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Abstract. In this paper, we study the growth of gradients of solutions of elliptic equations, including the
Dirichlet eigenfunction solutions on bounded plane convex domain. Several results related to Bi-Lipschicity
of quasiconformal harmonic (qch) mappings with respect to quasi-hyperbolic and euclidean metrics, are
proved. In connection with the subject, we announce a few results concerning the so called interior estimate,
including Proposition 1.1. In addition, a short review of the subject is given.

1. Introduction

There is a numerous literature related to the subject, see [16] and the literature cited there and in this
paper. Here we give a short review of the subject, announce and prove a few new results. In particular,
here our discussion is related to the following items:

(i) In Section 3, we outline a proof of result of Božin - Mateljević which gives an answer to an intriguing
problem probably first posed by Kalaj and which states that QCH mappings between Lyapunov Jordan
domains are co-Lipschitz.

(ii) In [19], Li Peijin, Jiaolong Chen, and Xiantao Wang proved the gradient of quasiconformal solutions
of Poisson equations are bounded under some hypothesis. In Section 4 we announce some results related
to the local version of the interior estimate (see for example Proposition 4.3), and discuss whether their
result holds without the hypothesis that the radial derivative is bounded.

(iii) In Section 5, the author shows that the Dirichlet eigenfunction solutions on bounded plane con-
vex domain have bounded gradients. Our considerations gives contribution to the problem posed in
communication of the author with Yakov Sinai.

(iv) Bi-Lipschicity property of harmonic K-quasiconformal maps with respect to k-metrics (quasi-
hyperbolic metrics) in space is subject of Section 6.

(v) In Section 7, we extend a result of Tam and Wan, [23], 1998. More precisely, we prove if f is K-qc
hyperbolic harmonic mappings of Hn with respect to the hyperbolic metric with K < 3n−1, then f is a
quasi-isometry.

Concerning the items (i), (ii) and (iii) we only outline some proofs.
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Here we will only give a few comments related to item (ii) above1). In [7], see also [8, 17, 26], we have
initiated to study the growth of gradients of solutions of elliptic equations using Theorem 4’ [6] (Heinz-
Bernstein) stated here as Proposition 4.1. We call this result the interior estimate of Heinz-Bernstein type.
It has turned out that the so called the interior estimates are very useful for our purposes. Note that in
Section 4, we only announce the following improvement of Proposition 4.12):

Proposition 1.1 (Local version of Interior estimate). Let χ : U → R be a continuous function from the closed
unit discU into the real line satisfying the conditions:

1. χ is C2 onU .
2. There are positive constants a0 and b0 such that |∆χ| ≤ a0|∇χ|2 + b0, on V = V(r) = U∩B(w0, r), r > 0, where

w0 ∈ T, (the last inequality we will call Poisson-Laplace type inequality or the interior estimate inequality) and
3. χb(θ) = χ(eiθ) is C1,α on the interval l = V(r) ∩ T.

Then there is 0 < r1 < r such that the function |∇χ| is bounded on V(r1) = U ∩ B(w0, r1).

Here U and T denote the unit disc and the unit circle respectively. See also Proposition 4.3 in Section 4
which is more complete statement.

In Section 2 we shortly consider the background of the subject and in Section 8, we collect some
definitions.

2. Background

For a function h, we use notation ∂h = 1
2 (h′x − ih′y) and ∂h = 1

2 (h′x + ih′y); we also use notations Dh and Dh

instead of ∂h and ∂h respectively when it seems convenient. We use the notation λ f (z) = |∂ f (z)| − |∂̄ f (z)|
and Λ f (z) = |∂ f (z)| + |∂̄ f (z)|, if ∂ f (z) and ∂̄ f (z) exist.

Throughout the paper we denote by Ω, G and D open subsets of Rn, n ≥ 1.
For r > 0 and x ∈ Rn, let B(x, r) = Bn(x, r) = {z ∈ Rn : |z − x| < r}, Sn−1(x, r) = ∂Bn(x, r) (abbreviated

