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Abstract. Very recently, many fixed point results have been introduced in the setting of graphical metric
spaces. Due to their intimate links, such works also deal with metric spaces endowed with partial orders. As
the reachability relationship in any directed graph (containing all cycles) is a reflexive transitive relation (that
is, a preorder), but it is not necessarily a partial order, results on graphical metric spaces are independent
from statements on ordered metric spaces. The main aim of this paper is to show that fixed point theorems
in the setting of graphical metric spaces can be directly deduced from their corresponding results on
measurable spaces endowed with a binary relation. Finally, we also describe the main advantages of
involving this last class of spaces.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction

Very recently, some manuscripts in the field of fixed point theory have appeared in the setting of
graphical metric spaces. The condition of having a graph on the underlying space is mainly interesting
when the graph has a mathematical/practical significance (for instance, possible ways between some places
in a city). When having a graph on a set, a new possibility appears: we can move from a point to another
point following an edge of the graph. And, when we repeat these movements a finite number of times,
we are considering a (directed throughout the edges of the graph) path from a point to another point. This
especial characteristic permit us to introduce a new version of the triangle inequality for graphical metric
spaces: it must only be satisfied for points placed on a directed path. And, more specifically, such triangle
inequality bounds the distance between the extremes of the path (the third point must be an interior point
of the path). As a consequence, graphical metric spaces generalize metric spaces because we do not need
to assume that the triangle inequality holds for all three points of the space. But graphical metric spaces
have another important advantage in the field of fixed point theory.

From a mathematical point of view, the set of all edges of a graph on a set is a reflexive binary relation
on the own set. We remark that reflexivity naturally appears in manuscripts dealing in this topic, but it is
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not necessary. In the past, many contractivity conditions were considered by assuming that they only held
for pairs of points that were comparable by the binary relation (we especially recall here the pioneering
manuscripts [18, 20, 29], in which a partial order is involved). Prof. Ćirić successfully contributed to this
study (see [10–12, 17]). But, in most of cases, the considered binary relations were transitive. In this sense,
if the contractivity condition holds for comparable points x and y, and for y and z, then it necessarily holds
for x and z. Most of results in fixed point theory decisively use this fact as a key argument of their proofs.
However, graphical metric spaces have highlighted that, under some kind of contractivity conditions,
transitivity can be avoided. If the contractivity condition holds for two edges

(
x, y

)
and

(
y, z

)
in a graphical

metric space, then it is not necessary that it also holds for (x, z) (in fact, it is possible that this pair is not an
edge of the graph).

Many researchers have working for weakening the conditions on the binary relation, having in mind
the notion of partial order. For instance, in [21], the authors started to explore this line of research by using
preordered sets, avoiding the antisymmetric condition. The subsequent papers [2, 6, 8, 9, 16, 22–24, 26, 27]
also deal with binary relations that do not satisfy any condition of the definition of partial orders. To get
success, the type of considered contractivity condition is essential: some of them are as general that we
cannot omit the transitivity.

This manuscript has two main aims: on the one hand, we show how subtle must be the arguments
employed in fixed point theory when we handle graphical metric spaces. Researchers run the risk of
applying the triangle inequality when two points are not connected by a directed path. To do this, we
illustrate a counterexample for a result recently appeared in Shukla et al. [28]. On the other hand, we
extend some fixed point theorems in this setting to a kind of weak metric spaces endowed with an arbitrary
binary relation. In fact, we are convinced that fixed point theory on graphical metric spaces can be reduced
to their corresponding results in a more general context by involving binary relations.

2. Preliminaries

From now on, N = {0, 1, 2, 3, . . .} stands for the set of all nonnegative integers and N∗ = N�{0}.
Henceforth, let X be a nonempty set and let T : X→ X be a mapping from X into itself. A sequence {xn} ⊆ X
is infinite if xn , xm for all n,m ∈N. A fixed point of T is a point x ∈ X such that Tx = x. We denote by Fix(T)
the set of all fixed points of T. The iterates of the self-mapping T are the mappings {Tn : X→ X}n∈N defined
by

T0 = IX, T1 = T, T2 = T ◦ T, Tn+1 = T ◦ Tn for all n ≥ 2.

