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Some Properties of Convex Functions
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Abstract. We treat two problems on convex functions of one real variable. The first one is concerned with
properties of tangent lines to the graph of a convex function and essentially is related to the questions on
the first derivative (if it exists). The second problem is related to Schwarz’s derivative, in fact its upper limit
modification. It gives an interesting characterization of convex functions.

Let us recall the definition of a convex functions.

Definition. A function f : (a, b) → R, defined on an interval (a, b), is convex if for all distinct points
x1, x2 ∈ (a, b) and every real number λ ∈ (0, 1) the following inequality holds:

f (λx1 + (1 − λ)x2) ≤ λ f (x1) + (1 − λ) f (x2).

If the reverse inequality holds for a function f : (a, b)→ R

f (λx1 + (1 − λ)x2) ≥ λ f (x1) + (1 − λ) f (x2).

then the function f is said to be concave.
If we write < instead of ≤, then we say that the function is strictly convex (or instead ≥ we write >, the

function is strictly concave).

Figure 1: Convexity

2010 Mathematics Subject Classification. Primary 26A51; Secondary 26A24
Keywords. Convexity, asymptote, Schwarz derivative
Received: 21 Septempber 2016; Revised: 24 December 2016; Accepted: 03 January 2017
Communicated by Eberhard Malkowsky
Email address: malbijanic@fefa.edu.rs (Miloljub Albijanić)
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An equivalent definition of convexity on an interval (a, b) is given by the following condition:

f (x) − f (x1)
x − x1

≤
f (x2) − f (x)

x2 − x

(
x1 < x < x2, x1, x2 ∈ (a, b)

)
.

Convexity and tangent line. A differentiable function f : (a, b) → R is (strictly) convex if and only if for each
point P0 = (x0, f (x0)) on the graph of f , the graph of f lies above the tangent L to the graph at P0 (the graph of f is
strictly above the tangent L, except at the point P0). An analogous statement holds for (strictly) concave differentiable
functions.

Proof. (Necessity). Let x0 ∈ (a, b). The equation of L is given by y = L(x) = f (x0) + f ′(x0)(x − x0).

Figure 2: Convex function

Using Lagrange’s theorem we obtain

f (x) − L(x) = f (x) − f (x0) − f ′(x0)(x − x0) =
(

f ′(ξ) − f ′(x0)
)
(x − x0), for some ξ ∈ (x0, x).

Since f is convex, f ′ is increasing on (a, b) and the difference f ′(ξ) − f ′(x0) has the same sign as x − x0.
Hence f (x) − L(x) ≥ 0, for x ∈ (a, b), as desired. If the function f is strictly convex, then f (x) − L(x) > 0 for
x ∈ (a, b) and x , x0.

(The sufficiency.) By the assumption we have, for all x, x0 ∈ (a, b):

f (x) − L(x) = f (x) − f (x0) − f ′(x0)(x − x0) ≥ 0,

then

f (x) − f (x0)
x − x0

≤ f ′(x0) for x < x0,

f (x) − f (x0)
x − x0

≥ f ′(x0) for x > x0.

Therefore, for all x1, x0, x2 ∈ (a, b), such that x1 < x0 < x2 we have

f (x0) − f (x1)
x0 − x1

≤
f (x2) − f (x0)

x2 − x0
,

which is the second definition of convexity.

The inspiration for this paper comes from the Bourbaki treatise [2].
Solutions to some of the problems from [2] are presented in [1]. We direct the reader to the classical

monograph on inequalities [4] for a thorough exposition of classical inequalities. Convexity plays a crucial
role in such considerations, there is extensive literature on these topics. It is present in classical texts on
Analysis, like Hardy [3] and in modern ones, like Zorich [9]. An example of this line of research can be
found in [6].
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Let us mention a more specialized monograph D. Mitrinović [8] on inequalities. Serbian mathematicians
made their contributions to that field, for example M. Petrovic’s inequality and Karamata’s inequality, which
will be stated below.
M. Petrovic’s inequality. If f : [0,+∞) → R is a convex function and x1, x2, . . . , xn is a sequence of positive
numbers. Then

f (x1) + · · · + f (xn) ≤ f (x1 + · · · + xn) + (n − 1) f (0).

Majorization. Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two finite sequences of real numbers. We say that
the sequence a majorizes the sequence b and write a � b, if

a1 ≥ a2 ≥ · · · ≥ an, b1 ≥ b2 ≥ · · · ≥ bn,

a1 + a2 + · · · + ak ≥ b1 + b2 + · · · + bk, k = 1, 2, . . . ,n − 1,
a1 + a2 + · · · + an = b1 + b2 + · · · + bn.

Karamata’s inequality. Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two sequences of real numbers in an
interval (α, β). If a � b and if f : (α, β)→ R is convex, then

f (a1) + · · · + f (an) ≥ f (b1) + · · · + f (bn).

Proposition A. Let f be differentiable and convex on (a, b), a ≥ 0.

(1) Then f (x) − x f ′(x) decreases (strictly decreases if f is strictly convex) on (a, b).

(2) If f admits a finite right limit at a, then limx→a+0(x − a) f ′(x) = 0.

(3) Function
f (x)
x

on (a, b) either increases or decreases or there exists c ∈ (a, b) so that
f (x)
x

decreases on (a, c)
and increases on (c, b).

(4) Let us assume that b = +∞. If

β = lim
x→+∞

(
f (x) − x f ′(x)

)
is finite, then the limit α = lim

x→+∞

f (x)
x

also exists and is finite. The straight line y = αx + β is an asymptote of
the function f and it lies below the graph of f .

Proof. (1) If f has a second derivative then it is easy to prove that h(x) = f (x) − x f ′(x) decreases, because

h′(x) = f ′(x) − f ′(x) − x f ′′(x) = −x · f ′′(x) ≤ 0.

Figure 3:

Let us now present a proof assuming only existence of the first derivative. We choose x1 < x2.

h(x2) − h(x1) = f (x2) − x2 f ′(x2) − f (x1) + x1 f ′(x1) =

= f (x2) − f (x1) −
(
x2 f ′(x2) − x1 f ′(x1)

)
=

= f (x2) − f (x1) − x2 f ′(x2) + x1 f ′(x2) − x1 f ′(x2) + x1 f ′(x1)

= f (x2) − f (x1) − f ′(x2)(x2 − x1) − x1

(
f ′(x2) − f ′(x1)

)
= f ′(ξ)(x2 − x1) − f ′(x2)(x2 − x1) − x1

(
f ′(x2) − f ′(x1)

)
(Lagrange’s theorem)

= (x2 − x1)
(

f ′(ξ) − f ′(x2)
)
− x1

(
f ′(x2) − f ′(x1)

)
,
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where ξ is between x1 and x2. Since f is convex, the first derivative f ′ is increasing and therefore we obtain

f ′(ξ) − f ′(x2) ≤ 0, ξ < x2,

f ′(x2) − f ′(x1) ≤ 0, x1 < x2

and the result follows immediately.
(2) Let us extend the function f at point a by setting f (a) = f (a + 0) = c . Let us assume that, for some

x0 > a we have f (x0) = f (a). Then, by convexity, f (x) ≤ f (a) for all a < x < x0. In fact, there are only two
possibilities: either f (x) = c for all a < x < x0 or f (x) < c for all a < x < x0. Since the first possibility is trivial
we can assume that f (x) , c for x near a. Then, by the Lagrange’s theorem, there is ξ = ξ(x) ∈ (a, x) such
that

(x − a) f ′(x) =
f ′(x)

f (x) − f (a)
x − a

· ( f (x) − f (a)) =
f ′(x)
f ′(ξ)

·

(
f (x) − f (a)

)
.

Case a. If for some sufficiently small x − a, f ′(x) < 0, then f ′(ξ) < f ′(x) < 0 so∣∣∣∣∣ f ′(x)
f ′(ξ)

∣∣∣∣∣ ≤ 1,

while f (x) − f (a)→ c − c = 0 when x→ a + 0. We conclude (x − a) f ′(x)→ 0.
Case b. f ′(x) ≥ 0, for every x ∈ (a, b). Then f is increasing on (a, b). Let us fix d ∈ (a, b). For x < d we

have 0 ≤ f ′(x) ≤ f ′(d). Because x tends to a we can assume that x < d. We can conclude at once

|(x − a) f ′(x)| ≤ |x − a| f ′(x)→ 0,

which suffices.

(3) Let h(x) =
f (x)
x

. Then,

h′(x) =
x f ′(x) − f (x)

x2 = −
f (x) − x f ′(x)

x2 = −
1(x)
x2 .

We already proved, in (1), that 1(x) is decreasing function on (a, b). Let us consider three cases for 1(x):

Figure 4:

In the first case 1(x) < 0 for all x ∈ (a, b), so h′(x) > 0, which means that h(x) is increasing.
The second case is that 1 takes both positive and negative values on (a, b). This easily implies that h at

first decreases and then increases; similarly we deal with the case when 1 is strictly positive on (a, b).
(4) f ′(x) is monotonically increasing because of the convexity of f (for x > a). Let us fix c > a and let, for

x > a, ϕ(x) be the unique real number such that the points M(c, f (c)), L(x, f (x)) and N(0, ϕ(x)) are collinear.
We distinguish two cases: (a) f ′(x) is not bounded from above on (a,+∞); (b) f ′(x) is bounded from above
on (a,+∞).
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Figure 5: Figure 6:

The first case (a).
When x→ +∞, then ϕ(x)→ −∞ (see Figure 5).
Indeed, assuming the contrary, we would have ϕ(x) ≥ s for all sufficiently large x. That gives: the graph

of f lies below the line q determined by points M and S(0, s), for large x. Let y = γx + δ be the equation of
the line q. Then, for large x:

f (x) ≤ γx + δ and therefore

lim sup
x→+∞

f (x)
x
≤ γ.

Next, there is an x0 such that f ′(x) ≥ γ + 1 for all x ≥ x0. Using Lagrange’s theorem we have

f (x) − f (x0) = (x − x0) f ′(ξ) ≥ (γ + 1)(x − x0) x ≥ x0,

but the last inequality easily implies lim sup
x→+∞

f (x)
x
≥ γ + 1 which gives a contradiction and we proved

lim
x→+∞

ϕ(x) = −∞.

(b) The equation of the tangent line at point L(x, f (x)) is

y = f (x) + f ′(x)(t − x), t > a,

where t is the independent variable. Let us denote the value of this function at t = 0 by ψ = ψ(x), i.e.

ψ(x) = f (x) − x f ′(x),

see Figure 6. Let us note that, under our assumptions, f ′(x) is bounded from above. Hence, since f ′ is
increasing and bounded from above, it has a finite limit α as x→ +∞.

Next, by assumption, f (x) = x f ′(x) + β + o(1) which gives, passing to the limit:

lim
x→+∞

f (x)
x

= lim
x→+∞

f ′(x) +
β + o(1)

x
= α.

Note that we proved:

lim
x→+∞

f (x)
x

= lim
x→+∞

f ′(x).
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The straight line y = αx + β is an asymptote of the function f . The asymptote is under the graph of f
because f is convex.

Proposition B. Let f : I→ R be upper semi-continuous on an open interval I ⊂ R. Then: f is convex on I if

lim sup
h→0

f (x + h) + f (x − h) − 2 f (x)
h2 ≥ 0, (1)

for every x ∈ I.

Proof. The following should be proved: if f is not convex, then the condition (1) fails.
Let us assume that f is not convex on I. That means that there are a < c < b in I such that f (c) > 1(c)

where 1(x) is represents a straight line which contains (a, f (a)) and (b, f (b)). Let Φ(x) = f (x) + εx2. For
sufficiently small ε > 0 we also have Φ(c) > G(c) where G(x) represents a straight line which contains points
(a,Φ(a)) and (b,Φ(b)) that is, the function Φ is not convex on [a, b].

Figure 7: Figure 8:

Let

Ψ(x) = Φ(x) − G(x), x ∈ [a, b].

The function Ψ attains its maximum on [a, b] at some point ξ ∈ (a, b) because Φ is upper semi-continuous
on the compact interval [a, b]. Therefore, there is δ > 0 such that

Ψ(ξ − h) + Φ(ξ + h)
2

≤ Ψ(ξ), for all |h| < δ.

That means,

Ψ(ξ − h) + Ψ(ξ + h) ≤ 2Ψ(ξ),

so (
Φ(ξ − h) − G(ξ − h)

)
+
(
Φ(ξ + h) − G(ξ + h)

)
≤ 2
(
Φ(ξ) − G(ξ)

)
,

and since G(x) is linear we obtain

G(ξ − h) + G(ξ + h) = 2G(ξ).
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Now we complete the proof by establishing the following inequalities:

Φ(ξ − h) + Φ(ξ + h) ≤ 2Φ(ξ),

f (ξ − h) + ε(ξ − h)2 + f (ξ + h) + ε(ξ + h)2
≤ 2 f (ξ) + 2εξ2,

f (ξ − h) + f (ξ + h) − 2 f (ξ) ≤ −2εh2,

f (ξ − h) + f (ξ + h) − 2 f (ξ)
h2 ≤ −2ε and finally

lim sup
h→0

f (ξ − h) + f (ξ + h) − 2 f (ξ)
h2 ≤ −2ε < 0.

Conclusion

The proofs presented have a strong geometrical flavor and we stress the role played by Lagrange’s
theorem. Although these results are quite classical and appeared in the literature, we believe the novelty
of presentation will be of interest. These and related results have generalizations in many directions.
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