S(x, r)) and let Bn, S = Sn−1 stand for the unit ball and the unit sphere in Rn, respectively. In particular,
in dimension n = 2 frequently the notation D(x, r) for planar disk is used instead of B2(x, r) and by
D (or U) we denote the unit disc B2 and T = ∂D we denote the unit circle S1 in the complex plane.
For a domain D in Rn with non-empty boundary, we define the distance function d = dD = dist(D) by
d(x) = d(x; ∂D) = dist(D)(x) = inf{|x − y| : y ∈ ∂D}; and if f maps D onto D′ ⊂ Rn, in some settings it is
convenient to use short notation d∗ = d∗(x) = d f (x) for d( f (x); ∂D′). It is clear that d(x) = dist(x, Dc), where
Dc is the complement of D inRn. For a domain G ⊂ Rn let ρ : G→ [ 0, ∞) be a continuous function. We say
that ρ is a weight function or a metric density if for every locally rectifiable curve γ in G, the integral

lρ(γ) =

∫
γ
ρ(x)ds

exists. In this case we call lρ(γ) the ρ-length of γ. A metric density defines a metric dρ : G × G→ [ 0, ∞) as
follows. For a, b ∈ G, let

dρ(a, b) = inf
γ

lρ(γ)

where the infimum is taken over all locally rectifiable curves in G joining a and b.
For the modern mapping theory, which also considers dimensions n ≥ 3 , we do not have a Riemann

mapping theorem and therefore it is natural to look for counterparts of the hyperbolic metric. So called
hyperbolic type metrics have been the subject of many recent papers. Perhaps the most important of these

1)for the other item see the corresponding sections
2)We believe that this result will find further application, in particular concerning the item (ii) above, see also [8, 17, 26].
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metrics are the quasihyperbolic metric κG (shortly κ metric) and the distance ratio metric jG of a domain
G ⊂ Rn (see [4, 22]). The quasihyperbolic metric (shortly κ-metric) κ = κG of G is a particular case of the
metric dρ when ρ(x) = 1

d(x,∂G) (see [4, 22]).
Some definitions are also given in Section 8. For example, for definitions of the outer dilatation KO( f ) of

f and K-quasiconformal maps (K-qc) see Section 8.
In this Section we mainly discuss the background related to Section 6. We first state a few results from

our paper [12].

Proposition 2.1 (Proposition 5 [12]). If h is a harmonic univalent orientation preserving K-qc mapping of domain
D onto D′ and k = K−1

K+1 , then

d(z)Λh(z) ≤ 16 K dh(z) and d(z)λh(z) ≥
1 − k

4
dh(z) . (1)

Proposition 2.2 (Corollary 1, Proposition 5[12]). Every Eucldean-harmonic quasi-conformal mapping of the unit
disc (more generally of a strongly hyperbolic domain) is a quasi-isometry with respect to hyperbolic distances.

From Proposition 2.1 directly follows next result (Proposition 2.3). 3)

Proposition 2.3 ( [10]). Every Euclidean-harmonic quasi-conformal mapping of a domain different from C is a
quasi-isometry with respect to quasi-hyperbolic distances.

The next theorem concerns harmonic maps onto a convex domain. For the planar version of Theorem
2.4 cf. [11, 12], also [16], pp. 152-153. The space version was communicated on International Conference on
Complex Analysis and Related Topics (Xth Romanian-Finnish Seminar, August 14-19, 2005, Cluj-Napoca,
Romania), by Mateljević and stated in [12], cf. also [14].

Theorem 2.4 (Theorem 1.3, [12]). Suppose that h is an Euclidean harmonic mapping from the unit ball Bn onto a
bounded convex domain D = h(Bn), which contains the ball h(0) + R0Bn. Then for any x ∈ Bn

d(h(x), ∂D) ≥ (1 − ‖x‖)R0/2n−1.

Although the proofs of the above results are not difficult, it turns out that they have further impact on the
subject. We will shortly discuss it in this paper.

We use a distortion property of quasiconformal maps to prove that for n-dimensional Euclidean har-
monic quasiconformal mappings with KO( f ) < 3n−1, Jacobian is never zero.

Theorem 2.5 ([1, 15]). Suppose that h : Ω 7→ Rn is a harmonic quasiconformal map. If KO(h) < 3n−1, then its
Jacobian has no zeros.

Theorem 2.6 ([1, 15]). Suppose h is a harmonic K-quasiconformal mapping from the unit ball Bn onto a bounded
convex domain D = h(Bn), with K < 3n−1. Then h is co-Lipschitz on Bn with respect Euclidean metrics.