Given a point x0 ∈ X, the Picard sequence of T based on x0 is the sequence {xn}n∈N given by xn+1 = Txn for all
n ∈N. Notice that xn = Tnx0 for all n ∈N.

A binary relation on X is a nonempty subset S of the Cartesian product X × X. For simplicity, we denote
xSy if (x, y) ∈ S. A sequence {xn}n∈N ⊆ X is S-nondecreasing if xnSxn+1 for all n ∈N. Two points x and y are
S-comparable if xSy or ySx. We denote it by xS̃y. Clearly, S̃ is the least symmetric binary relation on X that
contains S.

A binary relation S on X is reflexive if xSx for all x ∈ X; it is transitive if xSz for all x, y, z ∈ X such that
xSy and ySz; and it is antisymmetric if xSy and ySx imply x = y. A preorder (or a quasiorder) is a reflexive,
transitive binary relation. And a partial order is an antisymmetric preorder. We denote by SX the trivial
preorder on X given by xSX y for all x, y ∈ X.

If X is endowed with a binary relation S, we say that T is S-nondecreasing if TxSTy for all x, y ∈ X such
that xSy.

Following [1, 4, 7], a function φ : [0,∞) −→ [0,∞) is a (c)-comparison function if φ is nondecreasing and∑
n∈N φ

n(t) < ∞ for all t > 0. We denote by F (c)
com the family of all (c)-comparison functions. Examples

of (c)-comparison functions are φλ(t) = λ t for all t ∈ [0,∞), where λ ∈ [0, 1). It is easy to deduce that a
(c)-comparison function must satisfy: (1) φ (t) < t for all t ∈ (0,∞); (2) φ (0) = 0; (3) φ is continuous at t = 0;
(4) if φ (t) ≥ t, then t = 0; (5) φm (t) ≤ φn (t) ≤ t for all t ∈ [0,∞) and all n,m ∈ N such that n ≤ m; (6) φn is
nondecreasing for all n ∈N; and (7) limn→∞ φn (t) = 0 for all t ∈ [0,∞).
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Let X be a nonempty set and let ∆ denote the diagonal of the cartesian product X×X. Let G be a graph,
without parallel edges, such that the set V (G) of its vertices coincides with X, and the set E (G) of its edges
contains all loops, that is, ∆ ⊆ E (G). Then X is said to be endowed with a graph G = (V (G) ,E (G)).

If x and y are vertices in a graph G, then a path (or directed path) from x to y of length r ∈ N is a finite
sequence z0, z1, . . . , zr ∈ V (G) of r + 1 vertices of G such that z0 = x, zr = y and (zi−1, zi) ∈ E (G) for all
i ∈ {1, 2, . . . , r}. A graph is connected if there is a path between any two vertices. Furthermore, two vertices
x and y of a directed graph are connected if there is a path from x to y and a path from y to x. A graph G
is weakly connected if, treating all its edges as being undirected, there is a path from every vertex to every
other vertex.

If x ∈ V (G) and r ∈N, let [x]r
G be the set of all points y ∈ X such that there is a directed path from x to y

of length r belonging to G. In such a case we will write
(
xPy

)
G. We write z ∈

(
xPy

)
G if z is included in some

directed path from x to y. A sequence {xn} ⊆ X is said to be G-termwise if (xn, xn+1) ∈ E (G) for all n ∈N, and
{xn} is G-termwise connected if (xnPxn+1)G for all n ∈N (that is, xn+1 ∈ [xn]rn

G for all n ∈N, where rn ∈N).

Definition 2.1 (Shukla et al. [28], Definition 2.1). Let X be a nonempty set endowed with a graph G and dG :
X × X→ R be a function satisfying the following conditions:

(GM1) dG
(
x, y

)
≥ 0 for all x, y ∈ X;

(GM2) dG
(
x, y

)
= 0 if and only if x = y;

(GM3) dG
(
x, y

)
= dG

(
y, x

)
for all x, y ∈ X;

(GM4)
(
xPy

)
G, z ∈

(
xPy

)
G implies dG

(
x, y

)
≤ dG (x, z) + dG

(
z, y

)
for all x, y ∈ X.

The the mapping dG is called a graphical metric on X, and the pair (X, dG) is called a graphical metric space.

