Local K-Convoluted C-Cosine Functions and Abstract Cauchy Problems

Chung-Cheng Kuo ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Fu Jen University, New Taipei City, Taiwan 24205

Abstract

Let $K:\left[0, T_{0}\right) \rightarrow \mathbb{F}$ be a locally integrable function, and $C: X \rightarrow X$ a bounded linear operator on a Banach space X over the field $\mathbb{F}(=\mathbb{R}$ or $\mathbb{C})$. In this paper, we will deduce some basic properties of a nondegenerate local K-convoluted C -cosine function on X and some generation theorems of local K convoluted C-cosine functions on X with or without the nondegeneracy, which can be applied to obtain some equivalence relations between the generation of a nondegenerate local K-convoluted C-cosine function on X with subgenerator A and the unique existence of solutions of the abstract Cauchy problem: $u^{\prime \prime}(t)=$ $A u(t)+f(t)$ for a.e. $t \in\left(0, T_{0}\right), u(0)=x, u^{\prime}(0)=y$ when K is a kernel on $\left[0, T_{0}\right), C: X \rightarrow X$ an injection, and $A: \mathrm{D}(A) \subset X \rightarrow X$ a closed linear operator in X such that $C A \subset A C$. Here $0<T_{0} \leq \infty, x, y \in X$, and $f \in \mathrm{~L}_{l o c}^{1}\left(\left[0, T_{0}\right), X\right)$.

1. Introduction

Let X be a Banach space over the field $\mathbb{F}(=\mathbb{R}$ or $\mathbb{C})$ with norm $\|\cdot\|$, and let $L(X)$ denote the family of all bounded linear operators from X into itself. For each $0<T_{0} \leq \infty$, we consider the following abstract Cauchy problem:

$$
\operatorname{ACP}(A, f, x, y) \quad\left\{\begin{array}{l}
u^{\prime \prime}(t)=A u(t)+f(t) \quad \text { for a.e. } t \in\left(0, T_{0}\right) \\
u(0)=x, u^{\prime}(0)=y,
\end{array}\right.
$$

where $x, y \in X, A: \mathrm{D}(A) \subset X \rightarrow X$ is a closed linear operator, and $f \in \mathrm{~L}_{l o c}^{1}\left(\left[0, T_{0}\right), X\right)$. A function u is called a (strong) solution of $\operatorname{ACP}(A, f, x, y)$ if $u \in C^{1}\left(\left[0, T_{0}\right), X\right)$ satisfies $\operatorname{ACP}(A, f, x, y)$ (that is $u(0)=x, u^{\prime}(0)=y$ and for a.e. $t \in\left(0, T_{0}\right), u^{\prime}(t)$ is differentiable and $u(t) \in \mathrm{D}(A)$, and $u^{\prime \prime}(t)=A u(t)+f(t)$ for a.e. $\left.t \in\left(0, T_{0}\right)\right)$. For each $C \in \mathrm{~L}(X)$ and $K \in \mathrm{~L}_{l o c}^{1}\left(\left[0, T_{0}\right), \mathbb{F}\right)$, a subfamily $C(\cdot)\left(=\left\{C(t) \mid 0 \leq t<T_{0}\right\}\right)$ of $\mathrm{L}(X)$ is called a local K-convoluted C-cosine function on X if $C(\cdot)$ is strongly continuous, $C(\cdot) C=C C(\cdot)$, and satisfies

$$
\begin{aligned}
2 C(t) C(s) x= & \left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K(t+s-r) C(r) C x d r+\int_{|t-s|}^{t} K(s-t+r) C(r) C x d r \\
& +\int_{|t-s|}^{s} K(t-s+r) C(r) C x d r+\int_{0}^{|t-s|} K(|t-s|+r) C(r) C x d r
\end{aligned}
$$

[^0]for all $0 \leq t, s, t+s<T_{0}$ and $x \in X$ (see [8]). In particular, $C(\cdot)$ is called a local (0 -times integrated) C-cosine function on X if $K=j_{-1}$ (the Dirac measure at 0) or equivalently, it is strongly continuous, $C(\cdot) C=C C(\cdot)$, and satisfies
$$
2 C(t) C(s) x=C(t+s) C x+C(|t-s|) C x \quad \text { for all } 0 \leq t, s, t+s<T_{0} \text { and } x \in X
$$
(see $[4,6,19,21]$). Moreover, we say that $C(\cdot)$ is nondegenerate, if $x=0$ whenever $C(t) x=0$ for all $0 \leq t<T_{0}$. The nondegeneracy of a local K-convoluted C-cosine function $C(\cdot)$ on X implies that
$$
C(0)=C \text { if } K=j_{-1} \text {, and } C(0)=0 \text { (the zero operator on } X \text {) otherwise, }
$$
and the (integral) generator $A: \mathrm{D}(A) \subset X \rightarrow X$ of $C(\cdot)$ is a closed linear operator in X defined by
$$
\mathrm{D}(A)=\left\{x \in X \mid \text { there exists a } y_{x} \in X \text { such that } C(\cdot) x-K_{0}(\cdot) C x=\widetilde{S}(\cdot) y_{x} \text { on }\left[0, T_{0}\right)\right\}
$$
and $A x=y_{x}$ for all $x \in \mathrm{D}(A)$. Here $K_{\beta}(t)=K * j_{\beta}(t)=\int_{0}^{t} K(t-s) j_{\beta}(s) d s$ for $\beta>-1$ with $j_{\beta}(t)=\frac{t^{\beta}}{\Gamma(\beta+1)}$ and the Gamma function $\Gamma(\cdot), S(s) z=\int_{0}^{s} C(r) z d r$, and $\widetilde{S}(t) z=\int_{0}^{t} S(s) z d s$. In general, a local K-convoluted C-cosine function on X is called a K-convoluted C-cosine function on X if $T_{0}=\infty$; a (local) K-convoluted C-cosine function on X is called a (local) K-convoluted cosine function on X if $C=I$ (the identity operator on X) or a (local) α-times integrated C-cosine function on X if $K=j_{\alpha-1}$ for some $\alpha \geq 0$ (see [12-14,16]); a (local) α-times integrated C-cosine function on X is called a (local) α-times integrated cosine function on X if $C=I$ (see [15]); and a (local) C-cosine function on X is called a cosine function on X if $C=I$ (see [1,5]). Moreover, a local α-times integrated cosine function on X is not necessarily extendable to an α-times integrated cosine function on X except for $\alpha=0$ (see [5]), the nondegeneracy of a local α-times integrated C-cosine function on X does not imply the injectivity of C except for $T_{0}=\infty$ (see [12]), and the injectivity of C does not imply the nondegeneracy of a local α-times integrated C-cosine function on X except for $\alpha=0$ (see [19]). Some basic properites of a nondegenerate (local) α-times integrated C-cosine function on X have been established by many authors in [11,22] when $\alpha=0$, in [7,17-18,23-24] when $\alpha \in \mathbb{N}$, in [12] when $\alpha>0$ is arbitrary with $T_{0}=\infty$ and in [16] for the general case $0<T_{0} \leq \infty$, which can be applied to deduce some equivalence relations between the generation of a nondegenerate (local) α-times integrated C-cosine function on X with subgenerator A (see Definition 2.4 below) and the unique existence of strong or weak solutions of the abstract Cauchy problem $\operatorname{ACP}(A, f, x, y)$ (see the results in [7,12] for the case $T_{0}=\infty$ and in [13-14,16] for the general case $\left.0<T_{0} \leq \infty\right)$. The purpose of this paper is to investigate the following basic properties of a nondegenerate local K-convoluted C-cosine function $C(\cdot)$ on X when C is injective and some additional conditions are taken into consideration.
\[

$$
\begin{align*}
& C^{-1} A C=A \tag{1}\\
& \widetilde{S}(t) x \in D(A) \quad \text { and } A \widetilde{S}(t) x=C(t) x-K_{0}(t) C x \quad \text { for all } x \in X \quad \text { and } 0 \leq t<T_{0} \tag{2}
\end{align*}
$$
\]

$$
\begin{equation*}
C(t) x \in D(A) \quad \text { and } A C(t) x=C(t) A x \quad \text { for all } x \in D(A) \quad \text { and } 0 \leq t<T_{0} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
C(t) C(s)=C(s) C(t) \quad \text { for all } 0 \leq t, s, t+s<T_{0} \tag{4}
\end{equation*}
$$

(see Theorems 2.7 and 2.11, and Corollary 2.12 below). We then deduce some equivalence relations between the generation of a nondegenerate local K-convoluted C-cosine function on X with subgenerator A and the unique existence of strong solutions of $\operatorname{ACP}(A, f, x, y)$ in section 3 just as results in [16] concerning some equivalence relations between the generation of a nondegenerate local α-times C-cosine function on X with subgenerator A and the unique existence of strong solutions of $\operatorname{ACP}(A, f, x, y)$. To do these, we will prove an
important lemma which shows that a strongly continuous subfamily $C(\cdot)$ of $L(X)$ is a local K-convoluted C cosine function on X is equivalent to say that $\widetilde{S}(\cdot)$ is a local K_{1}-convoluted C-cosine function on X (see Lemma 2.1 below), and then show that a strongly continuous subfamily $C(\cdot)$ of $\mathrm{L}(X)$ which commutes with C on X is a local K-convoluted C-cosine function on X is equivalent to say that $\widetilde{S}(t)\left[C(s)-K_{0}(s) C\right]=\left[C(t)-K_{0}(t) C\right] \widetilde{S}(s)$ for all $0 \leq t, s, t+s<T_{0}$ (see Theorem 2.2 below). In order, we show that $a * C(\cdot)$ is a local $a * K$-convoluted C-cosine function on X if $C(\cdot)$ is a local K-convoluted C-cosine function on X and $a \in \mathrm{~L}_{l o c}^{1}\left(\left[0, T_{0}\right), \mathbb{F}\right)$. In particular, $j_{\beta} * C(\cdot)$ is a local K_{β}-convoluted C-cosine function on X if $C(\cdot)$ is a local K-convoluted C-cosine function on X and $\beta>-1$ (see Proposition 2.3 below), where $f * C(t) x=\int_{0}^{t} f(t-s) C(s) x d s$ for all $x \in X$ and $f \in \mathrm{~L}_{\text {loc }}^{1}\left(\left[0, T_{0}\right), \mathbb{F}\right)$. We also show that a strongly continuous subfamily $C(\cdot)$ of $\mathrm{L}(X)$ which commutes with C on X is a local K-convoluted C-cosine function on X when $C(\cdot)$ has a subgenerator (see Theorem 2.5 below), which had been proven in [8] by another method similar to that already employed in [12] in the case that $C(\cdot)$ has a closed subgenerator and C is injective; and the generator of a nondegenerate local K-convoluted C-cosine function $C(\cdot)$ on X is the unique subgenerator of $C(\cdot)$ which contains all subgenerators of $C(\cdot)$ and each subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of $C(\cdot)$ when $C(\cdot)$ has a subgenerator (see Theorems 2.7 and 2.11 , and Corollary 2.12 below). This can be applied to show that $C A \subset A C$ and $C(\cdot)$ is a nondegenerate local K-convoluted C-cosine function on X with generator $C^{-1} A C$ when C is injective, K_{0} a kernel on $\left[0, T_{0}\right)$ (that is, $f=0$ on $\left[0, T_{0}\right)$ whenever $f \in \mathrm{C}\left(\left[0, T_{0}\right), \mathbb{F}\right)$ with $\int_{0}^{t} K_{0}(t-s) f(s) d s=0$ for all $0 \leq t<T_{0}$) and $C(\cdot)$ a strongly continuous subfamily of $\mathrm{L}(X)$ with closed subgenerator A. In this case, $C^{-1} \overline{A_{0}} C$ is the generator of $C(\cdot)$ for each subgenerator A_{0} of $C(\cdot)$ (see Theorem 2.13 below). Some illustrative examples concerning these theorems are also presented in the final part of paper.