In particular, it is co-Lipschitz with respect to quasi-hyperbolic metrics (κ-metrics). We can generalize this
result:

Theorem 2.7. Suppose that f : D1 −→ D2, where D1,D2 ⊂ Rn and the complement D1 has at least one point, is
a harmonic K-quasiconformal mapping with KO( f ) < 3n−1, (or and that f belongs to a non-zero Jacobian family of
harmonic maps), then f is bi-Lipschitz with respect to κ-metrics.

This theorem is stated as Theorem 6.1 in Section 6 and it is also proved by Shadia Shalandi [20].
In particular,

(A) f is Lipschitz with respect to κ-metrics.
Note that (A) holds more generally without the hypothesis that f belongs to a non-zero Jacobian family,

cf. [18].

3)In that time, the author did not realized that quasi-hyperbolic metrics have important applications and did not state this version
which due to V. Manojlovic.
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Theorem 2.8 ([18]). Suppose that Ω ⊂ Rn, f : Ω→ Rn is K-qr and Ω′ = f (Ω). Let ∂Ω′ be a continum containing
at least two distinct point.
If f is a vector harmonic map, then f is Lipschitz with respect to quasi-hyperbolic metrics on Ω and Ω′.

3. Quasiconformal and QCH mappings between Lyapunov Jordan domains

Although the following two statements did not get attention immediately after their publication, it turns
out surprisingly that they have an important role in the demonstration of Theorem 3.5 (co-Lip), [2].

Proposition 3.1 (Corollary 1, Proposition 5[12]; see also [10]). Every euclidean-harmonic quasi-conformal map-
ping of the unit disc (more generally of a strongly hyperbolic domain) is a quasi-isometry with respect to hyperbolic
distances.

Theorem 3.2 ([11]). (ii.1) Suppose that h = f + 1 is a Euclidean orientation preserving harmonic mapping fromD
onto bounded convex domain D = h(D), which contains a disc B(h(0); R0) . Then | f ′| ≥ R0/4 onD.
(ii.2) Suppose, in addition, that h is K-qc. Then λh ≥ (1 − k)| f ′| ≥ (1 − k)R0/4 on D .
(ii.3) In particular, h−1 is Lipschitz.

Further Kalaj [24] proved that

Theorem 3.3. Suppose h : D1 → D2 is a qch homeomorphisam, where D1 and D2 are domains with C1,µ boundary.
(a)Then h is Lipschitz.
(b)If in addition D2 is convex, then h is bi-Lipschitz.

Note that (b) is an immediate corollary of (a) and Theorem 3.2. But these results in mind the following
question seems natural:
Question 1: Whether Quasiconformal and QCH mappings between Lyapunov Jordan domains is co-
Lipschitz?

The proof of the part (a) of Theorem 3.3 in [24] is based on an application of Mori’s theorem on
quasiconformal mappings, which has also been used previously by Miroslav Pavlović in [25] in the case
D1 = D2 = U, and a geometric lemma related to Lyapunov domains. It seems that using local version of
the interior estimate, Proposition 4.3, one can prove that the theorem holds if D2 has C2 boundary.

Note that our proof of Proposition 4.3 is not based on Mori’s theorem on quasiconformal mappings, and
a natural question arises:

Question 2. Whether a proof of Theorem 3.3(a) can be based on Proposition 4.3?
As an application of Gehring-Osgood inequality[4] concerning qc mappings and quasi-hyperbolic dis-

tances, in the particular case of punctured planes, we prove

Proposition 3.4. Let f be a K-qc mapping of the plane such that f (0) = 0, f (∞) = ∞ and α = K−1 . If z1, z2 ∈ C∗,
|z1| = |z2| and θ ∈ [0, π] (respectively θ∗ ∈ [0, π]) is the measure of convex angle between z1, z2 (respectively
f (z1), f (z2)), then

θ∗ ≤ c max{θα, θ},

where c = c(K). In particular, if θ ≤ 1, then θ∗ ≤ cθα.

We shortly refer to this result as (GeOs-BM). Through the paper we frequently consider the setting (Uqc):
Let h : U→ D be K-qc map, whereU is the unit disk and suppose that D is Lyapynov domain. Under this
hypothesis, using (GeOs-BM), we prove that for every a ∈ T = {|z| = 1}, there is a special Lyapunov domain
Ua, of a fixed shape, in the unit diskUwhich touches a and a special, convex Lyapunov domain lyp(D)−b , of
a fixed shape, in D such that lyp(D)−b ⊂ h(Ua) ⊂ Hb, where Hb is a half-plane Hb, which touches b = h(a). We
can regard this result as ”good local approximation of qc mapping h by its restriction to a special Lyapunov
domain so that codomain is locally convex”. In addition if h is harmonic, using it, we prove that h is co-Lip
onU:
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Theorem 3.5. Suppose h : U → D is a qch homeomorphisam, where D is a Lyapunov domain with C1,µ boundary.
Then h is co-Lipschitz.