If (X, dG) is a graphical metric space, then E (G) ⊆ X×X is a reflexive binary relation on X. To be coherent
with our notation, we will denote it by SG, that is,

xSGy if
(
x, y

)
∈ E (G) . (1)

Definition 2.2. In a graphical metric space (X, dG), a sequence {xn} ⊆ X is dG-Cauchy if lim
n,m→∞

dG(xn, xm) = 0, and

it is dG-convergent to x ∈ X if lim
n→∞

dG(xn, x) = 0 (in such a case, we will write {xn}
dG
→ x and we will say that x is a

dG-limit of {xn}). We say that (X, dG) is complete if every dG-Cauchy sequence in X is dG-convergent to a point of X.

The following notion of completeness is slightly different to the previous one.

Definition 2.3. Let (X, dG) be a graphical metric space and let G′ be a subgraph of G such that V (G′) = X. We say
that (X, dG) is G′-complete if every G′-termwise connected dG-Cauchy sequence in X dG-converges in X.

Definition 2.4 (Shukla et al. [28], Definition 3.1). Let (X, dG) be a graphical metric space, T : X → X be a
mapping and G′ be a subgraph of G such that ∆ ⊆ E (G′). Then T is called a (G,G′)-graphical contraction on X if the
following conditions hold:

(GC1) T preserves edges in E (G′), that is,
(
x, y

)
∈ E (G′) implies

(
Tx,Ty

)
∈ E (G′);

(GC2) there exists λ ∈ [0, 1) such that

dG
(
Tx,Ty

)
≤ λ dG

(
x, y

)
for all x, y ∈ X with

(
x, y

)
∈ E (G′) .

We must point out that, to our opinion, it is not convenient to impose condition (GC1) for a contrac-
tion. Probably, this condition derives from Definition 2.1 given by Jachymski in [13], where the author
also imposed this axiom for Banach G-contractions. However, this assumption means that many classical
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contractions are not contractions in this sense. For instance, if X = R is endowed with the graph G such
that V (G) = R and

(
x, y

)
∈ E (G)⇔ y ≤ x, then the mapping T : R→ R defined by Tx = −x/2 for all x ∈ R is

not a contraction in the sense of Definition 2.4, which is a little bit odd. Condition (GC1) can be interpreted
as a nondecreasing assumption w.r.t. the binary relation SG on X and, from our point of view, it should
be removed from Definition 2.4. Anyhow, it could only have a sense if we suppose that the domain of the
metric dG is E (G) rather than X × X.

Definition 2.5 (Shukla et al. [28], Definition 3.7). Let (X, dG) be a graphical metric space and T : X → X be a
mapping. Then, the quadruple (X, dG,G′,T) is said to have the property (S) if:

(S) whenever a G′-termwise connected T-Picard sequence {xn} has two limits x∗ and y∗, where x∗ ∈ X, y∗ ∈ T(X),
then x∗ = y∗.

3. Some Commentaries about Fixed Point Theory in Graphical Metric Spaces

As we have commented in the introduction, graphical metric spaces have proved to be of interest in the
field of fixed point theory. They have highlighted that we can consider contractivity conditions that only
must hold for binary relations that are not necessarily transitive. If the contractivity condition is strong
enough, transitivity can be avoided. Other advantage of graphical metric space is the fact that we have
only to check that the triangle inequality is satisfied for three points placed in a directed path of the graph.
But this advantage can become a drawback because we have not a control on the distance between two
points that are not in a directed path. This fact could lead researchers to make mistakes when working in
this setting, especially when we try to use the generalized version of the triangle inequality (see Remark
4.14 below). This is the case we are going to describe.

In [28], the authors proved the following theorem.

Theorem 3.1 (Shukla et al. [28], Theorem 3.10). Let (X, dG) be a G′-complete graphical metric space and T :
X→ X be a (G,G′)-graphical contraction. Suppose that the following conditions hold:

(A) there exists x0 ∈ X such that Tx0 ∈ [x0]l
G′ for some l ∈N;

(B) if a G′-termwise connected T-Picard sequence {xn} converges in X, then there exist a limit z ∈ X of {xn} and
n0 ∈N such that (xn, z) ∈ E(G′) or (z, xn) ∈ E(G′) for all n > n0.

Then, there exists x∗ ∈ X such that the T-Picard sequence {xn} with initial value x0 ∈ X, is G′-termwise connected
and converges to both, x∗ and Tx∗. In addition, if the quadruple (X, dG,G′,T) has the property (S), then T has a fixed
point in X.

After that, the same authors studied the uniqueness of the fixed point. Let

XT = { x ∈ X : (x,Tx) ∈ E (G′) } .

Theorem 3.2 (Shukla et al. [28], Theorem 3.13). Let (X, dG) be a G′-complete graphical metric space and T :
X→ X be a (G,G′)-graphical contraction. Suppose that all the conditions of Theorem 3.10 are satisfied, then T has a
fixed point. In addition, if XT is weakly connected (as a subgraph of G′), then the fixed point of T is unique.

Here we are going to show that weakly connectedness of XT is not strong enough to guarantee that the
fixed point of T is unique, that is, Theorem 3.2 is false.

Let X = [−1, 0) ∪ (0, 1] ∪ {ω−, ω+
} where ω− and ω+ are two distinct points such that ([−1, 0) ∪ (0, 1]) ∩

{ω−, ω+
} = ∅. Let G = G′ be the graph such that V (G) = V (G′) = X and

E (G) = E (G′) = ∆ ∪
{

(x, y) ∈ X × X : 0 < y < x ≤ 1
}

∪
{

(x, y) ∈ X × X : −1 ≤ x < y < 0
}

∪ { (x,−x) ∈ X × X : 0 < x ≤ 1 }
∪

{
(ω−, x) ∈ X × X : −1 ≤ x < 0

}
∪

{
(x, ω+) ∈ X × X : 0 < x ≤ 1

}
.
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Let dG : X × X→ [0,∞) be the function given by:

dG
(
x, y

)
=



0, if x = y,
1, if x, y ∈ [−1, 0) ∪ (0, 1] are such that

y < 0 < x < −y or x < 0 < y < −x,∣∣∣ x − y
∣∣∣ , if x, y ∈ [−1, 0) ∪ (0, 1] , x , y in other case,

y, if x = ω+ and y ∈ (0, 1] ,
x, if y = ω+ and x ∈ (0, 1] ,
1 +

∣∣∣ y
∣∣∣ = 1 − y, if x = ω+ and y ∈ [−1, 0) ,

1 + | x | = 1 − x, if y = ω+ and x ∈ [−1, 0) ,
1 + y, if x = ω− and y ∈ (0, 1] ,
1 + x, if y = ω− and x ∈ (0, 1] ,∣∣∣ y

∣∣∣ = −y, if x = ω− and y ∈ [−1, 0) ,
| x | = −x, if y = ω− and x ∈ [−1, 0) ,
2, if

{
x, y

}
= {ω−, ω+

} .

Let T : X→ X be given by

Tx =

{
x/2, if x ∈ [−1, 0) ∪ (0, 1] ,
x, if x ∈ {ω−, ω+

} .

We are going to show that all hypotheses of Theorem 3.2 hold and, although XT = X is weakly connected,
the contraction T has two distinct fixed points (which are ω− and ω+).

1. Unless the diagonal ∆, there are only five kind of edges:

(⊕,⊕) , (�,�) , (⊕,�) ,
(
ω−,�

)
and (⊕, ω+) .

2. Let x, y ∈ X be such that
(
x, y

)
∈ E (G).{

• If y ∈ (0, 1], then x ∈ (0, 1] and 0 < y ≤ x ≤ 1.
• If x ∈ [−1, 0) , then y ∈ [−1, 0) and −1 ≤ x ≤ y < 0.

3. If x ∈ X and (x, ω−) ∈ E (G), then x = ω−.
4. If x ∈ X, (ω−, x) ∈ E (G) and x , ω−, then x ∈ [−1, 0).
5. If x ∈ X and (ω+, x) ∈ E (G), then x = ω+.
6. If x ∈ X, (x, ω+) ∈ E (G) and x , ω+, then x ∈ (0, 1].
7. If x, y ∈ [−1, 0) ∪ (0, 1] are such that

(
x, y

)
∈ E (G) and x and y have different sign, then x is positive, y

is negative and | x | =
∣∣∣ y

∣∣∣ (in particular, y = −x < 0 < x).

x, y ∈ [−1, 0) ∪ (0, 1](
x, y

)
∈ E (G)

x y < 0

 ⇒


y = −x < 0 < x(
x, y

)
= (⊕,�)

| x | =
∣∣∣ y

∣∣∣
8. If x ∈ (0, 1] then (ω−,−x), (−1,−x) , (1,−1) , (1, x) , (x, ω+) ∈ E (G).
9. The graph G is weakly connected because, treating all its edges as being undirected, there is a path

from every vertex to every other vertex.
10. XT = X.
11. The set XT = X is weakly connected because X it is.
12. Let z0, z1, . . . , zr ∈ X be a nontrivial (r > 0) directed path in G such that zi−1 , zi for all i ∈ {1, 2, . . . , r}.

• If ω− ∈ {z0, z1, . . . , zr}, then z0 = ω−, z1, z2, . . . , zr ∈ [−1, 0) and
−1 ≤ z1 < z2 < . . . < zr−1 < zr < 0.
In particular, 0 < | zr | < | zr−1 | < . . . < | z2 | < | z1 | .

• If ω+
∈ {z0, z1, . . . , zr}, then zr = ω+, z0, z1, . . . , zr−1 ∈ (0, 1] and

0 < zr−1 < zr−2 < . . . < z1 < z0 ≤ 1.
In particular, 0 < | zr−1 | < | zr−2 | < . . . < | z1 | < | z0 | .
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13. There is not a directed path on G joining ω− and ω+ (neither from ω− to ω+ nor viceversa).
14. Let z0, z1, . . . , zr ∈ X be a directed path in G (vertices can be repeated).

• If ω− ∈ {z0, z1, . . . , zr}, then there is i0 ∈ {0, 1, . . . , r} such that
zi = ω− for all i ≤ i0 and zi ∈ [−1, 0) for all i > i0.

• If ω+
∈ {z0, z1, . . . , zr}, then there is i0 ∈ {0, 1, . . . , r} such that

zi = ω+ for all i ≥ i0 and zi ∈ (0, 1] for all i < i0.

15. Let z0, z1, . . . , zr ∈ X be a directed path in G (vertices can be repeated).
• If ω− ∈ {z0, z1, . . . , zr}, then { z0, z1, . . . , zr } = {ω−, ω−, . . . , ω−,�,�, . . .� }

(where negative terms can exist or not).
• If ω+

∈ {z0, z1, . . . , zr}, then { z0, z1, . . . , zr } = { ⊕,⊕, . . . ,⊕, ω+, ω+, . . . , ω+
}

(where positive terms can exist or not).

16. If a directed path z0, z1, . . . , zr ∈ X in G contains a positive term and a negative term, then z0, z1, . . . , zr ∈

[−1, 0) ∪ (0, 1].
17. If z0, z1, . . . , zr ∈ X is a directed path in G such that zi−1 , zi for all i ∈ {1, 2, . . . , r}, then ω− can only be

placed at the first position (z0), and ω+ can only be placed at the last position (zr). The rest of points
of the directed path are included in [−1, 0) ∪ (0, 1].

18. Let z0, z1, . . . , zr ∈ [−1, 0)∪ (0, 1] be a directed path in G. Then one, and only one, of the following cases
holds:

• z0, z1, . . . , zr ∈ (0, 1] and 0 < zr ≤ zr−1 ≤ . . . ≤ z1 ≤ z0 ≤ 1;
• z0, z1, . . . , zr ∈ [−1, 0) and −1 ≤ z0 ≤ z1 ≤ . . . ≤ zr−1 ≤ zr < 0;
• there is i0 ∈ {1, 2, . . . , r} such that

−1 ≤ zi0 ≤ zi0+1 ≤ . . . ≤ zr−1 ≤ zr < 0 < −zi0 = zi0−1 ≤ zi0−2 ≤ . . . ≤ z1 ≤ z0 ≤ 1.

19. Let z0, z1, . . . , zr ∈ [−1, 0) ∪ (0, 1] be a directed path in G. Then the ordered sequence {z0, z1, . . . , zr}

contains, at most, a unique change of sign. Furthermore,

0 < | zr | ≤ | zr−1 | ≤ . . . ≤ | z1 | ≤ | z0 | .

20. Let z0, z1, . . . , zr ∈ [−1, 0) ∪ (0, 1] be a directed path in G. If the finite sequence z0, z1, . . . , zr contains a
negative term zi0 , then zi0 , zi0+1, . . . , zr are all negative numbers and

−1 ≤ zi0 < zi0+1 < . . . < zr−1 < zr < 0.

21. If a directed path z0, z1, . . . , zr ∈ [−1, 0)∪ (0, 1] contains positive and negative terms, then the first terms
are positive, and, from the first negative term and so on, the rest are all negative, satisfying

−1 ≤ zi0 ≤ zi0+1 ≤ . . . ≤ zr−1 ≤ zr < 0 < −zi0 = zi0−1 ≤ zi0−2 ≤ . . . ≤ z1 ≤ z0 ≤ 1
and 0 < | zr | ≤ | zr−1 | ≤ . . . ≤ | z1 | ≤ | z0 | .

{ z0, z1, . . . , zr } = { ⊕,⊕, . . . ,⊕,�,�, . . .� }.

22. If x, y, z ∈ X are three distinct points such that y ∈ (xPz)G, then one, and only one, of the following
cases holds:

• x, y, z ∈ (0, 1] and 0 < z < y < x;
• x, y ∈ (0, 1], z ∈ [−1, 0) and z < 0 < −z ≤ y < x;
• x ∈ (0, 1], y, z ∈ [−1, 0) and y < z < 0 < −z < −y ≤ x;
• x, y, z ∈ [−1, 0) and x < y < z < 0;


In these cases,

x, y, z ∈ [−1, 0) ∪ (0, 1]
and 0 < | z | ≤

∣∣∣ y
∣∣∣ ≤ | x | .

• z = ω+, x, y ∈ (0, 1] and 0 < y < x ≤ 1;
• x = ω−, y, z ∈ [−1, 0) and −1 ≤ y < z < 0.
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23. (X, dG) is a graphical metric space.
24. If {xn}n∈N ⊂ X is a G-termwise connected sequence, then there is a sequence {yn}n∈N ⊂ X such that(

yn, yn+1
)
∈ E (G) for all n ∈N and {xn} is a subsequence of {yn} (that is, xn = yσ(n) for all n ∈N, where

σ : N→N is a strictly increasing function such that σ (0) = 0, so x0 = y0).
25. Let {xn}n∈N ⊂ X be a G-termwise connected sequence. Then one, and only one, of the following cases

holds:

(a) there is n0 ∈N such that xn = ω+ for all n ≥ n0 and xn ∈ (0, 1] for all n < n0;
(b) xn = ω− for all n ∈N;
(c) there is n0 ∈N such that xn = ω− for all n ≤ n0 and xn ∈ [−1, 0) for all n > n0

(in this case, −1 ≤ xn ≤ xn+1 < 0 for all n > n0);
(d) −1 ≤ xn ≤ xn+1 < 0 for all n ∈N;
(e) 0 < xn+1 < xn ≤ 1 for all n ∈N;(

f
)

there is n0 ∈N such that 0 < xn0 < xn0−1 ≤ . . . ≤ x1 ≤ x0 ≤ 1 and
−1 ≤ xn ≤ xn+1 < 0 for all n > n0.

26. If {xn} ⊂ X is a dG-Cauchy sequence, then there is n0 ∈N such that{
• either xn ∈ (0, 1] ∪ {ω+

} for all n ≥ n0;
• or xn ∈ [−1, 0) ∪ {ω−} for all n ≥ n0.

27. Let {xn} ⊂ X be a dG-Cauchy sequence and let n0 ∈ N be such that either xn ∈ (0, 1] ∪ {ω+
} for all

n ≥ n0 or xn ∈ [−1, 0) ∪ {ω−} for all n ≥ n0. If { xn : n ≥ n0 } ∩ [−1, 1] contains infinite terms, then it is a
dE-Cauchy sequence, where dE is the Euclidean metric given by dE

(
x, y

)
=

∣∣∣ x − y
∣∣∣ for all x, y ∈ X.

28. The space (X, dG) is (G,G′)-complete.
29. If {xn} is a Picard sequence of T, then:

• if x0 = ω−, then xn = ω− for all n ∈N and
this sequence only dG-converges to ω−;

• if x0 = ω+, then xn = ω+ for all n ∈N and
this sequence only dG-converges to ω+;

• if x0 ∈ (0, 1], then xn = x0/2n
∈ (0, 1] for all n ∈N and

this sequence only dG-converges to ω+;
• if x0 ∈ [−1, 0), then xn = x0/2n

∈ [−1, 0) for all n ∈N and
this sequence only dG-converges to ω−.

Furthermore, all these sequences are also G-termwise connected.
30. Condition (B): if a G-termwise connected T-Picard sequence {xn} converges in X, then there exist a limit z ∈ X

of {xn} and n0 ∈ N such that (xn, z) ∈ E(G) or (z, xn) ∈ E(G) for all n > n0.
31. Condition (S): whenever a G-termwise connected, T-Picard sequence {xn} has two d-limits x∗ and y∗, where

x∗ ∈ X and y∗ ∈ T(X), then x∗ = y∗.
32. The mapping T is a (G,G′)-graphical contraction with λ = 1/2.
33. If x0 = 1, then (x0,Tx0) = (1, 1/2) ∈ E (G), so Tx0 ∈ [x0]1

G.

As a consequence, all hypotheses of Theorem 3.2 are satisfied. However, T has two distinct fixed points:
ω− and ω+. The mistake in the proof of Theorem 3.13 in [28] is the fact that, although there is an undirected
path from ω− to ω+, there is not a directed path from ω− to ω+. Thus, we cannot use a triangle inequality
such that

dG
(
ω−, ω+)

≤

n∑
i=1

dG (Tnzi−1,Tnzi)

in order to prove that dG (ω−, ω+) = 0. In fact, given two arbitrary fixed points x∗ and y∗ of T, the authors
used the fact that

(
x∗Py∗

)
G′ or

(
y∗Pz∗

)
G′ , which corresponds to hypothesis (U) in Theorem 5.3 below.
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4. Binary Related Distance Spaces

One of the most well known techniques to extend the Banach contractive mapping principle is to
consider abstract metric spaces that generalize the idea of metric space. To do that, one may omit some
of the properties that characterize a metric space (see, for instance, [14, 23]). By removing the triangle
inequality in a metric space, we obtain the notion of symmetric space (see [5]). However, it is difficult to
handle sequences when the triangle inequality is avoided. Some problems arise: the limit of a convergent
sequence need not to be unique, there are convergent sequences that are not Cauchy, etc. Graphical metric
spaces are no strangers to these problems (see [28]). Matthews’ partial metric spaces [19] were introduced
by omitting the idea that the self-distance from a point to itself must be zero. The more conditions we
remove, the greater the difficulties.

In this section we introduce a kind of extended metric spaces by using a binary relation on the underlying
set. In this way, we generalize the notion of graphical metric space by involving a modified triangle
inequality that only holds for points in an appropriate path. We also study some of the first properties of
this class of spaces.

From now on, let S be an arbitrary binary relation on X. Given two points x, y ∈ X, an S-path (or directed
S-path) from x to y is a set of r + 1 points z0, z1, . . . , zr ∈ X (where r ∈ N∗ is the length of the path) satisfying
z0 = x, zr = y and zi−1Szi for all i ∈ {1, 2, . . . , r}. Given x0 ∈ X we will denote by [x0]S the set of all points
y ∈ X such that there exists an S-path from x0 to y.

Definition 4.1. We will say that a sequence {xn} ⊆ X is S-nondecreasing-connected if xn+1 ∈ [xn]S for all n ∈N.

Remark 4.2. The reader can observe that we are going to use the name “S-nondecreasing” to refer a property in
which the involved sequence {xn} satisfies xnSxn+1 for all n ∈ N, and the name “S-nondecreasing-connected”
when the sequence satisfies xn+1 ∈ [xn]S for all n ∈ N. In the setting of graphical metric spaces, a sequence in a
“G-termwise” property must verify (xn, xn+1) ∈ E (G) for all n ∈N, while in a “G-termwise-connected” property,
the sequence will satisfy xn+1 ∈ [xn]rn

G for all n ∈N (where rn ∈N), that is, (xnPxn+1)G.

Proposition 4.3. If S is a binary relation on X, then a sequence {xn} ⊆ X is S-nondecreasing-connected if, and only
if, there exists an S-nondecreasing sequence {yn} ⊆ X such that {xn} is a subsequence of {yn} (that is, xn = yσ(n) for
all n ∈N, where σ : N→N is a strictly increasing function such that σ (0) = 0).

Proof. Suppose that {xn} is a S-nondecreasing-connected sequence. Given n ∈ N, as xn+1 ∈ [xn]S, there
exists a directed S-path zn

0 , z
n
1 , . . . , z

n
k(n) ∈ X from zn

0 = xn to zn
k(n) = xn+1 = zn+1

0 . By joining the consecutive
directed paths{

x0 = z0
0, z

0
1, . . . , z

0
k(0) = x1 = z1

0

}
∪

{
z1

1, z
1
2 . . . , z

1
k(1) = x2 = z2

0

}
∪

{
z2

1, z
2
2 . . . , z

2
k(2) = x3 = z3

0

}
∪ . . .

we obtain the consecutive terms of the sequence {yn} such that ynSyn+1 for all n ∈N and verifying that {xn}

is a subsequence of {yn}. The converse is similar.

Obviously, everyS-nondecreasing sequence is alsoS-nondecreasing-connected. In general, the converse
is false, but we must point out that it holds if S is transitive.

In the following definitions, let d : X × X→ R be a function (with no metric structure).

Definition 4.4. (cf. [22]) Given a function d : X × X→ R, a sequence {xn} ⊆ X is:

• d-Cauchy if lim
n,m→∞

d(xn, xm) = 0;

• d-convergent to x ∈ X if lim
n→∞

d(xn, x) = lim
n→∞

d(x, xn) = 0 (in such a case, we will write {xn}
d
→ x and we will

say that x is a d-limit of {xn});

We say that (X, d) is complete if every d-Cauchy sequence in X is d-convergent to a point of X.
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Definition 4.5. We will say that a mapping T : X→ X is (d,S)-nondecreasing-connected-continuous at x0 ∈ X

if {Txn}
d
→ Tx0 for all S-nondecreasing-connected sequence {xn} ⊆ X such that {xn}

d
→ x0. And T is (d,S)-

nondecreasing-connected-continuous if it is (d,S)-nondecreasing-connected-continuous at each point x ∈ X.

Definition 4.6. A nonempty subset A ⊆ X is (d,S)-nondecreasing-connected-precomplete if for allS-nondecreasing-
connected, d-Cauchy sequence {an} ⊆ A there exists x ∈ X such that {an} d-converges to x.

Remark 4.7. Every nonempty subset of a complete (or (d,S)-nondecreasing-connected-precomplete) BRDS is also
(d,S)-nondecreasing-connected-precomplete.

Notice that the d-limit of such sequence {an} need not to belong to A.

Definition 4.8. A binary related distance space (briefly, a BRDS) is a triple (X, d,S) where S is an arbitrary
binary relation on X and d : X × X→ [0,∞) is a function such that the following conditions are fulfilled:

(B1) If x, y ∈ X verify d
(
x, y

)
= 0 and y ∈ [x]S, then x = y.

(B2) d
(
x, y

)
= d

(
y, x

)
.

(B3) d (x, z) ≤ d
(
x, y

)
+ d

(
y, z

)
for all x, y, z ∈ X such that y ∈ [x]S and z ∈

[
y
]
S

.

Remark 4.9. Some of the results we are going to introduce can be proved in a more general setting, by replacing
condition (B1) by the following assumption:(
B′1

)
If x, y ∈ X verify d

(
x, y

)
= 0 and xSy, then x = y.

Remark 4.10. Every metric space (X, d) is a BRDS whatever the binary relation S on X.

Lemma 4.11. Every graphical metric space (X, dG) is a BRDS under the reflexive binary relation SG defined by (1).

The notion of BRDS extends the notion of graphical metric space. For instance, in a BRDS, the binary
relation S is not necessarily reflexive, and condition “d (x, x) = 0 for all x ∈ X” is avoided.

Remark 4.12. One can easily consider a topology on every BRDS by defining that a subset A of X is closed if A

satisfies the following condition: if {an} ⊆ A and {an}
d
→ x ∈ X, then x ