen’s inequality is obtained.

In the following theorem, we provide an extension of Theorem 2.3. in [32] to pairwise negatively dependent
f.r.v.’s.

Theorem 4.4. Let {X̃n,n ≥ 1} be a sequence of pairwise negatively dependent f.r.v.’s. Let {an,n ≥ 1} be a sequence of
positive numbers with an ↑ ∞. Furthermore, suppose thatψ(t) is a nonnegative and even function such thatψ(t) > 0
as t > 0 and

ψ(t)
|t|
↑ and

ψ(t)
t2 ↓ as |t| ↑ . (3)

If

∞∑
n=1

n∑
i=1

Eψ(||X̃i||∗)
ψ(an)

< ∞, (4)

and
n∑

i=1

Eψ(||X̃i||∗)
ψ(an)

= o(n−1), (5)

then a−1
n ⊕

n
i=1 X̃i → 0̃ a.s. with respect to the metric d∗, equivalently ||a−1

n ⊕
n
i=1 X̃i||∗ → 0 a.s.

Proof. Set, for i = 1, 2, ...,n, n ≥ 1,

Ỹn,i = X̃iI{1̃
{
−an√

2
}
�X̃i�1̃

{
an√

2
}
}
⊕ 1̃{ an

√
2
}I{X̃i�1̃ an√

2
}
⊕ 1̃{ −an

√
2
}I{X̃i≺1̃

{
−an√

2
}
}

Z̃n,i = (X̃i 	 1̃{ an
√

2
})I{X̃i�1̃

{
an√

2
}
}
⊕ (X̃i ⊕ 1̃{ an

√
2
})I{X̃i≺1̃

{
−an√

2
}
}
,

where 1̃{ an
√

2
} is a fuzzy number in E whose membership function equals 1 at an

√
2

and zero otherwise. Since

1̃{ an
√

2
} is a crisp number then X̃i = Ỹn,i ⊕ Z̃n,i .

By subadditivity property of the metric d∗ and the norm ||.||∗, we obtain

|| ⊕
n
i=1 (Ỹn,i ⊕ Z̃n,i)||∗ ≤ || ⊕n

i=1 Z̃n,i||∗ + d∗(⊕n
i=1Ỹn,i,⊕

n
i=1EỸn,i) + || ⊕n

i=1 EỸn,i||∗.

Thus, it is sufficient to show that

i)
∞∑

i=1

P(a−1
n || ⊕

n
i=1 Z̃n,i||∗ > ε) < ∞, ii)

∞∑
i=1

P(a−1
n d∗(⊕n

i=1Ỹn,i,⊕
n
i=1EỸn,i) > ε) < ∞,

iii) a−1
n || ⊕

n
i=1 EỸn,i||∗ → 0.
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i) Since ψ ↑, we have

∞∑
n=1

P(a−1
n || ⊕

n
i=1 Z̃n,i||∗ > ε) ≤

∞∑
n=1

n∑
i=1

P(||X̃i||∗ > an)

≤

∞∑
n=1

n∑
i=1

Eψ(||X̃i||∗)
ψ(an)

< ∞,

ii) By Lemma 3.6, it is easily seen that {Ỹn,i, 1 ≤ i ≤ n} are still pairwise negatively dependent for any fixed
n ≥ 1. It follows from Markov’s inequality that

∞∑
n=1

P(a−1
n d∗(⊕n

i=1Ỹn,i,⊕
n
i=1EỸn,i) > ε) ≤ 2

∞∑
n=1

n∑
i=1

Var(Ỹn,i)
ε2a2

n

≤ 2
∞∑

n=1

n∑
i=1

E < Ỹn,i, Ỹn,i >

ε2a2
n

= 2
∞∑

n=1

n∑
i=1

E||Ỹn,i||
2
∗

ε2a2
n

≤
2
ε2

∞∑
n=1

n∑
i=1

a−2
n E||X̃i||

2
∗ I{||X̃i ||∗≤an}

+
2
ε2

∞∑
n=1

a−2
n

n∑
i=1

a2
nP(||X̃i||∗ > an).

Moreover, by the relations (3) and (4) we have

∞∑
n=1

n∑
i=1

a−2
n E||X̃i||

2
∗ I{||X̃i ||∗≤an}

≤

∞∑
n=1

n∑
i=1

E
ψ(||X̃i||∗)
ψ(an)

I{||X̃i ||≤an}

≤

∞∑
n=1

n∑
i=1

E
ψ(||X̃i||∗)
ψ(an)

< ∞, (6)

and

∞∑
n=1

a−2
n

n∑
i=1

a2
nP(||X̃i||∗ > an) =

∞∑
n=1

n∑
i=1

P(||X̃i||∗ > an) < ∞. (7)

The relations (6) and (7) imply that

∞∑
n=1

P(a−1
n d∗(⊕n

i=1Ỹn,i,⊕
n
i=1EỸn,i) > ε) < ∞.



H. Ahmadzade et al. / Filomat 30:9 (2016), 2535–2549 2548

iii) To prove a−1
n || ⊕

n
i=1 EỸn,i||∗ → 0, as n→∞we show that;

a−1
n || ⊕

n
i=1 EỸn,i||∗ ≤

n∑
i=1

a−1
n ||EỸn,i||∗

≤

n∑
i=1

a−1
n ||EX̃iI{||X̃i ||∗≤an}

||∗

+

n∑
i=1

P(X̃i � 1̃{ an
√

2
}) +

n∑
i=1

P(X̃i ≺ 1̃{ −an
√

2
})

≤

n∑
i=1

a−1
n E

1
2 ||X̃i||

2
∗ I{||X̃i ||∗≤an}

+

n∑
i=1

P(||X̃i||∗ > an),

in which, the last inequality follows from Lemma 4.2.
By the relation (7), it is easy to see that

∑n
i=1 P(||X̃i||∗ > an)→ 0 as n→∞.

To prove
∑n

i=1 a−1
n E

1
2 ||X̃i||

2
∗ I{||X̃i ||∗≤an}

→ 0 as n→∞, we show that

[
n∑

i=1

a−1
n E

1
2 ||X̃i||

2
∗ I{||X̃i ||∗≤an}

]2
→ 0.

As an application of Jensen’s inequality, we have

(
1
n

n∑
i=1

xi)2
≤

1
n

n∑
i=1

x2
i , ∀xi ∈ R. (8)

Now, using the relations (3), (5), and (8), we can write

[
n∑

i=1

a−1
n E

1
2 ||X̃i||

2
∗ I{||X̃i ||∗≤an}

]2
≤ n

n∑
i=1

a−2
n E||X̃i||

2
∗ I{||X̃i ||∗≤an}

≤ n
n∑

i=1

E
ψ(||X̃i||∗)
ψ(an)

→ 0.

This completes the proof.

Example 4.5. Let ũ be a fuzzy number with ||ũ||∗ = 1 for instance a fuzzy number with the following membership
function

ũ(x) = 1 −

√
6

3
|x|, −

√
6

2
≤ x ≤

√
6

2
,

,ψ(x) = |x|p, 1 ≤ p ≤ 2 and an = nβ and βp > 3. Let {X̃n} be a sequence of negatively dependent f.r.v.’s such that
P(X̃n = nũ) = 1

n , P(X̃n = 0̃) = 1 − 1
n . Then,

∑
∞

n=1
∑n

i=1 Eψ(||X̃i ||∗)
ψ(an) < ∞ and, therefore, by Theorem 4.4, ⊕n

i=1{a
−1
n � X̃i}

converges to 0̃ a.s. with respect to the metric d∗.

5. Conclusion

Strong and weak convergence theorems were obtained under some relaxed conditions based on the
concept of variance and covariance. Therefore, we can extend the classical probabilistic results to f.r.v.’s
based on the concept of variance and covariance, instead of using the Banach techniques. The study of
linearly dependent and associated f.r.v.’s, specially weak and strong laws of large numbers, for such random
variables are potential works for future research.
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