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Abstract. Let (E, ‖ · ‖) be a Banach space with a cone P. Let T, ϕi : E→ E (i = 1, 2, · · · , r) be a finite number
of mappings. We obtain sufficient conditions for the existence of solutions to the problem{

Tx = x,
ϕi(x) = 0E, i = 1, 2, · · · , r,

where 0E is the zero vector of E, and T is a mapping satisfying a Ćirić-contraction. Some interesting
consequences are deduced from our main results.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction

In 1974, Ćirić [3] established the following fixed point theorem.

Theorem 1.1 (Ćirić (1974)). Let (M, d) be a metric space, and let T : M→M be a given mapping. Suppose that the
following conditions are satisfied:

(i) T is orbitally continuous on M;

(ii) (M, d) is T-orbitally complete;

(iii) There exists a constant q ∈ (0, 1) such that

min{d(Tx,Ty), d(x,Tx), d(y,Ty)} −min{d(x,Ty), d(y,Tx)} ≤ qd(x, y),

for all x, y ∈M.
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Then, for every x ∈M, the Picard sequence {Tnx} conveges to a fixed point of T.

Note that Theorem 1.1 provides just the existence of at least one fixed point. However, the uniqueness
is not satisfied in general. A nice counter-example is presented by Ćirić in [3]. For other related works, we
refer the reader to [1, 2, 4, 7, 11, 12, 14] and references therein.

Let (E, ‖ · ‖) be a Banach space with a cone P. Let T, ϕi : E → E (i = 1, 2, · · · , r) be a finite number of
mappings. In this paper, we deal with the solvability of the system of operator equations{

Tx = x,
ϕi(x) = 0E, i = 1, 2, · · · , r, (1)

where 0E is the zero vector of E, and T is mapping satisfying a Ćirić-contraction simialar to (iii). We obtain
sufficient conditions for the existence of solutions to (1). Some interesting consequences are deduced from
our main results.

At first, let us introduce some concepts that will be used later. This is the aim of the next section.

2. Preliminaries

In this paper, the considered Banach space (E, ‖ ·‖) is supposed to be partially ordered by a cone P. Recall
that a nonempty closed convex set P ⊂ E is said to be a cone (see [8]) if it satisfies the following conditions:
(P1) λ ≥ 0, x ∈ P =⇒ λx ∈ P.
(P2) −x, x ∈ P =⇒ x = 0E.
We define the partial order ≤P in E induced by the cone P by

(x, y) ∈ E × E, x ≤P y⇐⇒ y − x ∈ P.

Definition 2.1. Let ϕ : E→ E be a given mapping. We say that ϕ is 0E-level closed from the left, iff the set

levϕ
≥P

:= {x ∈ E : ϕ(x) ≥p 0E}

is nonempy and closed.

Definition 2.2. Let ϕ : E→ E be a given mapping. We say that ϕ is 0E-level closed from the right, iff the set

levϕ
≤P

:= {x ∈ E : ϕ(x) ≤p 0E}

is nonempy and closed.

Example 2.3. Let E = R be the set of real numbers. Let P = [0,∞), and let ≤P be the standard order in R, denoted
by ≤. Let ϕ : R→ R be a lower semi-continuous function. Suppose that

∃ x0 ∈ R : ϕ(x0) ≤ 0.

Then ϕ is 0-level closed from the right. Indeed, the set levϕ
≤P

is nonepmty since x0 ∈ levϕ
≤P

. Moreover, if
{xn} ⊂ levϕ

≤P
is a convergent sequence to x ∈ R, then

0 ≥ lim inf
n→∞

ϕ(xn) ≥ ϕ(x),

which yields x ∈ levϕ
≤P

. Therefore the set levϕ
≤P

is closed.

Example 2.4. Let ϕ : R→ R be an upper semi-continuous function. Suppose that

∃ x0 ∈ R : ϕ(x0) ≥ 0.

Thenϕ is 0-level closed from the left. Indeed, the set levϕ
≥P

is nonepmty since x0 ∈ levϕ
≥P

. Moreover, if {xn} ⊂ levϕ
≥P

is a convergent sequence to x ∈ R, then
0 ≤ lim sup

n→∞
ϕ(xn) ≤ ϕ(x),

which yields x ∈ levϕ
≥P

. Therefore the set levϕ
≥P

is closed.
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Example 2.5. Clearly, if ϕ : E → E is a continuous mapping, then ϕ is 0E-level closed from the left, and from the
right.

Remark 2.6. Note that the fact that ϕ : E→ E is 0E-level closed from the left, does not imply that ϕ is 0E-level closed
from the right. Several counter-examples can be obtained. We invite the reader to check this fact by him self.

Definition 2.7. Let T : E→ E be a given mapping. For a given x ∈ E, we denote by O(x) the orbit of x, that is,

O(x) = {Tnx : n = 0, 1, 2, · · · }, x ∈ E.

We say that T is orbitally contiuous on F ⊆ E, iff T is continuous on O(x), for every x ∈ F.

Definition 2.8. Let T, ϕi : E→ E (i = 1, 2, · · · , r) be a finite number of mappings. We say that T is a Ćirić operator
with respect to {ϕi}

r
i=1, iff there exists some q ∈ (0, 1) such that

min{‖Tx − Ty‖, ‖x − Tx‖, ‖y − Ty‖} −min{‖x − Ty‖, ‖y − Tx‖} ≤ q‖x − y‖,

for every (x, y) ∈ E × E such that
ϕi(x) ≤P 0E, i = 1, 2, · · · , r

and
ϕi(y) ≥P 0E, i = 1, 2, · · · , r.

Remark 2.9. Let T, ϕi : E→ E (i = 1, 2, · · · , r) be a finite number of mappings. If T is a Ćirić operator with respect
to {ϕi}

r
i=1, then by symmetry, we have

min{‖Tx − Ty‖, ‖x − Tx‖, ‖y − Ty‖} −min{‖x − Ty‖, ‖y − Tx‖} ≤ q‖x − y‖,

for every (x, y) ∈ E × E such that
ϕi(x) ≥P 0E, i = 1, 2, · · · , r

and
ϕi(y) ≤P 0E, i = 1, 2, · · · , r.

Now, we are ready to state and prove our main results.

3. Main Results

In order to make easy the lecture of the paper, let us start with the case of one equality constraint.

3.1. The case of one equality constraint
We consider system (1) with r = 1 and ϕ1 = ϕ.

Theorem 3.1. Let T, ϕ : E→ E be two giving mappings. Suppose that the following conditions are satisfied:

(i) T is orbitally continuous on levϕ
≤P

;

(ii) T is a Ćirić operator with respect to ϕ, that is,

min{‖Tx − Ty‖, ‖x − Tx‖, ‖y − Ty‖} −min{‖x − Ty‖, ‖y − Tx‖} ≤ q‖x − y‖,

for every (x, y) ∈ E × E such that ϕ(x) ≤P 0E and ϕ(y) ≥P 0E;

(iii) ϕ is 0E-level closed from the left;

(iv) There exists x0 ∈ E such that ϕ(x0) ≤P 0E;
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(v) For every x ∈ E, we have
ϕ(x) ≤P 0E =⇒ ϕ(Tx) ≥P 0E

and
ϕ(x) ≥P 0E =⇒ ϕ(Tx) ≤P 0E.

Then the Picard sequence {Tnx0} converges to a solution to (1) with r = 1 and ϕ1 = ϕ.

Proof. Let x0 ∈ E be such that
ϕ(x0) ≤p 0E.

Such a point exists from (iv). From (v), we have

ϕ(x0) ≤P 0E =⇒ ϕ(Tx0) ≥P 0E.

Define the sequences {xn} in E by
xn+1 = Txn, n = 0, 1, 2, · · ·

Then we have
ϕ(x1) ≥P 0E.

From (v), we have
ϕ(x1) ≥P 0E =⇒ ϕ(Tx1) ≤P 0E,

that is,
ϕ(x2) ≤P 0E.

Again, using (v), we get from the above inequality that

ϕ(x3) ≥P 0E.

Then, by induction, we obtain

ϕ(x2n) ≤P 0E, ϕ(x2n+1) ≥P 0E, n = 0, 1, 2, · · · (2)

Using (ii) and (2), by symmetry (see Remark 2.9), we obtain

min{‖Txn−1 − Txn‖, ‖xn−1 − Txn−1‖, ‖xn − Txn‖} −min{‖xn−1 − Txn‖, ‖xn − Txn−1‖}

≤ q‖xn−1 − xn‖, n = 1, 2, 3, · · · ,

that is,

min{‖xn − xn+1‖, ‖xn−1 − xn‖, ‖xn − xn+1‖} −min{‖xn−1 − xn+1‖, ‖xn − xn‖}

≤ q‖xn−1 − xn‖, n = 1, 2, 3, · · · ,

which yields

min{‖xn − xn+1‖, ‖xn−1 − xn‖} ≤ q‖xn−1 − xn‖, n = 1, 2, 3, · · · (3)

We distinguish three cases.
Case 1. If x2N = x2N+1, for some N = 0, 1, · · · In this case, we have

x2N = Tx2N.

Moreover, from (2), we have
ϕ(x2N) ≤P 0E, ϕ(x2N) = ϕ(x2N+1) ≥P 0E.

Therefore, ϕ(x2N) ∈ P and −ϕ(x2N) ∈ P. Since P is a cone, we deduce that

ϕ(x2N) = 0E.
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Hence, x2N ∈ E is a solution to (1).
Case 2. If x2N+1 = x2N+2, for some N = 0, 1, · · · We argue exactly as in case 1 to see that x2N+1 is a solution to
(1).
Case 3. If xn , xn+1, for every n = 0, 1, · · · In this case, using (3) and the fact that q ∈ (0, 1), we deduce that

‖xn − xn+1‖ ≤ q‖xn−1 − xn‖, n = 1, 2, · · · (4)

Since q ∈ (0, 1), we deduce from (4) that {xn} is a Cauchy sequence in the Banach space (E, ‖ · ‖). Therefore,
there exists some x∗ ∈ E such that

lim
n→∞
‖xn − x∗‖ = 0. (5)

Since T is orbitally continuous on levϕ
≤P

, then T is continuous on O(x0). Therefore, by (5) we deduce that

lim
n→∞
‖xn+1 − Tx∗‖ = 0. (6)

By the uniqueness of the limit, we obtain

Tx∗ = x∗. (7)

On the other hand, from (2), we have

{x2n+1} ⊂ levϕ
≥P
, n = 0, 1, · · ·

Since ϕ is 0E-level closed from the left, we deduce from (5) that x∗ ∈ levϕ
≥P

, that is,

ϕ(x∗) ≥P 0E.

But by (v) and (7), we obtain
ϕ(x∗) = ϕ(Tx∗) ≤P 0E.

Hence, we have ϕ(x∗) ∈ P and −ϕ(x∗) ∈ P. Since P is a cone, we get

ϕ(x∗) = 0E. (8)

Finally, (7) and (8) imply that x∗ ∈ E is a solution to (1).

Remark 3.2. Observe that the conclusion of Theorem 3.1 is still valid if we replace condition (iii) by the following
condition:
(iii’) ϕ is 0E-level closed from the right.
Indeed, we have just to replace ϕ by −ϕ in Theorem 3.1 to get the desired result.

By Remark 3.2, we have the following result.

Theorem 3.3. Let T, ϕ : E→ E be two giving mappings. Suppose that the following conditions are satisfied:

(i) T is orbitally continuous on levϕ
≤P

;

(ii) T is a Ćirić operator with respect to ϕ, that is,

min{‖Tx − Ty‖, ‖x − Tx‖, ‖y − Ty‖} −min{‖x − Ty‖, ‖y − Tx‖} ≤ q‖x − y‖,

for every (x, y) ∈ E × E such that ϕ(x) ≤P 0E and ϕ(y) ≥P 0E;

(iii’) ϕ is 0E-level closed from the right;

(iv) There exists x0 ∈ E such that ϕ(x0) ≤P 0E;
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(v) For every x ∈ E, we have
ϕ(x) ≤P 0E =⇒ ϕ(Tx) ≥P 0E

and
ϕ(x) ≥P 0E =⇒ ϕ(Tx) ≤P 0E.

Then the Picard sequence {Tnx0} converges to a solution to (1) with r = 1 and ϕ1 = ϕ.

Remark 3.4. Observe that from the proof of Theorem 3.1, Theorems 3.1 and 3.3 are still valid if we replace condition
(i) by the following condition:
(i’) T is orbitally continuous on levϕ

≥P
.

3.2. The case of a finite number of equality constraints
Now, we study the solvability of system (1) with r ≥ 2. We have the following result.

Theorem 3.5. Let T, ϕi : E → E (i = 1, 2, · · · , r) be a finite number of mappings. Suppose that the following
conditions are satisfied:

(i) T is orbitally continuous on
⋂r

i=1 levϕi≤P
;

(ii) T is a Ćirić operator with respect to {ϕi}
r
i=1;

(iii) ϕi, i = 1, 2, · · · , r, is 0E-level closed from the left;

(iv) There exists x0 ∈ E such that
ϕi(x0) ≤P 0E, i = 1, 2, · · · , r;

(v) For every x ∈ E, we have

ϕi(x) ≤P 0E, i = 1, 2, · · · , r =⇒ ϕi(Tx) ≥P 0E, i = 1, 2, · · · , r

and
ϕi(x) ≥P 0E, i = 1, 2, · · · , r =⇒ ϕi(Tx) ≤P 0E, i = 1, 2, · · · , r.

Then the Picard sequence {Tnx0} converges to a solution to (1).

Proof. Let x0 ∈ E be such that
ϕi(x0) ≤p 0E, i = 1, 2, · · · , r.

Such a point exists from (iv). From (v), we have

ϕi(Tx0) ≥P 0E, i = 1, 2, · · · , r.

Define the sequences {xn} in E by
xn+1 = Txn, n = 0, 1, 2, · · ·

Then we have
ϕi(x1) ≥P 0E, i = 1, 2, · · · , r.

From (v), we have
ϕi(Tx1) ≤P 0E, i = 1, 2, · · · , r,

that is,
ϕi(x2) ≤P 0E, i = 1, 2, · · · , r.

Again, using (v), we get from the above inequalities that

ϕi(x3) ≥P 0E, i = 1, 2, · · · , r.
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Then, by induction, we obtain

ϕi(x2n) ≤P 0E, i = 1, 2, · · · , r (9)

and

ϕi(x2n+1) ≥P 0E, i = 1, 2, · · · , r. (10)

Using (ii), (9), and (10), we obtain

min{‖Txn−1 − Txn‖, ‖xn−1 − Txn−1‖, ‖xn − Txn‖} −min{‖xn−1 − Txn‖, ‖xn − Txn−1‖}

≤ q‖xn−1 − xn‖, n = 1, 2, 3, · · · ,

that is,

min{‖xn − xn+1‖, ‖xn−1 − xn‖, ‖xn − xn+1‖} −min{‖xn−1 − xn+1‖, ‖xn − xn‖}

≤ q‖xn−1 − xn‖, n = 1, 2, 3, · · · ,

which yields

min{‖xn − xn+1‖, ‖xn−1 − xn‖} ≤ q‖xn−1 − xn‖, n = 1, 2, 3, · · · (11)

We distinguish three cases.
Case 1. If x2N = x2N+1, for some N = 0, 1, · · · In this case, we have

x2N = Tx2N.

Moreover, from (9) and (10), we have

ϕi(x2N) ≤P 0E, ϕi(x2N) = ϕi(x2N+1) ≥P 0E, i = 1, 2, · · · , r.

Therefore, ϕi(x2N) ∈ P and −ϕi(x2N) ∈ P, for every i = 1, 2, · · · , r. Since P is a cone, we deduce that

ϕi(x2N) = 0E, i = 1, 2, · · · , r.

Hence, x2N ∈ E is a solution to (1).
Case 2. If x2N+1 = x2N+2, for some N = 0, 1, · · · We argue exactly as in case 1 to see that x2N+1 is a solution to
(1).
Case 3. If xn , xn+1, for every n = 0, 1, · · · In this case, using (11) and the fact that q ∈ (0, 1), we deduce that

‖xn − xn+1‖ ≤ q‖xn−1 − xn‖, n = 1, 2, · · ·

Since q ∈ (0, 1), we deduce that {xn} is a Cauchy sequence in the Banach space (E, ‖ · ‖). Therefore, there
exists some x∗ ∈ E such that

lim
n→∞
‖xn − x∗‖ = 0.

Since T is orbitally continuous on
⋂r

i=1 levϕi≤P
, then T is continuous on O(x0). Therefore, we have

lim
n→∞
‖xn+1 − Tx∗‖ = 0.

By the uniqueness of the limit, we obtain
Tx∗ = x∗.

On the other hand, from (10), we have

{x2n+1} ⊂

r⋂
i=1

levϕi≥P
, n = 0, 1, · · ·
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Hence, by (iii) we deduce that x∗ ∈
⋂r

i=1 levϕi≥P
, that is,

ϕi(x∗) ≥P 0E, i = 1, 2, · · · , r.