It settles an open intriguing problem in the subject and can be regarded as a version of Kellogg- Warschawski
theorem for qch mappings.

4. Quasiconformal Solutions of Poisson Equations

In [19], Li Peijin, Jiaolong Chen, and Xiantao Wang proved that the gradient of quasiconformal solutions
of Poisson equations are bounded under some hypothesis. Using local version of the interior estimate,
Proposition 4.3, we outline an argument that their result holds without hypothesis (ii.2) (see below)4).

We introduce the following hypothesis:
(i.1) Let 1 be a function fromD to Cwith a continuous extension to the closureD ofD, and
(i.2) let f : T→ C be a bounded integrable function on T and
(i.3) let Ω be a Jordan domain with C2 boundary.

Further, let
(ii.1)DD→Ω(1) denote the family of solutions w : D→ Ω of the Poisson equation ∆w = 1, where w|T = f ∈
L1(T) and each w is a sense-preserving diffeomorphism. In [19], it is proved that if Ω is C2 domain,
(ii.2) |∂u/∂r| is bounded onD, where u = P[ f ], and
(ii.3) w belongs toDD→Ω(1),
then w is Lip onD.

For example, by results related to the interior estimate in mind, it seems natural to ask the following:
Question 3. Whether we can weaken (or remove) the hypothesis that |∂u/∂r| is bounded and whether

we can weaken the hypothesis that 1 is continuous on the closure of the unit disk?
We suggest a procedure to drop the hypothesis (ii.2).
Recall, roughly speaking, in our previous research we have initiated a study of the extent to which the

conformal theory can be extended to harmonic qc mappings. It has turned out that the following result is
very useful for our purposes.

Proposition 4.1 (Interior estimate). (Heinz-Bernstein, see Theorem 4’ [6]). Let s : U → R be a continuous
function from the closed unit discU into the real line satisfying the conditions:

1. s is C2 onU,
2. sb(θ) = s(eiθ) is C2 and
3. |∆s| ≤ a0|∇s|2 + b0, on U for some constants a0 and b0 (the last inequality we will call Poisson-Laplace type

inequality or the interior estimate inequality).

Then the function |∇s| is bounded onU.

We call Theorem 4’ [6], the interior estimate of Heinz-Bernstein type.

Proposition 4.2. If w belongsDD→Ω(1), then |∇w| is bounded onD.

By hypotheses (i.1) and (ii.1), |∆w| is bounded on D, and w satisfies the Poisson type inequality on D. It
seems the idea5) behind the proof is to use local coordinates ψ to make the part of boundary of the image to
lay onR (a hyperplane if we work in space) whose 2-th coordinate is 0 and then to apply inner estimate on
2-th coordinate of function ψ ◦ u, which is 0 on the the part of boundary of the unit diskD. An application
of Proposition 4.1 (the interior estimate of Heinz-Bernstein) (more precisely the local version of Interior
estimate, Proposition 4.3 below) yields the proof.

4)At this point it may seem that we use a heuristic approach, but we hope to fill details in a forth-coming paper.
5)We discussed this shortly as a new idea at Workshop on Harmonic Mappings and Hyperbolic Metrics, Chennai, India, Dec. 10-19,

2009, see Course-materials [26].
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4.1. Further results related to the interior estimate
Recall, we only announce here that one can refine the methods of the proof of Theorem 4’ in [6] to derive:

Proposition 4.3 (Local version of Interior estimate). Let χ : U → R be a continuous function from the closed
unit discU into the real line satisfying the conditions:

1. χ is C2 onU,
2. There are constants a0 and b0 such that |∆χ| ≤ a0|∇χ|2 + b0, on V = V(r) = U∩B(w0, r), r > 0, where w0 ∈ T,

and
3. χ ∈ L1(0, 2π), and χ′ ∈ L∞(l) and the Hilbert transform of H(χ′) ∈ L∞(l), where l = l(w0) is the interval

l = V(r) ∩ T.