2. Basic Properties of Local K-Convoluted C-Cosine Functions

We will deduce an important lemma which can be applied to obtain an equivalence relation between the generation of a local K-convoluted C-cosine function $C(\cdot)$ on X and the equation

$$
\begin{equation*}
\widetilde{S}(t)\left[C(s)-K_{0}(s) C\right]=\left[C(t)-K_{0}(t) C\right] \widetilde{S}(s) \quad \text { for all } 0 \leq t, s, t+s<T_{0} \tag{5}
\end{equation*}
$$

(see a result in [16] for the case of local α-times integrated C-cosine function and a corresponding statement in [9] for the case of (a, k)-regularized (C_{1}, C_{2})-existence and uniqueness family). Lemma 2.1 Let $C(\cdot)$ be a strongly continuous subfamily of $L(X)$. Then $C(\cdot)$ is a local K-convoluted C-cosine function on X if and only if $\widetilde{S}(\cdot)$ is a local K_{1}-convoluted C -cosine function on X .
Proof. We will show that

$$
\begin{align*}
& \frac{d}{d t}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K_{1}(t+s-r) \widetilde{S}(r) C x d r+\int_{|t-s|}^{t} K_{1}(s-t+r) \widetilde{S}(r) C x d r\right. \\
& \left.+\int_{|t-s|}^{s} K_{1}(t-s+r) \widetilde{S}(r) C x d r+\int_{0}^{|t-s|} K_{1}(|t-s|+r) \widetilde{S}(r) C x d r\right] \tag{6}\\
& =\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K_{0}(t+s-r) \widetilde{S}(r) C x d r+\operatorname{sgn}(s-t) \int_{|t-s|}^{t} K_{0}(s-t+r) \widetilde{S}(r) C x d r \\
& +\operatorname{sgn}(t-s) \int_{|t-s|}^{s} K_{0}(t-s+r) \widetilde{S}(r) C x d r+\int_{0}^{|t-s|} K_{0}(|t-s|+r) \widetilde{S}(r) C x d r
\end{align*}
$$

and

$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K_{1}(t+s-r) \widetilde{S}(r) C x d r+\int_{|t-s|}^{t} K_{1}(s-t+r) \widetilde{S}(r) C x d r+\int_{|t-s|}^{s} K_{1}(t-s+r) \widetilde{S}(r) C x d r\right. \\
& \left.+\int_{0}^{t t-s \mid} K_{1}(|t-s|+r) \widetilde{S}(r) C x d r\right]+2 K_{0}(s) \widetilde{S}(t) C x
\end{aligned}
$$

$$
\begin{align*}
= & \left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K(t+s-r) \widetilde{S}(r) C x d r+\int_{|t-s|}^{t} K(s-t+r) \widetilde{S}(r) C x d r+\int_{|t-s|}^{s} K(t-s+r) \widetilde{S}(r) C x d r \\
& +\int_{0}^{|t-s|} K(|t-s|+r) \widetilde{S}(r) C x d r \tag{7}
\end{align*}
$$

for all $x \in X$ and $0 \leq t, s, t+s<T_{0}$, where $\operatorname{sgn}(t)=1$ if $0<t, \operatorname{sgn}(0)=0$, and $\operatorname{sgn}(t)=-1$ if $t<0$. Indeed, for $0 \leq s \leq t<T_{0}$ with $t+s<T_{0}$, we have

$$
\begin{aligned}
& \frac{d}{d t}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K_{1}(t+s-r) \widetilde{S}(r) C x d r+\int_{t-s}^{t} K_{1}(s-t+r) \widetilde{S}(r) C x d r+\int_{0}^{s} K_{1}(t-s+r) \widetilde{S}(r) C x d r\right] \\
= & {\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K_{0}(t+s-r) \widetilde{S}(r) C x d r-K_{1}(s) \tilde{S}(t) C x\right]+\left[K_{1}(s) \widetilde{S}(t) C x-\int_{t-s}^{t} K_{0}(s-t+r) \tilde{S}(r) C x d r\right] } \\
& +\int_{0}^{s} K_{0}(t-s+r) \tilde{S}(r) C x d r \\
= & \left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K_{0}(t+s-r) \widetilde{S}(r) C x d r \\
& +\operatorname{sgn}(s-t) \int_{|t-s|}^{t} K_{0}(s-t+r) \widetilde{S}(r) C x d r+\operatorname{sgn}(t-s) \int_{|t-s|}^{s} K_{0}(t-s+r) \widetilde{S}(r) C x d r \\
& +\int_{0}^{|t-s|} K_{0}(|t-s|+r) \widetilde{S}(r) C x d r
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{d}{d t}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K_{0}(t+s-r) \widetilde{S}(r) C x d r-\int_{t-s}^{t} K_{0}(s-t+r) \tilde{S}(r) C x d r+\int_{0}^{s} K_{0}(t-s+r) \tilde{S}(r) C x d r\right] \\
& +2 K_{0}(s) \widetilde{S}(t) C x \\
= & \left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K(t+s-r) \widetilde{S}(r) C x d r-2 K_{0}(s) \widetilde{S}(t) C x+\int_{t-s}^{t} K(s-t+r) \widetilde{S}(r) C x d r \\
& +\int_{0}^{s} K(t-s+r) \widetilde{S}(r) C x d r+2 K_{0}(s) \widetilde{S}(t) C x \\
= & \left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K(t+s-r) \widetilde{S}(r) C x d r+\int_{t-s}^{t} K(s-t+r) \widetilde{S}(r) C x d r+\int_{0}^{s} K(t-s+r) \widetilde{S}(r) C x d r \\
= & \left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K(t+s-r) \widetilde{S}(r) C x d r+\int_{|t-s|}^{t} K(s-t+r) \widetilde{S}(r) C x d r \\
& +\int_{|t-s|}^{s} K(t-s+r) \widetilde{S}(r) C x d r+\int_{0}^{|t-s|} K(|t-s|+r) \widetilde{S}(r) C x d r .
\end{aligned}
$$

That is, (6) and (7) both hold for all $0 \leq s \leq t<T_{0}$ with $t+s<T_{0}$. Similarly, we can show that (6) and (7) both also hold when $0 \leq t \leq s<T_{0}$ with $t+s<T_{0}$. Clearly, the right-hand side of (7) is symmetric in t, s with $0 \leq t, s, t+s<T_{0}$. It follows that

$$
\begin{aligned}
& \frac{d^{2}}{d s^{2}}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K_{1}(t+s-r) \widetilde{S}(r) C x d r+\int_{|t-s|}^{t} K_{1}(s-t+r) \widetilde{S}(r) C x d r\right. \\
& \left.+\int_{|t-s|}^{s} K_{1}(t-s+r) \widetilde{S}(r) C x d r+\int_{0}^{|t-s|} K_{1}(|t-s|+r) \widetilde{S}(r) C x d r\right]+2 K_{0}(t) \widetilde{S}(s) C x
\end{aligned}
$$

$$
\begin{align*}
= & \left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K(t+s-r) \widetilde{S}(r) C x d r+\int_{|t-s|}^{t} K(s-t+r) \widetilde{S}(r) C x d r \\
& +\int_{|t-s|}^{s} K(t-s+r) \widetilde{S}(r) C x d r+\int_{0}^{|t-s|} K(|t-s|+r) \widetilde{S}(r) C x d r \tag{8}
\end{align*}
$$

for all $x \in X$ and $0 \leq t, s, t+s<T_{0}$. Using integration by parts twice, we obtain

$$
\begin{align*}
& \left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K(t+s-r) \widetilde{S}(r) C x d r+\int_{|t-s|}^{t} K(s-t+r) \widetilde{S}(r) C x d r \\
& +\int_{|t-s|}^{s} K(t-s+r) \widetilde{S}(r) C x d r+\int_{0}^{|t-s|} K(|t-s|+r) \widetilde{S}(r) C x d r \\
= & \left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K_{1}(t+s-r) C(r) C x d r+\int_{|t-s|}^{t} K_{1}(s-t+r) C(r) C x d r \tag{9}\\
& +\int_{|t-s|}^{s} K_{1}(t-s+r) C(r) C x d r+\int_{0}^{|t-s|} K_{1}(|t-s|+r) C(r) C x d r \\
& +2 K_{0}(t) \widetilde{S}(s) C x+2 K_{0}(s) \widetilde{S}(t) C x
\end{align*}
$$

for all $x \in X$ and $0 \leq t, s, t+s<T_{0}$. Suppose that $\widetilde{S}(\cdot)$ is a local K_{1}-convoluted C-cosine function on X. Then we have by (8)-(9) that

$$
\begin{aligned}
& 2 \widetilde{S}(t) C(s) x=2 \frac{d^{2}}{d s^{2}} \widetilde{S}(t) \widetilde{S}(s) x \\
= & \left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K_{1}(t+s-r) C(r) C x d r \\
& +\int_{|t-s|}^{t} K_{1}(s-t+r) C(r) C x d r+\int_{|t-s|}^{s} K_{1}(t-s+r) C(r) C x d r \\
& +\int_{0}^{|t-s|} K_{1}(|t-s|+r) C(r) C x d r+2 K_{0}(s) \widetilde{S}(t) C x
\end{aligned}
$$

for all $x \in X$ and $0 \leq t, s, t+s<T_{0}$, so that

$$
\begin{align*}
2 C(t) C(s) x= & 2 \frac{d^{2}}{d t^{2}} \widetilde{S}(t) C(s) x \\
= & \left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K(t+s-r) C(r) C x d r+\int_{|t-s|}^{t} K(s-t+r) C(r) C x d r \tag{10}\\
& +\int_{|t-s|}^{s} K(t-s+r) C(r) C x d r+\int_{0}^{|t-s|} K(|t-s|+r) C(r) C x d r
\end{align*}
$$

for all $x \in X$ and $0 \leq t, s, t+s<T_{0}$. Hence, $C(\cdot)$ is a local K-convoluted C-cosine function on X. Conversely, let $C(\cdot)$ be a local K-convoluted C-cosine function on X. We will apply Fubini's theorem for double integrals twice to obtain

$$
\begin{align*}
2 C(t) \widetilde{S}(s) x= & {\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K_{1}(t+s-r) C(r) C x d r+\int_{|t-s|}^{t} K_{1}(s-t+r) C(r) C x d r\right.} \\
& \left.+\int_{|t-s|}^{s} K_{1}(t-s+r) C(r) C x d r+\int_{0}^{|t-s|} K_{1}(|t-s|+r) C(r) C x d r\right]+2 K_{0}(t) \widetilde{S}(s) C x \tag{11}
\end{align*}
$$

for all $x \in X$ and $0 \leq t, s, t+s<T_{0}$. Let $x \in X$ be given, then for $0 \leq t, s, t+s<T_{0}$ with $t \geq s$, we have

$$
\begin{align*}
& \int_{0}^{\tau} \int_{t}^{t+\lambda} K(t+\lambda-r) C(r) C x d r d \lambda \\
= & \int_{t}^{t+\tau} \int_{r-t}^{\tau} K(t+\lambda-r) C(r) C x d \lambda d r \tag{12}\\
= & \int_{t}^{t+\tau} K_{0}(t+\tau-r) C(r) C x d r, \\
= & \int_{0}^{\tau} \int_{0}^{\lambda} K(t+\lambda-r) C(r) C x d r d \lambda \\
= & \int_{0}^{\tau} K_{0}^{\tau}(t+\tau-r) C(r) C x d r-K_{0}(t) S(\tau) C x, \tag{13}\\
= & \int_{0}^{\tau} \int_{t-\lambda}^{t} K(\lambda-t+r) C(r) C x d r d \lambda \\
= & \int_{t-\tau}^{t} \int_{t-r}^{\tau} K(\lambda-t+r) C(r) C x d \lambda d r \\
= & \int_{t-\tau}^{t} K_{0}(\tau-t+r) C(r) C x d r, \tag{14}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{0}^{\tau} \int_{0}^{\lambda} K(t-\lambda+r) C(r) C x d r d \lambda \\
= & \int_{0}^{\tau} \int_{r}^{\tau} K(t-\lambda+r) C(r) C x d \lambda d r \tag{15}\\
= & K_{0}(t) S(\tau) C x-\int_{0}^{\tau} K_{0}(t-\tau+r) C(r) C x d r
\end{align*}
$$

for all $0 \leq \tau \leq s$. Observe that (12)-(15) also imply

$$
\begin{align*}
& \int_{0}^{s} \int_{t}^{t+\tau} K_{0}(t+\tau-r) C(r) C x d r d \tau=\int_{t}^{t+s} K_{1}(t+s-r) C(r) C x d r, \tag{16}\\
& \int_{0}^{s}\left[\int_{0}^{\tau} K_{0}(t+\tau-r) C(r) C x d r-K_{0}(t) S(\tau) C x\right] d \tau \tag{17}\\
& =\left[\int_{0}^{s} K_{1}(t+s-r) C(r) C x d r-K_{1}(t) S(s) C x\right]-K_{0}(t) \widetilde{S}(s) C x
\end{align*}
$$

and

$$
\begin{align*}
& \int_{0}^{s}\left[K_{0}(t) S(\tau) C x-\int_{0}^{\tau} K_{0}(t-\tau+r) C(r) C x d r\right] d \tau \\
= & K_{0}(t) \widetilde{S}(s) C x+\left[\int_{0}^{s} K_{1}(t-s+r) C(r) C x d r-K_{1}(t) S(s) C x\right] . \tag{19}
\end{align*}
$$

Combining (16)-(17), we obtain (11) for all $0 \leq t, s, t+s<T_{0}$ with $t \geq s$. Similarly, we can show that (11) also holds when $0 \leq t, s, t+s<T_{0}$ with $s \geq t$. By (7), (9) and (11), we have

$$
\begin{aligned}
& 2 C(t) \widetilde{S}(s) x \\
= & \frac{d^{2}}{d t^{2}}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K_{1}(t+s-r) \widetilde{S}(r) C x d r\right. \\
& +\int_{|t-s|}^{t} K_{1}(s-t+r) \widetilde{S}(r) C x d r+\int_{|t-s|}^{s} K_{1}(t-s+r) \widetilde{S}(r) C x d r \\
& \left.+\int_{0}^{|t-s|} K_{1}(|t-s|+r) \widetilde{S}(r) C x d r\right]
\end{aligned}
$$

for all $x \in X$ and $0 \leq t, s, t+s<T_{0}$. Combining this and (6) with $t=0$, we conclude that $\widetilde{S}(\cdot)$ is a local K_{1}-convoluted C-cosine function on X.

Theorem 2.2 Let $C(\cdot)$ be a strongly continuous subfamily of $L(X)$ which commutes with C on X. Then $C(\cdot)$ is a local K-convoluted C-cosine function on X if and only if $\widetilde{S}(t)\left[C(s)-K_{0}(s) C\right]=\left[C(t)-K_{0}(t) C\right] \widetilde{S}(s)$ for all $0 \leq t, s, t+s<T_{0}$.
Proof. Let $C(\cdot)$ be a local K-convoluted C-cosine function on X. By (7) and (8), we have $2 C(t) \widetilde{S}(s) x+$ $2 K_{0}(s) \widetilde{S}(t) C x=2 \widetilde{S}(t) C(s) x+2 K_{0}(t) \widetilde{S}(s) C x$ for all $x \in X$ and $0 \leq t, s, t+s<T_{0}$ or equivalently, $\widetilde{S}(t)[C(s)-$ $\left.K_{0}(s) C\right]=\left[C(t)-K_{0}(t) C\right] \widetilde{S}(s)$ for all $0 \leq t, s, t+s<T_{0}$. Conversely, suppose that (5) holds for all $0 \leq t, s, t+s<T_{0}$. Then $\widetilde{S}(t) C(s) x-C(t) \widetilde{S}(s) x=K_{0}(s) \widetilde{S}(t) C x-K_{0}(t) \widetilde{S}(s) C x$ for all $x \in X$ and $0 \leq t, s, t+s<T_{0}$. Fix $x \in X$ and $0 \leq t, s, t+s<T_{0}$ with $t \geq s$. Then we have

$$
\begin{align*}
& \widetilde{S}(t+s-r) C(r) x-C(t+s-r) \widetilde{S}(r) x \\
= & K_{0}(r) \widetilde{S}(t+s-r) C x-K_{0}(t+s-r) \widetilde{S}(r) C x \tag{20}
\end{align*}
$$

for all $0 \leq r \leq t$, and

$$
\begin{align*}
& \widetilde{S}(s-t+r) C(r) x-C(s-t+r) \widetilde{S}(r) x \\
= & K_{0}(r) \widetilde{S}(s-t+r) C x-K_{0}(s-t+r) \widetilde{S}(r) C x \tag{21}
\end{align*}
$$

for all $t-s \leq r \leq t$. Using integration by parts to left-hand sides of the integrations of (20)-(21) and change of variables to right-hand sides of the integrations of (20)-(21), we obtain

$$
\widetilde{S}(s) S(t) x+S(s) \widetilde{S}(t) x=\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K_{0}(t+s-r) \widetilde{S}(r) C x d r
$$

and

$$
\widetilde{S}(s) S(t) x-S(s) \widetilde{S}(t) x=\int_{0}^{s} K_{0}(t-s+r) \widetilde{S}(r) C x d r-\int_{t-s}^{t} K_{0}(s-t+r) \widetilde{S}(r) C x d r
$$

so that

$$
\begin{aligned}
2 \widetilde{S}(s) S(t) x= & \left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K_{0}(t+s-r) \widetilde{S}(r) C x d r \\
& -\int_{t-s}^{t} K_{0}(s-t+r) \widetilde{S}(r) C x d r+\int_{0}^{s} K_{0}(t-s+r) \widetilde{S}(r) C x d r .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
2 \widetilde{S}(s) C(t) x= & \left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K(t+s-r) \widetilde{S}(r) C x d r+\int_{t-s}^{t} K(s-t+r) \widetilde{S}(r) C x d r \\
& +\int_{0}^{s} K(t-s+r) \widetilde{S}(r) C x d r-2 K_{0}(s) \widetilde{S}(t) C x
\end{aligned}
$$

which implies that

$$
\begin{align*}
2 \widetilde{S}(s) C(t) x+2 K_{0}(s) \widetilde{S}(t) C x= & \left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K(t+s-r) \widetilde{S}(r) C x d r \\
& +\int_{|t-s|}^{t} K(s-t+r) \widetilde{S}(r) C x d r+\int_{|t-s|}^{s} K(t-s+r) \widetilde{S}(r) C x d r \tag{22}\\
& +\int_{0}^{|t-s|} K(|t-s|+r) \widetilde{S}(r) C x d r
\end{align*}
$$

Similarly, we can show that (22) also holds when $x \in X$ and $0 \leq t, s, t+s<T_{0}$ with $s \geq t$. Combining this with (7), we have

$$
\begin{aligned}
2 \widetilde{S}(s) C(t) x= & \frac{d^{2}}{d t^{2}}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) K_{1}(t+s-r) \widetilde{S}(r) C x d r+\int_{|t-s|}^{t} K_{1}(s-t+r) \widetilde{S}(r) C x d r\right. \\
& \left.+\int_{|t-s|}^{s} K_{1}(t-s+r) \widetilde{S}(r) C x d r+\int_{0}^{|t-s|} K_{1}(|t-s|+r) \widetilde{S}(r) C x d r\right] .
\end{aligned}
$$

for all $x \in X$ and $0 \leq t, s, t+s<T_{0}$. Consequently, $\widetilde{S}(\cdot)$ is a local K_{1}-convoluted C-cosine function on X. Combining this with Lemma 2.1, we get that $C(\cdot)$ is a local K-convoluted C-cosine function on X.

By slightly modifying the proof of [16, Proposition 2.3], the next result concerning local K-convoluted C-cosine functions on X is also attained.
Proposition 2.3 Let $C(\cdot)$ be a local K-convoluted C-cosine function on X and $a \in L_{l o c}^{1}\left(\left[0, T_{0}\right), \mathbb{F}\right)$. Then $a * C(\cdot)$ is a local $a * K$-convoluted C-cosine function on X. In particular, for each $\beta>-1 j_{\beta} * C(\cdot)$ is a local K_{β}-convoluted C-cosine function on X. Moreover, $C(\cdot)$ is a local K-convoluted C-cosine function on X if it is a strongly continuous subfamily of $L(X)$ such that $S(\cdot)$ is a local K_{0}-convoluted C-cosine function on X.
Definition 2.4 Let $C(\cdot)$ be a strongly continuous subfamily of $L(X)$. A linear operator A in X is called a subgenerator of $C(\cdot)$ if

$$
\begin{equation*}
C(t) x-K_{0}(t) C x=\int_{0}^{t} \int_{0}^{s} C(r) A x d r d s \tag{23}
\end{equation*}
$$

for all $x \in D(A)$ and $0 \leq t<T_{0}$, and

$$
\begin{equation*}
\int_{0}^{t} \int_{0}^{s} C(r) x d r d s \in D(A) \quad \text { and } A \int_{0}^{t} \int_{0}^{s} C(r) x d r d s=C(t) x-K_{0}(t) C x \tag{24}
\end{equation*}
$$

for all $x \in X$ and $0 \leq t<T_{0}$. A subgenerator A of $C(\cdot)$ is called the maximal subgenerator of $C(\cdot)$ if it is an extension of each subgenerator of $C(\cdot)$ to $D(A)$.

Applying Theorem 2.2, we can obtain the next result concerning the generation of a local K-convoluted C-cosine function $C(\cdot)$ on X, which had been proven in [8] by another method similar to that already employed in [12] in the case that $C(\cdot)$ has a closed subgenerator and C is injective.
Theorem 2.5 Let $C(\cdot)$ be a strongly continuous subfamily of $L(X)$ which commutes with C on X. Assume that $C(\cdot)$ has a subgenerator. Then $C(\cdot)$ is a local K-convoluted C-cosine function on X. Moreover, $C(\cdot)$ is nondegenerate if the injectivity of C is added and K_{0} is a non-zero function on $\left[0, T_{0}\right)$.

Proof. Let A be a subgenerator of $C(\cdot)$. By (24), we have

$$
\left[C(t)-K_{0}(t) C\right] \widetilde{S}(\cdot) x=\widetilde{S}(t) A \widetilde{S}(\cdot) x=\widetilde{S}(t)\left[C(\cdot)-K_{0}(\cdot) C\right] x
$$

on $\left[0, T_{0}-t\right.$) for all $x \in X$ and $0 \leq t<T_{0}$. Applying Theorem 2.2, we get that $C(\cdot)$ is a local K-convoluted C-cosine function on X. Suppose that C is injective, K_{0} is a non-zero function, $x \in X$ and $C(t) x=0$, $t \in\left[0, T_{0}\right)$. By (24), we have $K_{0}(\cdot) C x=0$ on $\left[0, T_{0}\right)$, and so $C x=0$. Hence, $x=0$, which implies that $C(\cdot)$ is nondegenerate.

Lemma 2.6 Let A be a closed subgenerator of a strongly continuous subfamily $C(\cdot)$ of $L(X)$, and K_{0} a kernel on $\left[0, t_{0}\right)$ (or equivalently, K is a kernel on $\left[0, t_{0}\right)$) for some $0<t_{0} \leq T_{0}$. Assume that C is injective and $u \in C\left(\left[0, t_{0}\right), X\right)$ satisfies $u(\cdot)=A j_{1} * u(\cdot)$ on $\left[0, t_{0}\right)$. Then $u=0$ on $\left[0, t_{0}\right)$.

Proof. We observe from (23) and (24) that $A \int_{0}^{t} \int_{0}^{s} C(r) x d r d s=\int_{0}^{t} \int_{0}^{s} C(r) A x d r d s$ for all $x \in D(A)$ and $0 \leq t<T_{0}$. Combining this with the closedness of A, we have $C(t) A x=A C(t) x$ for all $x \in D(A)$ and $0 \leq t<T_{0}$, and so $\int_{0}^{t} C(t-s) u(s) d s=\int_{0}^{t} C(t-s) A j_{1} * u(s) d s=\int_{0}^{t} A C(t-s) j_{1} * u(s) d s=A \int_{0}^{t} C(t-s) j_{1} * u(s) d s=A \widetilde{S} * u(t)=$ $\int_{0}^{t} C(t-s) u(s) d s-C \int_{0}^{t} K_{0}(t-s) u(s) d s$ for all $0 \leq t<t_{0}$. Hence, $\int_{0}^{t} K_{0}(t-s) u(s) d s=0$ for all $0 \leq t<t_{0}$, which implies that $u(t)=0$ for all $0 \leq t<t_{0}$.

Theorem 2.7 Let $C(\cdot)$ be a nondegenerate local K-convoluted C-cosine function on X with generator A. Assume that $C(\cdot)$ has a subgenerator. Then A is the maximal subgenerator of $C(\cdot)$, and each subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of $C(\cdot)$. Moreover, if C is injective. Then (1)-(3) hold, and (4) also holds when K_{0} is a kernel on $\left[0, T_{0}\right)$ or $T_{0}=\infty$.

Proof. Let B be a subgenerator of $C(\cdot)$. Clearly, $B \subset A$. It follows that $C(t) z-K_{0}(t) C z=B \int_{0}^{t} \int_{0}^{s} C(r) z d r d s=$ $A \int_{0}^{t} \int_{0}^{s} C(r) z d r d s$ for all $z \in X$ and $0 \leq t<T_{0}$, which together with the definition of A implies that A is also a subgenerator of $C(\cdot)$. To show that each subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of $C(\cdot)$. We will show that B is closable. Let $x_{k} \in D(B), x_{k} \rightarrow 0$, and $B x_{k} \rightarrow y$ in X. Then $x_{k} \in D(A)$ and $A x_{k}=B x_{k} \rightarrow y$. By the closedness of A, we have $y=0$. In order to show that \bar{B} is a subgenerator of $C(\cdot)$. Let $x \in D(\bar{B})$ be given, then $x_{k} \rightarrow x$ and $B x_{k} \rightarrow \bar{B} x$ in X for sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ in $D(B)$. By (23), we have $C(t) x_{k}-K_{0}(t) C x_{k}=\int_{0}^{t} \int_{0}^{s} C(r) B x_{k} d r d s$ for all $k \in \mathbb{N}$ and $0 \leq t<T_{0}$. Letting $k \rightarrow \infty$, we get that $C(t) x-K_{0}(t) C x=\int_{0}^{t} \int_{0}^{s} C(r) \bar{B} x d r d s$ for all $0 \leq t<T_{0}$. Since $B \subset \bar{B}$, we also have $C(t) z-K_{0}(t) C z=B \int_{0}^{t} \int_{0}^{s} C(r) z d r d s=\bar{B} \int_{0}^{t} \int_{0}^{s} C(r) z d r d s$ for all $z \in X$ and $0 \leq t<T_{0}$. Consequently, the closure of B is a subgenerator of $C(\cdot)$. To show that A is the maximal subgenerator of $C(\cdot)$. We will apply Zorn's lemma to show that $C(\cdot)$ has a subgenerator which does not have a proper extension that is still a subgenerator of $C(\cdot)$. To do this. Let \mathcal{F} be the family of all subgenerators of $C(\cdot)$. We define a partial order " \subset " on \mathcal{F} by $f \subset g$ if g is an extension of f to $\mathrm{D}(g)$. Suppose that \mathcal{A} is a chain of \mathcal{F}. Define $A_{0}: \mathrm{D}\left(A_{0}\right) \subset X \rightarrow X$ by $\mathrm{D}\left(A_{0}\right)=\cup_{f \in \mathcal{F}} \mathrm{D}(f)$ and $A_{0} x=f x$ whenever $x \in D\left(A_{0}\right)$ with $x \in D(f)$ for some $f \in \mathcal{A}$, then A_{0} is well-defined and a subgenerator of $C(\cdot)$, and so A_{0} is an upper bound of \mathcal{A} in (\mathcal{F}, \subset). By Zorn's lemma, (\mathcal{F}, \subset) has a maximal element B which is a subgenerator of $C(\cdot)$, and does not have a proper extension that is still a subgenerator of $C(\cdot)$. In particular, $B \subset A$. Similarly, we can show that B is the maximal subgenerator of $C(\cdot)$, which implies that $A \subset B$. Clearly, (2) and (3) both hold because A is the
maximal subgenerator of $C(\cdot)$. To show that (1) holds when C is injective, we will show that $A \subset C^{-1} A C$ or equivalently, $C A \subset A C$. Let $x \in D(A)$ be given, then $K_{2}(t) C x=\widetilde{S}(t) x-j_{1} * \widetilde{S}(t) A x \in D(A)$ and

$$
\begin{aligned}
A K_{2}(t) C x & =A \widetilde{S}(t) x-A j_{1} * \widetilde{S}(t) A x \\
& =A \widetilde{S}(t) x-\left[\widetilde{S}(t) A x-K_{2}(t) C A x\right] \\
& =K_{2}(t) C A x
\end{aligned}
$$

for all $0 \leq t<T_{0}$, so that $C A x=A C x$. Hence, $C A \subset A C$. In order to show that $C^{-1} A C \subset A$. Let $x \in D\left(C^{-1} A C\right)$ be given, then $C x \in D(A)$ and $A C x \in R(C)$. By the definition of generator and the commutativity of C with $C(\cdot)$, we have $C\left[C(t) x-K_{0}(t) C x\right]=C(t) C x-K_{0}(t) C^{2} x=\int_{0}^{t} S(r) A C x d r=\int_{0}^{t} S(r) C C^{-1} A C x d r=C \int_{0}^{t} S(r) C^{-1} A C x d r$. Since C is injective, we have $x \in D(A)$ and $A x=C^{-1} A C x$. Consequently, $A \subset C^{-1} A C$. Finally, we will show that (4) holds when K_{0} is a kernel on $\left[0, T_{0}\right.$). Clearly, it suffices to show that $\widetilde{S}(t) \widetilde{S}(s) x=\widetilde{S}(s) \widetilde{S}(t) x$ for all $x \in X$ and $0 \leq t, s<T_{0}$. Let $x \in X$ and $0 \leq s<T_{0}$ be given. By (3) and the closedness of A, we have

$$
\begin{aligned}
\widetilde{S}(\cdot) \widetilde{S}(s) x-A j_{1} * \widetilde{S}(\cdot) \widetilde{S}(s) x & =K_{2}(\cdot) C \widetilde{S}(s) x \\
& =\widetilde{S}(s) K_{2}(\cdot) C x \\
& =\widetilde{S}(s)\left[\widetilde{S}(\cdot) x-A j_{1} * \widetilde{S}(\cdot) x\right] \\
& =\widetilde{S}(s) \widetilde{S}(\cdot) x-\widetilde{S}(s) A j_{1} * \widetilde{S}(\cdot) x \\
& =\widetilde{S}(s) \widetilde{S}(\cdot) x-A j_{1} * \widetilde{S}(s) \widetilde{S}(\cdot) x
\end{aligned}
$$

on $\left[0, T_{0}\right)$, and so $[\widetilde{S}(\cdot) \widetilde{S}(s) x-\widetilde{S}(s) \widetilde{S}(\cdot) x]=A j_{1} *[\widetilde{S}(\cdot) \widetilde{S}(s) x-\widetilde{S}(s) \widetilde{S}(\cdot) x]$ on $\left[0, T_{0}\right)$. Hence, $\widetilde{S}(\cdot) \widetilde{S}(s) x=\widetilde{S}(s) \widetilde{S}(\cdot) x$ on $\left[0, T_{0}\right)$, which implies that $\widetilde{S}(t) \widetilde{S}(s) x=\widetilde{S}(s) \widetilde{S}(t) x$ for all $0 \leq t, s<T_{0}$.

Lemma 2.8 Let $C(\cdot)$ be a local K-convoluted C-cosine function on X, and $0 \in \operatorname{supp} K_{0}$ (the support of K_{0}). Assume that $C(\cdot) x=0$ on $\left[0, t_{0}\right)$ for some $x \in X$ and $0<t_{0}<T_{0}$. Then $C C(\cdot) x=0$ on $\left[0, T_{0}\right)$. In particular, $C(t) x=0$ for all $0 \leq t<T_{0}$ if the injectivity of C is added.

Proof. Let $0 \leq t<T_{0}$ be given, then $t+s<T_{0}$ and $K_{0}(s)$ is nonzero for some $0<s<t_{0}$, so that $\widetilde{S}(s) C(t) x=C(t) \widetilde{S}(s) x=0, C(s) \widetilde{S}(t) x=\widetilde{S}(t) C(s) x=0$ and $\widetilde{S}(s) K_{0}(t) C x=K_{0}(t) C \widetilde{S}(s) x=0$. By Theorem 2.2, we have $K_{0}(s) \widetilde{S}(t) C x=K_{0}(s) C \widetilde{S}(t) x=0$. Hence, $\widetilde{S}(t) C x=0$. Since $0 \leq t<T_{0}$ is arbitrary, we have $C C(t) x=C(t) C x=0$ for all $0 \leq t<T_{0}$. In particular, $C(t) x=0$ for all $0 \leq t<T_{0}$ if the injectivity of C is added.

Theorem 2.9 Let $C(\cdot)$ be a local K-convoluted C-cosine function on X, and $0 \in \operatorname{supp} K_{0}$. Assume that C is injective. Then $C(\cdot)$ is nondegenerate if and only if it has a subgenerator.

Proof. By Theorem 2.5, we need only to show that A is a subgenerator of $C(\cdot)$ when $C(\cdot)$ is a nondegenerate local K-convoluted C-cosine function on X with generator A and $0 \in \operatorname{supp} K_{0}$. Observe (23)-(24) and the definition of A, we need only to show that (23) holds. Let $0 \leq t_{0}<T_{0}$ be fixed. Then for each $x \in X$ and $0 \leq s<T_{0}$, we set $y=\widetilde{S}\left(t_{0}\right) x$. By Theorem 2.2, we have

$$
\begin{aligned}
\widetilde{S}(r)\left[C(s)-K_{0}(s) C\right] y & =\left[C(r)-K_{0}(r) C\right] \widetilde{S}(s) y \\
& =\widetilde{S}(s)\left[C(r)-K_{0}(r) C\right] y \\
& =\widetilde{S}(s)\left(\left[C(r)-K_{0}(r) C\right] \widetilde{S}\left(t_{0}\right) x\right) \\
& =\widetilde{S}(s)\left(\widetilde{S}(r)\left[C\left(t_{0}\right)-K_{0}\left(t_{0}\right) C\right] x\right) \\
& =[\widetilde{S}(s) \widetilde{S}(r)]\left[C\left(t_{0}\right)-K_{0}\left(t_{0}\right) C\right] x \\
& =\widetilde{S}(r) \widetilde{S}(s)\left[C\left(t_{0}\right)-K_{0}\left(t_{0}\right) C\right] x
\end{aligned}
$$

for all $0 \leq r<T_{0}$ with $r+s, r+t_{0}<T_{0}$ or equivalently, $C(r)\left[C(s)-K_{0}(s) C\right] y=C(r) \widetilde{S}(s)\left[C\left(t_{0}\right)-K_{0}\left(t_{0}\right) C\right] x$ for all $0 \leq r<T_{0}$ with $r+s, r+t_{0}<T_{0}$. It follows from Lemma 2.8 and the nondegeneracy of $C(\cdot)$ that we have $\left[C(s)-K_{0}(s) C\right] y=\widetilde{S}(s)\left[C\left(t_{0}\right)-K_{0}\left(t_{0}\right) C\right] x$. Since $0 \leq s<T_{0}$ is arbitrary, we have $y \in D(A)$ and $A y=\left[C\left(t_{0}\right)-K_{0}\left(t_{0}\right) C\right] x$. Since $0 \leq t_{0}<T_{0}$ is arbitrary, we conclude that (23) holds.

By slightly modifying the proof of Theorem 2.9, we can obtain the next result concerning nondegenerate K-convoluted C-cosine functions.
Theorem 2.10 Let $C(\cdot)$ be a nondegenerate K-convoluted C-cosine function on X. Then C is injective, and $C(\cdot)$ has a subgenerator.

Combining Theorem 2.10 with Theorem 2.7, the next result concerning nondegenerate K-convoluted C-cosine functions is also obtained.
Theorem 2.11 Let $C(\cdot)$ be a nondegenerate K-convoluted C-cosine function on X with generator A. Then A is the maximal subgenerator of $C(\cdot)$, and each subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of $C(\cdot)$. Moreover, (1)-(4) hold.

Since $0 \in \operatorname{supp} K_{0}$ implies that K_{0} is a kernel on [$0, T_{0}$), we can apply Theorems 2.7 and 2.9 to obtain the next corollary.
Corollary 2.12 Let $C(\cdot)$ be a nondegenerate local K-convoluted C-cosine function on X with generator A, and $0 \in$ supp $_{0}$. Assume that C is injective. Then A is the maximal subgenerator of $C(\cdot)$, and each subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of C(•). Moreover, (1)-(4) hold.
Theorem 2.13 Let A be a closed subgenerator of a strongly continuous sufamily $C(\cdot)$ of $L(X)$, and K_{0} a kernel on $\left[0, T_{0}\right)$. Assume that C is injective. Then $C A \subset A C$, and $C(\cdot)$ is a nondegenerate local K-convoluted C-cosine function on X with generator $C^{-1} A C$. In particular, $C^{-1} \overline{A_{0}} C$ is the generator of $C(\cdot)$ for each subgenerator A_{0} of $C(\cdot)$.

Proof. To show that $C(\cdot)$ is a nondegenerate local K-convoluted C-cosine function on X. By Theorem 2.5, we need only to show that $C C(\cdot)=C(\cdot) C$ or equivalently, $C \widetilde{S}(\cdot)=\widetilde{S}(\cdot) C$. Just as in the proof of Theorem 2.7, we have $C A \subset A C$ and $[\widetilde{S}(\cdot) C x-C \widetilde{S}(\cdot) x]=A j_{1} *[\widetilde{S}(\cdot) C x-C \widetilde{S}(\cdot) x]$ on $\left[0, T_{0}\right)$. By Lemma 2.6, we also have $\widetilde{S}(\cdot) C x=C \widetilde{S}(\cdot) x$ on $\left[0, T_{0}\right)$. We will prove that $C^{-1} A C$ is the generator of $C(\cdot)$. Let B denote the generator of $C(\cdot)$. By Theorem 2.7, we have $A \subset B$. By (1), we also have $C^{-1} A C \subset C^{-1} B C=B$. Conversely, let $x \in D(B)$ be given, then $K_{2}(t) C x=\widetilde{S}(t) x-j_{1} * \widetilde{S}(t) B x \in D(A)$ for all $0 \leq t<T_{0}$, so that $C x \in D(A)$ and

$$
\begin{aligned}
A K_{2}(\cdot) C x & =A \widetilde{S}(\cdot) x-A j_{1} * \widetilde{S}(\cdot) B x \\
& =A \widetilde{S}(\cdot) x-\left[\widetilde{S}(\cdot) B x-K_{2}(\cdot) C B x\right] \\
& =A \widetilde{S}(\cdot) x-\left[B \widetilde{S}(\cdot) x-K_{2}(\cdot) C B x\right] \\
& =K_{2}(\cdot) C B x
\end{aligned}
$$

on $\left[0, T_{0}\right)$. Hence, $A C x=C B x \in R(C)$, which implies that $x \in D\left(C^{-1} A C\right)$ and $C^{-1} A C x=B x$. Consequently, $B \subset C^{-1} A C$.

Corollary 2.14 Let $C(\cdot)$ be a nondegenerate local K-convoluted C-cosine function on X, and $0 \in \operatorname{supp} K_{0}$. Assume that C is injective. Then $C^{-1} \overline{A_{0}} C$ is the generator of $C(\cdot)$ for each subgenerator A_{0} of $C(\cdot)$.
Remark 2.15 Let $C(\cdot)$ be a local K-convoluted C-cosine function on X. Then
(i) $C(\cdot)$ is nondegenerate if and only if $S(\cdot)$ is;
(ii) A is the generator of $C(\cdot)$ if and only if it is the generator of $S(\cdot)$;
(iii) A is a closed subgenerator of $C(\cdot)$ if and only if it is a closed subgenerator of $S(\cdot)$.

Remark 2.16 A strongly continuous subfamily of $L(X)$ may not have a subgenerator; a local K-convoluted C-cosine function on X is degenerate when it has a subgenerator but does not have a maximal subgenerator; and a closed linear operator in X generates at most one nondegenerate local K-convoluted C-cosine function on X when C is injective and K_{0} a kernel on $\left[0, T_{0}\right)$.

3. Abstract Cauchy Problems

In the following, we always assume that $C \in L(X)$ is injective, K_{0} a kernel on $\left[0, T_{0}\right.$), and A a closed linear operator in X such that $C A \subset A C$. We also note some basic properties concerning the strong solutions of $\operatorname{ACP}(A, f, x, y)$ just results in [12] when A is the generator of a nondegenerate (local) α-times integrated C-cosine function on X.
Proposition 3.1. Let A be a subgenerator of a nondegenerate local K_{0}-convoluted C-cosine function $C(\cdot)$ on X. Then for each $x \in D(A) C(\cdot) x$ is the unique solution of $A C P(A, K(\cdot) C x, 0,0)$ in $C\left(\left[0, T_{0}\right),[D(A)]\right)$. Here $[D(A)]$ denotes the Banach space $D(A)$ equipped with the graph norm $|x|_{A}=\|x\|+\|A x\|$ for $x \in D(A)$.
Proposition 3.2. Let A be a subgenerator of a nondegenerate local K-convoluted C-cosine function $C(\cdot)$ on X and $C^{1}=\left\{x \in X \mid C(\cdot) x\right.$ is continuously differentiable on $\left.\left(0, T_{0}\right)\right\}$. Then
(i) for each $x \in C^{1} S(t) x \in D(A)$ for a.e. $t \in\left(0, T_{0}\right)$;
(ii) for each $x \in C^{1} \quad S(\cdot) x$ is the unique solution of $A C P(A, K(\cdot) C x, 0,0)$;
(iii) for each $x \in D(A) \quad S(\cdot) x$ is the unique solution of $A C P(A, K(\cdot) C x, 0,0)$ in $C^{1}\left(\left[0, T_{0}\right),[D(A)]\right)$.
Proposition 3.3. Let A be the generator of a nondegenerate local K-convoluted C-cosine function $C(\cdot)$ on X and $x \in X$. Assume that $C(t) x \in R(C)$ for all $0 \leq t<T_{0}$, and $C^{-1} C(\cdot) x \in C\left(\left[0, T_{0}\right), X\right)$ is differentiable a.e. on $\left(0, T_{0}\right)$. Then $C^{-1} S(t) x \in D(A)$ for a.e. $t \in\left(0, T_{0}\right)$, and $C^{-1} S(\cdot) x$ is the unique solution of $A C P(A, K(\cdot) x, 0,0)$.

Proof. Clearly, $S(\cdot) x \in C^{1}\left(\left[0, T_{0}\right), X\right)$, and $C(\cdot) x=C C^{-1} C(\cdot) x$ is differentiable a.e. on $\left(0, T_{0}\right)$. By Theorem 2.11, we have $C \frac{d^{2}}{d t^{2}} C^{-1} S(t) x=\frac{d^{2}}{d t^{2}} S(t) x=A S(t) x+K(t) C x=A C C^{-1} S(t) x+K(t) C x$ for a.e. $t \in\left(0, T_{0}\right)$, so that for a.e. $t \in\left(0, T_{0}\right), C^{-1} S(t) x \in \mathrm{D}\left(C^{-1} A C\right)=\mathrm{D}(A)$ and $\frac{d^{2}}{d t^{2}} C^{-1} S(t) x=\left(C^{-1} A C\right) C^{-1} S(t) x+K(t) x=A C^{-1} S(t) x+K(t) x$. Hence, $C^{-1} S(\cdot) x$ is a solution of $\operatorname{ACP}(A, K(\cdot) x, 0,0)$.

Applying Theorem 2.13, we can prove an important result concerning the relation between the generation of a nondegenerate local K-convoluted C-cosine function on X with subgenerator A and the unique existence of strong solutions of $\operatorname{ACP}(A, f, x, y)$, which has been established by the author in [15] when $K=j_{\alpha-1}$, in [12] when $K=j_{\alpha-1}$ with $T_{0}=\infty$, and in [11] when $K=j_{-1}$ and $T_{0}=\infty$.
Theorem 3.4. The following statements are equivalent:
(i) A is a subgenerator of a nondegenerate local K-convoluted C-cosine function $C(\cdot)$ on X;
(ii) for each $x \in X$ and $g \in L_{l o c}^{1}\left(\left[0, T_{0}\right)\right.$, X) the problem $A C P\left(A, K_{0}(\cdot) C x+K_{0} * C g(\cdot), 0,0\right)$ has a unique solution in $C^{2}\left(\left[0, T_{0}\right), X\right) \cap C\left(\left[0, T_{0}\right),[D(A)]\right) ;$
(iii) for each $x \in X$ the problem $A C P\left(A, K_{0}(\cdot) C x, 0,0\right)$ has a unique solution in $C^{2}\left(\left[0, T_{0}\right), X\right) \cap C\left(\left[0, T_{0}\right),[D(A)]\right) ;$
(vi) for each $x \in X$ the integral equation $v(\cdot)=A j_{1} * v(\cdot)+K_{0}(\cdot) C x$ has a unique solution $v(\cdot ; x)$ in $C\left(\left[0, T_{0}\right), X\right)$.

In this case, $\widetilde{S}(\cdot) x+\widetilde{S} * g(\cdot)$ is the unique solution of $A C P\left(A, K_{0}(\cdot) C x+K_{0} * C g(\cdot), 0,0\right)$ and $v(\cdot ; x)=C(\cdot) x$.
Proof. We will prove that (i) implies (ii). Let $x \in X$ and $g \in \mathrm{~L}_{l o c}^{1}\left(\left[0, T_{0}\right), X\right)$ be given. We set $u(\cdot)=\widetilde{S}(\cdot) x+\widetilde{S} * g(\cdot)$, then $u \in C^{2}\left(\left[0, T_{0}\right), X\right) \cap C\left(\left[0, T_{0}\right),[D(A)]\right), u(0)=u^{\prime}(0)=0$, and

$$
\begin{aligned}
A u(t) & =A \widetilde{S}(t) x+A \int_{0}^{t} \widetilde{S}(t-s) g(s) d s \\
& =C(t) x-K_{0}(t) C x+\int_{0}^{t}\left[C(t-s)-K_{0}(t-s) C\right] g(s) d s \\
& =C(t) x+\int_{0}^{t} C(t-s) g(s) d s-\left[K_{0}(t) C x+K_{0} * C g(t)\right] \\
& =u^{\prime \prime}(t)-\left[K_{0}(t) C x+K_{0} * C g(t)\right]
\end{aligned}
$$

for all $0 \leq t<T_{0}$. Hence, u is a solution of $\operatorname{ACP}\left(A, K_{0}(\cdot) C x+K_{0} * C g(\cdot), 0,0\right)$ in $\mathrm{C}^{2}\left(\left[0, T_{0}\right), X\right) \cap \mathrm{C}\left(\left[0, T_{0}\right),[\mathrm{D}(A)]\right)$. The uniqueness of solutions for $\operatorname{ACP}\left(A, K_{0}(\cdot) C x+K_{0} * C g(\cdot), 0,0\right)$ follows directly from the uniqueness of solutions for $\operatorname{ACP}(A, 0,0,0)$. Clearly, " $(i i) \Rightarrow(i i i)$ " holds, and (iii) and (iv) both are equivalent. We remain only to show that " $(i v) \Rightarrow(i)^{\prime \prime}$ holds. Let $C(t): X \rightarrow X$ be defined by $C(t) x=v(t ; x)$ for all $x \in X$ and $0 \leq t<T_{0}$. Clearly, $C(\cdot)$ is strongly continuous, and satisfies (24). Combining the uniqueness of solutions for the integral equation $v(\cdot)=A j_{1} * v(\cdot)+K_{0}(\cdot) C x$ with the assumption $C A \subset A C$, we have $v(\cdot ; C x)=C v(\cdot ; x)$ for each $x \in X$, which implies that $C(t)$ for $0 \leq t<T_{0}$ are linear, and commute with C. Let $\left\{t_{k}\right\}_{k=1}^{\infty}$ be an increasing sequence in $\left(0, T_{0}\right)$ such that $t_{k} \rightarrow T_{0}$, and $\mathrm{C}\left(\left[0, T_{0}\right), X\right)$ a Frechet space with the quasi-norm $|\cdot|$ defined by $|v|=\sum_{k=1}^{\infty} \frac{\|v\|_{k}}{2^{k}\left(1+\|v\|_{k}\right)}$ for $v \in C\left(\left[0, T_{0}\right), X\right)$. Here $\|v\|_{k}=\max _{t \in\left[0, t_{k}\right]}\|v(t)\|$ for all $k \in \mathbb{N}$. To show that $C(\cdot)$ is a subfamily of $L(X)$, we need only to show that the linear map $\eta: X \rightarrow \mathrm{C}\left(\left[0, T_{0}\right), X\right)$ defined by $\eta(x)=v(\cdot ; x)$ for $x \in X$, is continuous or equivalently, $\eta: X \rightarrow \mathrm{C}\left(\left[0, T_{0}\right), X\right)$ is a closed linear operator. Let $\left\{x_{k}\right\}_{k=1}^{\infty}$ be a sequence in X such that $x_{k} \rightarrow x$ in X and $\eta\left(x_{k}\right) \rightarrow v$ in $C\left(\left[0, T_{0}\right), X\right)$, then $v\left(\cdot ; x_{k}\right)=A j_{1} * v\left(\cdot ; x_{k}\right)+K_{0}(\cdot) C x_{k}$ on $\left[0, T_{0}\right)$. Combining the closedness of A with the uniform convergence of $\left\{\eta\left(x_{k}\right)\right\}_{k=1}^{\infty}$ on $\left[0, t_{k}\right]$, we have $v(\cdot)=A j_{1} * v(\cdot)+K_{0}(\cdot) C x$ on $\left[0, T_{0}\right)$. By the uniqueness of solutions for integral equations, we have $v(\cdot)=v(\cdot ; x)=\eta(x)$. Consequently, $\eta: X \rightarrow \mathrm{C}\left(\left[0, T_{0}\right), X\right)$ is a closed linear operator. To show that A is a subgenerator of $C(\cdot)$, we remain only to show that $\widetilde{S}(t) A \subset A \widetilde{S}(t)$ for all $0 \leq t<T_{0}$. Let $x \in D(A)$ be given, then $\widetilde{S}(t) x-K_{2}(t) C x=A j_{1} * \widetilde{S}(t) x=j_{1} * A \widetilde{S}(t) x$ for all $0 \leq t<T_{0}$, and so

$$
\begin{aligned}
\widetilde{S}(t) A x-A j_{1} * \widetilde{S}(t) A x & =K_{2}(t) C A x \\
& =A K_{2}(t) C x \\
& =A \widetilde{S}(t) x-A j_{1} * \widetilde{S}(t) A x
\end{aligned}
$$

for all $0 \leq t<T_{0}$. Hence, $A j_{1} *[\widetilde{S}(\cdot) A x-A \widetilde{S}(\cdot) x]=\widetilde{S}(\cdot) A x-A \widetilde{S}(\cdot) x$ on $\left[0, T_{0}\right)$. By the uniqueness of solutions for $\operatorname{ACP}(A, 0,0,0)$, we have $\widetilde{S}(\cdot) A x=A \widetilde{S}(\cdot) x$ on $\left[0, T_{0}\right)$. Applying Theorem 2.5 , we get that $C(\cdot)$ is a nondegenerate local K-convoluted C-cosine function on X with subgenerator A.

By slightly modifying the proof of [15, Theorem 3.5], we can apply Theorem 3.4 to obtain the next result. Theorem 3.5. Assume that $R(C) \subset R(\lambda-A)$ for some $\lambda \in \mathbb{F}$, and $A C P(A, K(\cdot) x, 0,0)$ has a unique solution in $C\left(\left[0, T_{0}\right),[D(A)]\right)$ for each $x \in D(A)$ with $(\lambda-A) x \in R(C)$. Then A is a subgenerator of a nondegenerate local K_{0}-convoluted C -cosine function on X.

Proof. Clearly, it suffices to show that for each $x \in X$ the integral equation

$$
\begin{equation*}
v(\cdot)=A \int_{0} \int_{0}^{s} v(r) d r d s+K_{1}(\cdot) C x \tag{25}
\end{equation*}
$$

has a (unique) solution $v(\cdot ; x)$ in $\mathrm{C}\left(\left[0, T_{0}\right), X\right)$. Let $x \in X$ be given, then there exists a $y_{x} \in \mathrm{D}(A)$ such that $(\lambda-A) y_{x}=C x$. By hypothesis, $\operatorname{ACP}\left(A, K(\cdot) y_{x}, 0,0\right)$ has a unique solution $u\left(\cdot ; y_{x}\right)$ in $\mathrm{C}\left(\left[0, T_{0}\right),[\mathrm{D}(A)]\right)$. In particular, $u^{\prime \prime}\left(\cdot ; y_{x}\right)=A u\left(\cdot ; y_{x}\right)+K(\cdot) y_{x} \in \mathrm{~L}_{l o c}^{1}\left(\left[0, T_{0}\right), X\right)$. By the closedness of A and the continuity of $A u\left(\cdot ; y_{x}\right)$, we have $\int_{0}^{t} \int_{0}^{s} u\left(r ; y_{x}\right) d r d s \in \mathrm{D}(A)$ and

$$
A \int_{0}^{t} \int_{0}^{s} u\left(r ; y_{x}\right) d r d s=\int_{0}^{t} \int_{0}^{s} A u\left(r ; y_{x}\right) d r d s=u\left(t ; y_{x}\right)-K_{1}(t) y_{x} \in \mathrm{D}(A)
$$

for all $0 \leq t<T_{0}$, so that

$$
\begin{align*}
(\lambda-A) u\left(t ; y_{x}\right) & =(\lambda-A)\left[A \int_{0}^{t} \int_{0}^{s} u\left(r ; y_{x}\right) d r d s+K_{1}(t) y_{x}\right] \tag{26}\\
& =A \int_{0}^{t} \int_{0}^{s}(\lambda-A) u\left(r ; y_{x}\right) d r d s+K_{1}(t) C x
\end{align*}
$$

for all $0 \leq t<T_{0}$. Hence, $v(\cdot ; x)=(\lambda-A) u\left(\cdot ; y_{x}\right)$ is a solution of (25) in $C\left(\left[0, T_{0}\right), X\right)$.

Combining Theorem 3.4 with Theorem 3.5, the next theorem is also attained.
Theorem 3.6. Assume that $R(C) \subset R(\lambda-A)$ for some $\lambda \in \mathbb{F}$, and $A C P(A, K(\cdot) x, 0,0)$ has a unique solution in $C^{1}\left(\left[0, T_{0}\right),[D(A)]\right)$ for each $x \in D(A)$ with $(\lambda-A) x \in R(C)$. Then A is a subgenerator of a nondegenerate local K-convoluted C -cosine function on X .

Proof. Let $x \in X$ be given, and let $u\left(\cdot ; y_{x}\right)$ and $v(\cdot ; x)$ be given as in the proof of Theorem 3.5. By hypothesis, $v(\cdot ; x)$ is continuously differentiable on $\left[0, T_{0}\right)$ and $v^{\prime}(t ; x)=(\lambda-A) u^{\prime}\left(t ; y_{x}\right)$ for all $0 \leq t<T_{0}$. By (26), we also have $v^{\prime}(t ; x)=A \int_{0}^{t} v(r ; x) d r+K_{0}(t) C x$ for all $0 \leq t<T_{0}$. In particular, $v^{\prime}(0 ; x)=0$, and so $v^{\prime}(\cdot ; x)=A j_{1} * v^{\prime}(\cdot ; x)+$ $K_{0}(\cdot) C x$ on $\left[0, T_{0}\right)$. Hence, $v^{\prime}(\cdot ; x)$ is a (unique) solution of the integral equation $v(\cdot)=A j_{1} * v(\cdot)+K_{0}(\cdot) C x$ in $\mathrm{C}\left(\left[0, T_{0}\right), X\right)$.

Since $C^{-1} A C=A$ and $R\left((\lambda-A)^{-1} C\right)=C(D(A))$ if $\rho(A) \neq \emptyset$, we can apply Proposition 3.1, Theorem 3.5 and Theorem 3.6 to obtain the next two corollaries.
Corollary 3.7. Assume that the resolvent set of A is nonempty. Then A is the generator of a nondegenerate local K_{0}-convoluted C -cosine function on X if and only if for each $x \in D(A) A C P(A, K(\cdot) C x, 0,0)$ has a unique solution in $C\left(\left[0, T_{0}\right),[D(A)]\right)$.
Corollary 3.8. Assume that the resolvent set of A is nonempty. Then A is the generator of a nondegenerate local K-convoluted C-cosine function on X if and only if for each $x \in D(A) A C P(A, K(\cdot) C x, 0,0)$ has a unique solution in $C^{1}\left(\left[0, T_{0}\right),[D(A)]\right)$.

Just as in [15, Theorems 3.9 and 3.10], we can apply Theorem 3.4 to obtain the next two wellposed theorems. The wellposedness of abstract fractional Cauchy problems and abstract Cauchy problems associated with various classes of Volterra integro-differential equations in locally convex spaces have been recently considered in [10].
Theorem 3.9. Assume that A is densely defined. Then the following are equivalent :
(i) A is a subgenerator of a nondegenerate local K_{0}-convoluted C-cosine function $S(\cdot)$ on X;
(ii) for each $x \in D(A) A C P(A, K(\cdot) C x, 0,0)$ has a unique solution $u(\cdot ; C x)$ in $C\left(\left[0, T_{0}\right),[D(A)]\right)$ which depends continuously on x. That is, if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in $(D(A),\|\cdot\|)$, then $\left\{u\left(\cdot ; C x_{n}\right)\right\}_{n=1}^{\infty}$ converges uniformly on compact subsets of $\left[0, T_{0}\right)$.

Proof. $(i) \Rightarrow(i i)$. It is easy to see from the definition of a subgenerator of $S(\cdot)$ that $S(\cdot) x$ is the unique solution of $\mathrm{ACP}(A, K(\cdot) C x, 0,0)$ in $\mathrm{C}\left(\left[0, T_{0}\right),[\mathrm{D}(A)]\right)$ which depends continuously on $x \in \mathrm{D}(A)$. (ii) $\Rightarrow(i)$. In view of Theorem 3.4, we need only to show that for each $x \in X(25)$ has a unique solution $v(\cdot ; x)$ in $\mathrm{C}\left(\left[0, T_{0}\right), X\right)$. Let $x \in X$ be given. By the denseness of $D(A)$, we have $x_{m} \rightarrow x$ in X for some sequence $\left\{x_{m}\right\}_{m=1}^{\infty}$ in $D(A)$. We set $u\left(\cdot ; C x_{m}\right)$ to denote the unique solution of $\operatorname{ACP}\left(A, K(\cdot) C x_{m}, 0,0\right)$ in $\mathrm{C}\left(\left[0, T_{0}\right),[\mathrm{D}(A)]\right)$. Then $u\left(\cdot ; C x_{m}\right) \rightarrow u(\cdot)$ uniformly on compact subsets of $\left[0, T_{0}\right)$ for some $u \in C\left(\left[0, T_{0}\right), X\right)$, and so $\int_{0}^{s} \int_{0}^{s} u\left(r ; C x_{m}\right) d r d s \rightarrow \int_{0}^{s} \int_{0}^{s} u(r) d r d s$ uniformly on compact subsets of $\left[0, T_{0}\right)$. Since $u^{\prime \prime}\left(\cdot ; C x_{m}\right)=A u\left(; C x_{m}\right)+K(\cdot) C x_{m}$ a.e. on $\left(0, T_{0}\right)$, we have

$$
\begin{equation*}
A \int_{0} \int_{0}^{s} u\left(r ; C x_{m}\right) d r d s=\int_{0} \int_{0}^{s} A u\left(r ; C x_{m}\right) d r d s=u\left(\cdot ; C x_{m}\right)-K_{1}(\cdot) C x_{m} \tag{27}
\end{equation*}
$$

on $\left[0, T_{0}\right)$ for all $m \in \mathbb{N}$. Clearly, the right-hand side of the last equality of (27) converges uniformly to $u(\cdot)-K_{1}(\cdot) C x$ on compact subsets of $\left[0, T_{0}\right)$. It follows from the closedness of A that $\int_{0}^{t} \int_{0}^{s} u(r) d r d s \in \mathrm{D}(A)$ for all $0 \leq t<T_{0}$ and $A \int_{0} \int_{0}^{s} u(r) d r d s=u(\cdot)-K_{1}(\cdot) C x$ on $\left[0, T_{0}\right)$, which implies that $u(\cdot)$ is a (unique) solution of (25) in $C\left(\left[0, T_{0}\right), X\right)$.

Theorem 3.10. Assume that A is densely defined. Then the following are equivalent:
(i) A is a subgenerator of a nondegenerate local K-convoluted C-cosine function $C(\cdot)$ on X;
(ii) for each $x \in D(A) A C P(A, K(\cdot) C x, 0,0)$ has a unique solution $u(\cdot ; C x)$ in $C^{1}\left(\left[0, T_{0}\right),[D(A)]\right)$ which depends continuously differentiable on x. That is, if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in $(D(A),\|\cdot\|)$, then $\left\{u\left(\cdot ; C x_{n}\right)\right\}_{n=1}^{\infty}$ and
$\left\{u^{\prime}\left(\cdot ; C x_{n}\right)\right\}_{n=1}^{\infty}$ both converge uniformly on compact subsets of $\left[0, T_{0}\right)$.

Proof. (i) $\Rightarrow(i i)$. For each $0 \leq t<T_{0}$ and $x \in \mathrm{D}(A)$, we set $S(t) x=\int_{0}^{t} C(r) x d r$. Then $S(\cdot) x$ is the unique solution of $\operatorname{ACP}(A, K(\cdot) C x, 0,0)$ in $C^{1}\left(\left[0, T_{0}\right),[\mathrm{D}(A)]\right)$. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a Cauchy sequence in $(\mathrm{D}(A),\|\cdot\|)$. We set $u\left(\cdot ; C x_{n}\right)=S(\cdot) x_{n}$ for $n \in \mathbb{N}$, then $\left\{u\left(\cdot ; C x_{n}\right)\right\}_{n=1}^{\infty}$ and $\left\{u^{\prime}\left(\cdot ; C x_{n}\right)\right\}_{n=1}^{\infty}$ both converge uniformly on compact subsets of $\left[0, T_{0}\right) .(i i) \Rightarrow(i)$. For each $x \in X$ and $0 \leq t<T_{0}$, we define $u(t)=\lim _{n \rightarrow \infty} u\left(t ; C x_{n}\right)$ whenever $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence in $D(A)$ which converges to x in X. By hypothesis, $u\left(\cdot ; C x_{m}\right) \rightarrow u(\cdot)$ and $u^{\prime}\left(\cdot ; C x_{m}\right) \rightarrow u^{\prime}(\cdot)$ uniformly on compact subsets of $\left[0, T_{0}\right)$ for some $u \in C^{1}\left(\left[0, T_{0}\right), X\right)$. Just as in the proof of Theorem 3.9, we have

$$
A \int_{0}^{t} \int_{0}^{s} u^{\prime}\left(r ; C x_{m}\right) d r d s=A \int_{0}^{t} u\left(s ; C x_{m}\right) d s=u^{\prime}\left(\cdot ; C x_{m}\right)-K_{0}(\cdot) C x_{m}
$$

on $\left[0, T_{0}\right.$) for all $m \in \mathbb{N}$. Similarly, we also have $A \int_{0}^{s} \int_{0}^{s} u^{\prime}(r) d r d s=u^{\prime}(\cdot)-K_{0}(\cdot) C x$ on $\left[0, T_{0}\right)$, which implies that $u^{\prime}(\cdot)$ is a solution of the integral equation $v(\cdot)=A j_{1} * v(\cdot)+K_{0}(\cdot) C x$ in $C\left(\left[0, T_{0}\right), X\right)$. The uniqueness of solutions for the integral equation $v(\cdot)=A j_{1} * v(\cdot)+K_{0}(\cdot) C x$ in $C\left(\left[0, T_{0}\right), X\right)$ follows from the uniqueness of solutions for the integral equation (3.1) in $\mathrm{C}\left(\left[0, T_{0}\right), X\right)$.

We end this paper with several illustrative examples.
Example 1. Let $X=C_{b}(\mathbb{R})$, and $C(t)$ for $t \geq 0$ be bounded linear operators on X defined by $C(t) f(x)=\frac{1}{2}[f(x+$ $t)+f(x-t)]$ for all $x \in \mathbb{R}$. Then for each $K \in L_{\text {loc }}^{1}\left(\left[0, T_{0}\right), \mathbb{F}\right)$ and $\beta>-1, K_{\beta} * C(\cdot)=\left\{K_{\beta} * C(t) \mid 0 \leq t<T_{0}\right\}$ is local a K_{β}-convoluted cosine function on X which is also nondegenerate with a closed subgenerator $\frac{d^{2}}{d x^{2}}$ acting with its maximal distributional domain when K_{0} is not the zero function on $\left[0, T_{0}\right.$) (or equivalently, K is not the zero in $L_{l o c}^{1}\left(\left[0, T_{0}\right), \mathbb{F}\right)$), but $K * C(\cdot)$ may not be a local K-convoluted cosine function on X except for $K \in L_{l o c}^{1}\left(\left[0, T_{0}\right), \mathbb{F}\right)$ so that $K * C(\cdot)$ is a strongly continuous family in $L(X)$ for which $\frac{d^{2}}{d x^{2}}$ is a closed subgenerator of $K * C(\cdot)$ when K_{0} is not the zero function on $\left[0, T_{0}\right)$. Moreover, (1)-(4) hold and $\frac{d^{2}}{d x^{2}}$ is its generator and maximal subgenerator when K_{0} is a kernel on $\left[0, T_{0}\right)$. In this case, $\frac{d^{2}}{d x^{2}}=\overline{A_{0}}$ for each subgenerator A_{0} of $C(\cdot)$.
Example 2. Let k be a fixed nonnegative integer and K_{0} a kernel on $[0, \infty)$, and let $C(t)$ for $t \geq 0$ and C be bounded linear operators on c_{0} (the family of all convergent sequences in \mathbb{F} with limit 0) defined by $C(t) x=$ $\left\{x_{n}(n-k) e^{-n} \int_{0}^{t} K(t-s) \cosh n s d s\right\}_{n=1}^{\infty}$ and $C x=\left\{x_{n}(n-k) e^{-n}\right\}_{n=1}^{\infty}$ for all $x=\left\{x_{n}\right\}_{n=1}^{\infty} \in c_{0}$, then $\{C(t) \mid 0 \leq t<1\}$ is a local K-convoluted C-cosine function on c_{0} which is degenerate except for $k=0$ and generator A defined by $A x=\left\{n^{2} x_{n}\right\}_{n=1}^{\infty}$ for all $x=\left\{x_{n}\right\}_{n=1}^{\infty} \in c_{0}$ with $\left\{n^{2} x_{n}\right\}_{n=1}^{\infty} \in c_{0}$, and for each $r>1\{C(t) \mid 0 \leq t<r\}$ is not a local K-convoluted C-cosine function on c_{0}. Suppose that $k \in \mathbb{N}$. Then $A_{a}: c_{0} \rightarrow c_{0}$ for $a \in \mathbb{F}$ defined by $A_{a} x=\left\{n^{2} y_{n}\right\}_{n=1}^{\infty}$ for all $x=\left\{x_{n}\right\}_{n=1}^{\infty} \in c_{0}$ with $\left\{n^{2} x_{n}\right\}_{n=1}^{\infty} \in c_{0}$, are subgenerators of $\{C(t) \mid 0 \leq t<1\}$ which do not have proper extensions that are still subgenerators of $\{C(t) \mid 0 \leq t<1\}$. Here $y_{n}=a k^{2} x_{k}$ if $n=k$, and $y_{n}=n^{2} x_{n}$ otherwise. Consequently, $\{C(t) \mid 0 \leq t<1\}$ does not have a maximal subgenerator when $k \in \mathbb{N}$.
Example 3. Let $X=C_{b}(\mathbb{R})\left(\right.$ or $\left.L^{\infty}(\mathbb{R})\right)$, and A be the maximal differential operator in X defined by $A u=\sum_{j=0}^{k} a_{j} D^{j} u$ on \mathbb{R} for all $u \in D(A)$, then $U C_{b}(\mathbb{R})\left(\right.$ or $\left.C_{0}(\mathbb{R})\right)=\overline{D(A)}$. Here $a_{0}, a_{1}, \cdots, a_{k} \in \mathbb{C}$ and $D^{j} u(x)=u^{(j)}(x)$ for all $x \in \mathbb{R}$. It is shown in $\left[2\right.$, Theorem 6.7] that $\left\{C(t) \mid 0 \leq t<T_{0}\right\}$ defined by $(C(t) f)(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{t} \int_{-\infty}^{\infty} K(t-s) \widetilde{\phi_{s}}(x-y) f(y) d y d s$ for all $f \in X$ and $0 \leq t<T_{0}$, is a norm continuous local K_{0}-convoluted cosine function on X with closed subgenerator A if the real-valued polynomial $p(x)=\sum_{j=0}^{k} a_{j}(i x)^{j}$ satisfies $\sup _{x \in \mathbb{R}} p(x)<\infty$, and $K \in L_{l o c}^{1}\left(\left[0, T_{0}\right), \mathbb{F}\right)$ is not the zero function on $\left[0, T_{0}\right)$. Here $\widetilde{\phi}_{t}$ denotes the inverse Fourier transform of ϕ_{t} with $\phi_{t}(x)=\int_{0}^{t} \cosh (\sqrt{p(x)} s)$ ds for all $t \geq 0$. Suppose that K_{0} is a kernel on $\left[0, T_{0}\right)$. Then A is its generator and maximal subgenerator. Applying Theorem 3.4, we get that for each $f \in X$ and continuous function g on $\left[0, T_{0}\right) \times \mathbb{R}$ with $\int_{0}^{t} \sup _{x \in \mathbb{R}}|g(s, x)| d s<\infty$ for all $0 \leq t<T_{0}$, the function u on $\left[0, T_{0}\right) \times \mathbb{R}$ defined by $u(t, x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{t} \int_{-\infty}^{\infty} K_{1}(t-s) \widetilde{\phi_{s}}(x-y) f(y) d y d s+\frac{1}{\sqrt{2 \pi}} \int_{0}^{t} \int_{0}^{t-r} \int_{-\infty}^{\infty} K_{1}(t-r-s) \widetilde{\phi_{s}}(x-$
y) $g(r, y) d y d s d r$ for all $0 \leq t<T_{0}$ and $x \in \mathbb{R}$, is the unique solution of

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u(t, x)}{\partial t^{2}} \\
=\sum_{j=0}^{k} a_{j}\left(\frac{\partial}{\partial x}\right)^{j} u(t, x)+K_{1}(t) f(x)+\int_{0}^{t} K_{1}(t-s) g(s, x) d s \text { for } t \in\left(0, T_{0}\right) \text { and a.e. } x \in \mathbb{R} \\
u(0, x)=0 \text { and } \frac{\partial u}{\partial t}(0, x)=0 \quad \text { for a.e. } x \in \mathbb{R}
\end{array}\right.
$$

in $C^{2}\left(\left[0, T_{0}\right), X\right) \cap C\left(\left[0, T_{0}\right),[D(A)]\right)$.
Acknowledgements: The author is grateful to the referee for his or her corrections and valuable suggestions.

References

[1] W. Arendt, C.J.K. Batty, H. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, (96), Birkhauser Verlag, Basel-Boston-Berlin, 2001.
[2] W. Arendt and H. Kellermann, Integrated Solutions of Volterra Integrodifferential Equations and Applications, Pitman Res. Notes Math. (190), Longman, Harlow, 1989, 21-51.
[3] H.O. Fattorini, The Cauchy Problem, Addison-Wesley, Reading,Mass., 1983.
[4] M.C. Gao Local C-Semigroups and C-Cosine Functions, Acta Math. Sci. 19 (1999) 201-213.
[5] J.A. Goldstein, Semigroups of Linear Operators and Applications, Oxford, 1985.
[6] F. Huang and T. Huang, Local C-Cosine Family Theory and Application, Chin. Ann. Math. 16 (1995) 213-232.
[7] Z. Huang and S. Wang, Strongly Continuous Integrated C-Cosine Operator Function and the Application to the Second Order Abstract Cauchy Problem, Functional Analysis in China, Kluwer Academic Publishes, Holland, 1996, 330-350.
[8] M. Kostic, Generalized Semigroups and Cosine Functions, Mathematical Institute Belgrade, 2011.
[9] M. Kostic, (a,k)-Regularized (C_{1}, C_{2})-Existence and Uniqueness Families, Bull.Cl.Sci.Math. 38 (2013) 9-26.
[10] M. Kostic, Abstract Volterra Integro-Differential Equations, Taylor and Francis Group, 2015.
[11] C.-C. Kuo and S.-Y. Shaw, C-Cosine Functions and the Abstract Cauchy Problem I, II, J. Math. Anal. Appl. 210 (1997) 632-646, 647-666.
[12] C.-C. Kuo, On α-Times Integrated C-Cosine Functions and Abstract Cauchy Problem I, J.Math.Anal. Appl. 313 (2006) 142-162.
[13] C.-C. Kuo, On Existence and Approximation of Solutions of Second Order Abstract Cauchy Problem, Taiwanese J. Math.14(3B) (2010) 1093-1109.
[14] C.-C. Kuo, On Local Integrated C-Cosine Function and Weak Solution of Second Order Abstract Cauchy Problem, Taiwanese J. Math. 14(5) (2010) 2027-2042.
[15] C.-C. Kuo, On Perturbation of Local Integrated Cosine Functions, Taiwanese J. Math. 16(5) (2012) 1613-1628.
[16] C.-C. Kuo, Note On Local Integrated C-Cosine Functions and Abstract Cauchy Problems, Taiwanese J. Math. 17(3) (2013) 957-980.
[17] Y.-C. Li and S.-Y. Shaw, On Generators of Integrated C-Semigroups and C-Cosine Functions, Semigroup Forum 47 (1993) 29-35.
[18] S.-Y. Shaw and Y.-C. Li, On N-Times Integrated C-Cosine Functions, Evolution Equation, Dekker, New York, 1994, 393-406.
[19] S.-Y. Shaw and Y.-C. Li, Characterization and generator of local C-Cosine and C-Sine Functions, Inter. J. Evolution Equations 1(4) (2005) 373-401.
[20] Sova, Cosine Operator Functions, Rozprawy Mat. 49 (1966) 1-47.
[21] T. Takenaka and S. Piskarev, Local C-Cosine Families and N-Times Integrated Local Cosine Families, Taiwanese J. Math. 8 (2004) 515-546.
[22] H.-Y. Wang, C-Cosine Operator Functions and the Second Order Abstract Cauchy Problem, Northeast Math. J. 11(1) (1995) 1-10.
[23] S.-W. Wang and Z. Huang, Strongly Continuous Integrated C-Cosine Operator Functions, Studia Math. 126 (1997) 273-289.
[24] T.-J. Xiao and J. Liang, The Cauchy Problem for Higher-Order Abstract Differential Equations, Lectures Notes in Math. (1701), Springer, 1998.
[25] R. Zhao and Z. Huang, Properties of Subgenerators of Integrated C-Cosine Operator Functions, Northeast Math. J. 14(3) (1998) 281-290.
[26] Q. Zheng, Coercive Differential Operators and Fractionally Integrated Cosine Functions, Taiwanese J. Math. 6 (2002) 59-65.

[^0]: 2010 Mathematics Subject Classification. 2010 Mathematics Subject Classification: 47D60, 47D62
 Keywords. Local K-convoluted C-cosine function, subgenerator, generator, abstract Cauchy problem
 Received: 11 March 2014; Accepted: 02 May 2015
 Communicated by Dragan S. Djordjević
 This research was partially supported by the National Science Council of Taiwan
 Email address: cckuo@math.fju.edu.tw (Chung-Cheng Kuo)