But by (v) and the fact that Tx∗ = x∗, we obtain

ϕi(x∗) = ϕi(Tx∗) ≤P 0E, i = 1, 2, · · · , r.

Hence, we have ϕi(x∗) ∈ P and −ϕi(x∗) ∈ P, for all i = 1, 2, · · · , r. Since P is a cone, we get

ϕi(x∗) = 0E, i = 1, 2, · · · , r.

Therefore, we proved that x∗ ∈ E is a solution to (1).

Remark 3.6. As in the case of one equality constraint, the conclusion of Theorem 3.5 is still valid if we replace
condition (iii) by the following condition:
(iii’) ϕi, i = 1, 2, · · · , r, is 0E-level closed from the right.

Remark 3.7. As in the case of one equality constraint, Theorem 3.5 is still valid if we replace condition (i) by the
following condition:
(i’) T is orbitally continuous on

⋂r
i=1 levϕi≥P

.

4. Some Consequences

In this section, some interesting consequences following from the above results are presented.

4.1. A common fixed point result
Let T,S : E→ E be two giving mappings. We consider the following common fixed point problem: Find

x ∈ X such that{
x = Tx,
x = Sx. (12)

Observe that system (12) is equivalent to{
x = Tx,
ϕ(x) = 0E,

(13)

where ϕ : E→ E is the mapping defined by

ϕ(x) = Sx − x, x ∈ E. (14)

Let us define the sets
H1 = {x ∈ E : Sx ≤P x}

and
H2 = {x ∈ E : Sx ≥P x}.

We have the following result.

Corollary 4.1. Let T,S : E→ E be two giving mappings. Suppose that the following conditions are satisfied:

(i) T is orbitally continuous on H1;

(ii) There exists a constant q ∈ (0, 1) such that for every (x, y) ∈ E × E,

Sx ≤P x, Sy ≥P y =⇒ min{‖Tx − Ty‖, ‖x − Tx‖, ‖y − Ty‖} −min{‖x − Ty‖, ‖y − Tx‖} ≤ q‖x − y‖;
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(iii) H2 is a closed subset of E;

(iv) There exists x0 ∈ E such that Sx0 ≤P x0;

(v) For every x ∈ E, we have
Sx ≤P x =⇒ S(Tx) ≥P Tx

and
Sx ≥P x =⇒ S(Tx) ≤P Tx.

Then the Picard sequence {Tnx0} converges to a solution to (12).

Proof. Using the fact that (12) is equivalen to (13), and taking in Theorem 3.1 ϕ : E → E, the mapping
defined by (14), we obtain immediately the desired result.

Remark 4.2. The most used techniques for the solvability of (12) are based on a compatibility condition introduced by
Jungck [9]. Such techniques are interesting and can be useful for the solvability of certain problems (see [5, 6, 9, 10, 13]
and references therein). However, two major difficulties arise in the use of such approach. At first, the compatibility
condition is not always satisfied, and in some cases it is not easy to check such condition. Moreover, the numerical
approximation of the common fixed point is constructed via the axiom of choice using certain inclusions, which makes
difficult its numerical implementation. The result given by Corollary 4.1 presents a new approach to study common
fixed point problems.

4.2. A fixed point result
Taking S = IE (the identity mapping) in Corollary 4.1, we obtain the following fixed point result, which

is similar to Theorem 1.1.

Corollary 4.3. Let T : E→ E be a giving mapping. Suppose that the following conditions are satisfied:

(i) T is orbitally continuous on E;

(ii) There exists a constant q ∈ (0, 1) such that for every (x, y) ∈ E × E,

min{‖Tx − Ty‖, ‖x − Tx‖, ‖y − Ty‖} −min{‖x − Ty‖, ‖y − Tx‖} ≤ q‖x − y‖.

Then, for every x ∈ E, the Picard sequence {Tnx} converges to a fixed point of T.

Remark 4.4. Observe that Corollary 4.3 can be deduced also from Theorem 1.1. Indeed, since E is a banach space,
then E is is T-orbitally complete. For the definition of the notion of T-orbitally complete sets, we refer the reader to [3].
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[10] G. Jungck, S. Radenović, S. Radojević, V. Rakocević, Common fixed point theorems for weakly compatible pairs on cone metric

spaces, Fixed Point Theory and Applications (2009) 13 pages, Article ID 643840.
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