(I) Then there is 0 < r1 < r such that the function |∇χ| is bounded on V(r1) = U ∩ B(w0, r1).
Introduce the hypothesis

4. χb(θ) = χ(eiθ) is C2 on the interval l = V(r) ∩ T.

5. χ is C1,α on l.
Note that, the hypothesis 4. implies 5., and 5. implies 3. In particular, the the corresponding versions of this result

hold if we suppose 4. or 5. instead of 3.

The proof of this result will appear elsewere. Using Proposition 4.3, one can prove:

Theorem 4.4. Let f be a quasiconformal C2 diffeomorphism from the plane domain Ω onto the plane domain G. Let
γΩ ⊂ ∂Ω and γG = f (γΩ) ⊂ ∂G be C1,α respectively C2 Jordan arcs. If for some τ ∈ γΩ there exist positive constants
r, a and b such that

|∆ f | ≤ a|∇ f |2 + b , z ∈ Ω ∩D(τ, r), (2)

then f has bounded partial derivatives in Ω ∩ D(τ, rτ) for some rτ < r. In particular it is a Lipschitz mapping in
Ω ∩D(τ, rτ).

Under the stronger hypothesis that γG is C2,α this is proved in [8](and it has been used there as the main
tool).

5. The Boundary Regularity of Dirichlet Eigenfunctions

By Ω we denote a domain in Rn. In communication with Yakov Sinai6) (April 2016, Princeton) the
following question appeared:

S-M Question. What can we say about the boundary regularity of Dirichlet Eigenfunctions on bounded
domains which are C2 except at a finite number of corners7).

We have discussed the subject with Pier Lamberti who informed about numerous literature related to
this subject and in particular about items 1)-3).

1) the eigenfunctions of the Dirichlet Laplacian are always bounded, not matter what the boundary
regularity is.

2) the gradient of the eigenfunctions may not be bounded. The typical situation in the plane is as follows.
If you have a corner with angle β, then the gradient is bounded around it if β ≤ π and unbounded if β > π.

3) An example: if Ω is a circular sector in the plane with central angle β, then for all n ∈N, ∇ϕn ∈ L∞(Ω)
if 0 < β ≤ π; if π < β < 2π then for all n ∈ N, ∇ϕn ∈ Lp(Ω) for all 1 ≤ p < 2β

β−π and there exists an infinite

number of eigenfunctions ϕn such that ∇ϕn < Lp(Ω) if p ≥ 2β
β−π . This example is discussed in Example 6.2.5

6)Abel prize Laureate 2014
7)we address this question as Y. Sinai’s question or shortly S-M question



M. Mateljević / Filomat 31:10 (2017), 3023–3034 3029

in E.B. Davies, Spectral theory and differential operators, Cambridge University Press, Cambridge, 1995.
For example, if Ω is C2, using so called Interior estimate one can show that the Dirichlet eigenfunctions are
Lipschitz.

Let 1 ≤ p ≤ ∞. If a function f possibly after modifying on a set of measure zero is ACL on Ω (the
restriction to the intersection of almost every line parallel to the coordinate directions in Rn with Ω is
absolutely continuous), f and |∇ f | are both in Lp(Ω), then we say that f belongs to the Sobolev space
W1,p(Ω).

The Sobolev space W1,2(Ω) is also denoted by H1(Ω). It is a Hilbert space, with an important subspace
H1

0(Ω) (the notation W1,2
0 (Ω) is also used) defined to be the closure in H1(Ω) of the infinitely differentiable

functions compactly supported in Ω.
In standard spectral theory for differential operators, the eigenvalue problem for the Dirichlet Laplacian

is defined as follows:
Find u ∈W1,2

0 (Ω) (eigenfunction) and λ ∈ R (eigenvalue) such that∫
Ω

∇u · ∇ϕdx = λ

∫
Ω

uϕdx

for all functions ϕ ∈W1,2
0 (Ω).

We will call eigenfunctions in the above sense eigenfunctions for the Dirichlet Laplacian (in standard
spectral theory meaning; shortly in SSTM) if there is possibility of misunderstanding.

By w we denote a unique solution to the Dirichlet problem L(∂x)w = f , w ∈Wm,2
0 (Ω), where f ∈W1−m,q(Ω)

with q ∈ (2,∞). Here Wl,p
0 (Ω) is the completion of C∞0 (Ω) in the Sobolev space Wl,p(Ω), 1 < p < ∞, and

W−l,p′ (Ω) with p′ = p/(p − 1) is the dual of Wl,p
0 (Ω). The operator L(∂x) is strongly elliptic and given by

L(∂x) =
∑

0≤k≤2m ak∂k
1∂

2m−k
2 .

It turns out that, in connection to S-M Question, we can use a Kozlov-Mazya result:

Theorem 5.1 (Theorem 2, [9]). Let u be a solution of the Dirichlet problem for elliptic equations of order 2m with
constant coefficients in an arbitrary bounded plane convex domain G. Then m-th order derivatives of u are bounded
if the coefficients of the equation are real.

Note that Laplacian is elliptic equation of order 2. An application of Theorem 5.1 yields

Theorem 5.2. Suppose that Ω is bounded plane convex domain and w ∈ W1,2
0 (Ω) is the Dirichlet eigenfunction

solution on Ω. Then the gradient of w is bounded.

6. Bi-Lipschicity of Quasiconformal Harmonic Mappings in n-dimensional Space with Respect to Quasi-
Hyperbolic Metrics

(II) Suppose that G and G′ are domains in Rn and the complement of G has at least one point and in

addition let f : G onto
−−→ G′ be K-quasiconformal mapping. Then, by the distortion property of qc mappings

(see [3], p. 383, [21], p. 63), there are the constants C∗ and c∗ depend on n and K only, such that

B( f (x), c∗d∗) ⊂ f (Bx) ⊂ B( f (x),C∗d∗), x ∈ G, (3)

where d∗(x) := d( f (x)) = d
(

f (x), ∂G′
)

and d(x) := d(x, ∂G).
For definition of a non-zero Jacobian family see Definition 8.3 in Section 8 below.
Using our considerations in [1, 13, 15, 18], we can give a short proof of the following result:

Theorem 6.1. Suppose that f : D1
onto
−−→ D2, where D1,D2 ⊂ Rn and the complement of D1 has at least one point,

is a harmonic K-quasiconformal mapping with KO( f ) < 3n−1, (or and that f belongs to a non-zero Jacobian family of
harmonic maps), then f is bi-Lipschitz with respect k-metrics.
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Hence, in particular,
(A) f is Lipschitz with respect to k-metrics.

Note that (A) holds more generally without the hypothesis that f belongs to a non-zero Jacobian family:

Theorem 6.2 ([18]). Suppose that Ω ⊂ Rn, f : Ω→ f (Ω) is harmonic and K-qc.
Then h is pseudo-isometry w.r. to quasi-hyperbolic metrics on Ω and Ω′ = f (Ω). In particular, it is Lipschitz

with respect to k-metrics.

Now we give a simple proof of Theorem 6.1.

Proof. Set r = r(z) = d(z, ∂D1) and R = R( f z) = d( f (z), ∂D2). Then, by (3) (see also [13]), there is a constant c
such that

f (B(z, r(z)) ⊃ B( f z, cR(z)), z ∈ D1. There there is a constant c0 such that r(z)λ f (z) ≥ cR(z), z ∈ D1, and
hence
(B) f is co-Lipschitz with respect to quasi-hyperbolic metrics.

This together with (A) completes the proof.

By J(z) = J f (z) = J( f , z) we denote the Jacobian determinant of f at z.
The above consideration also shows that
(C) r(z)J

1
n (z) ≈ R(z), z ∈ D1.

After writing a version of this manuscript we received information about Shadia Shalandi work, see
[20]. She also proved Theorem 6.1. Note that in her formulation the hypothesis that the complement of D1
has at least one point is missing.

7. On Harmonic K-Quasiconformal Map onHn

Given Riemannian manifolds (M, 1), (N, h) and a map φ : M→ N , the energy density of e(φ) at a point
x in M is defined as

e(φ) =
1
2
‖dφ‖2 .

The energy density can be written more explicitly as

e(φ) =
1
2

trace1 φ∗h.

The energy of φ on a compact subset K of M is

EK(φ) =

∫
K

e(φ) dv1 =
1
2

∫
M
‖dφ‖2 dv1,

where dv1 denotes the measure on M induced by its metric.
Using the Einstein summation convention, if the metrics 1 and h are given in local coordinates by

1 =
∑
1i jdxidx j and h =

∑
hαβduαduβ, the right hand side of this equality reads

e(φ) =
1
2
1i jhαβ

∂φα

∂xi

∂φβ

∂x j .

We define the tension field τ(u) of u by coordinates

τ(u)ν = ∆1uν + 1i jΓ′ναβ ◦ u uαi uβj , (4)

where ∆1 is the Laplace-Beltrami operator on M and Γ′ναβ are the Christoffel symbols on N. The Euler-
Lagrange equation for this energy functional is the condition for the vanishing of the tension, which is, in
local coordinates given by (4), τ(u)ν = 0.
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IfHm is identified as {(x1, ..., xm) : xm > 0}with the metric:

1
(xm)2 ((dx1)2 + · · · (dxm)2)

then the tension field of u is given by

τ(u)ν = (xm)2
(
∆0yν −

m − 2
(xm)2 yνm −

2
(ym)2 〈∇0yν,∇0ym

〉

)
for 1 ≤ ν ≤ m − 1, and

τ(u)m = (xm)2
(
∆0ym

−
m − 2
(xm)2 ym

m +
1

(ym)2 (
m−1∑
ν=1

|∇0yν|2 − |∇0ym
|
2)
)
,

where ∇0 is the Euclidean gradient and ∆0 is the Euclidean Laplacian.
In [15], we proved:

Proposition 7.1. Suppose that f has continuous partial derivatives up to the order 3 at the origin 0 and that
f : U(0)→ Rn is K-qc, where U(0) is a neighborhood of 0 in Rn. If KO( f ) < 3n−1, then J( f , 0) , 0.
In particular, if 1 is analytic (more generally C(3)(U(0)) or 1 only has partial derivatives up to the order 3), and
if 1 is K-qc with KO(1) < 3n−1, then J(1, 0) , 0.

The proof of the next proposition is based on Proposition 7.1.

Proposition 7.2. Let F be K-qc hyperbolic harmonic mappings of Hn with respect to the hyperbolic metric. If
K < 3n−1, then f is a quasi-isometry.

Tam and Wan, [23], 1998, proved the result if K < 2n−1.

Proof. We follow their argument. Suppose that there is a sequence of points xn ∈Hn, such that en(F)(xn)→ 0
as n → ∞. Let o ∈ Hn be a fixed point and An and Bn be isometry such that An(o) = xn and Bn(F(xn)) = o.
Then un = Bn ◦ F ◦ An are harmonic maps such that e(un)(o)→ 0 as n→∞. A subsequence of un converges
uniformly to a K-qc hyperbolic harmonic mappings u with u(o) = o and e(u)(o) = 0. This contradicts the
statement of a version of Proposition 7.1 for C3 mapping, cf. also [14].

8. Appendix

8.1. Some definitions and results
Let Ω ∈ Rn and R+ = [0, ∞) and f , 1 : Ω → R+. If there is a positive constant c such that f (x) ≤

c 1(x) , x ∈ Ω , we write f � 1 on Ω. If there is a positive constant c such that

1
c
1(x) ≤ f (x) ≤ c 1(x) , x ∈ Ω ,

we write f ≈ 1 (or f � 1 ) on Ω.
Let G ⊂ R2 be a domain and let f : G → R2, f = ( f1, f2), be a harmonic mapping. This means that f

is a map from G into R2 and both f1 and f2 are harmonic functions, i. e. solutions of the two-dimensional
Laplace equation

∆u = 0 . (5)

The above definition of a harmonic mapping extends in a natural way to the case of vector-valued mappings
f : G→ Rn, f = ( f1, . . . , fn), defined on a domain G ⊂ Rn, n ≥ 2. Let h be a harmonic univalent orientation
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preserving mapping on a domain D, D′ = h(D) and dh(z) = d (h(z), ∂D′). If h = f + 1 has the form, where f
and 1 are analytic, we define λh(z) = D−(z) = | f ′(z)| − |1′(z)|, and Λh(z) = D+(z) = | f ′(z)| + |1′(z)|.

Let Ω be a domain in Rn and f : Ω→ Rn be continuous. We say that f is quasiregular (abbreviated qr) if
(1) f belongs to Sobolev space Wn

1, loc(Ω)
(2) there exists K, 1 ≤ K < ∞, such that

| f ′(x)|n ≤ K J f (x) a.e. (6)

The smallest K in (6) is called the outer dilatation KO( f ). A qr mapping is a qc if and only if it is a
homeomorphism.

Theorem 8.1. Let ( f j), f j : Ω 7→ Rn, be a sequence of K-quasiconformal maps, which converges pointwise to a
mapping f : Ω 7→ Rn. Then there are three possibilities:
a. f is a homeomorphism and the convergence is uniform on compact sets.
b. f assumes exactly two values, one of which at exactly one point; covergence is not uniform on compact sets in that
case.
c. f is constant.

Definition 8.2. We say that a family F of maps from domains in Rn to Rn is RHTC-closed if the following holds:

• (Restrictions) If f : Ω 7→ Rn is in F , Ω′ ⊂ Ω is open, connected and nonempty, then f |Ω′ ∈ F .

• (Homothety) If f : Ω 7→ Rn is in F , a ∈ R, a > 0 then 1 : Ω 7→ Rn and h : aΩ 7→ Rn are in F , where
1(x) = a f (x) and h(x) = f (x/a).

• (Translations) If f : Ω 7→ Rn is in F , t ∈ Rn, then 1 : Ω 7→ Rn and h : t + Ω 7→ Rn are in F , where
1(x) = t + f (x) and h(x) = f (x − t).

• (Completeness) If f j : Ω 7→ Rn, j ∈ N are in F , ( f j) converges uniformly on compact sets to 1 : Ω 7→ Rn,
where 1 is non-constant, then 1 ∈ F .

For instance, families of harmonic maps and of gradients of harmonic functions are RTHC-closed. Also,
due to Theorem 8.1, for any given K ≥ 1, a subfamily of K-quasiconformal members of a RTHC-closed
family is also RTHC-closed.

Definition 8.3. We say that a family F of harmonic maps from domains in Rn to Rn is non-zero Jacobian closed, if
it is RHTC-closed and Jacobians of all maps in the family have no zeros.

Note that uniform convergence on compact sets in the case of harmonic maps implies convergence of
higher order derivatives, via Hölder and Schauder apriori estimates (see [5], pp. 60, 90). This is related to
elliptic regularity and holds for more general elliptic operators, and not just Laplacian, so that this method
applies in that more general setting too.

8.2. Remarks on the background
During the visiting position at Wayne State University, Detroit, 1988/89, the author8) started considering

qch mappings. In particular, the author observed that the following results hold (see Proposition 2.1 and
2.2 below). When I returned to Belgrade, I used to talk on the seminar permanently and asked several
open questions related to the subject. Many research papers are based on these communications. Since I
had not published all of them it happens that some researchers discovered them later. In Section 2 we only
discussed a few results from Revue Roum. Math. Pures Appl. Vol. 51 (2006) 5–6, 711–722 9)

8)the author refers to me
9)It seems that there is some problems concerning visibility of this journal.
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8.3. Recent lectures and communications with colleagues
The author gave a few lectures related to the subject.
(a) two plenary lectures on VII Symposium of Mathematics and Applications, 4-5 Nov, 2016, Belgrade

and two plenary lecture on XIX Geometrical Seminar, Zlatibor, Serbia, August 28-September 4,
2016(http://tesla.pmf.ni.ac.rs/people/geometrijskiseminarxix/presentation.php#ps, [17]).

(b) The lecture at Seminar za kompleksno analizo, Miodrag Mateljević: Interior estimates for Poisson
type inequality and quasiconformal hyperbolic harmonic mappings at University of Ljubljana, Faculty of
Mathematics and Physics, Institute of Mathematics, Physics and Mechanics, Ljubljana, 24. 11. 2016.

(c) In April 2016, the author delivered lectures at Cincinnati University, Fordham University NY and
University Texas at Dallas.

At Cincinnati University the author has initiated some considerations with David Minda (Cincinnati
University) and at CUNY (New York) with Fred Gardiner, Dragomir Saric, and Melkana Brakalova (Ford-
ham University NY ).

(d) At Princenton University the author discussed some questions with Yakov Sinai and gave important
contribution to S-M Question, the problem related to the boundary behavior of gradient of Dirichlet
eigenvalues functions. Massimo Lanza de Cristoforis forwarded a version of this question to Pier Domenico
Lamberti.

Acklowedgment. We are indebted to all the above mentioned people in the items (c) and (d), and to the
members of the Belgrade analysis seminar for useful discussions. In particular we thank to Pier Lamberti
who has helped us to clarify the background related to S-M Question (see Section 5 for details).
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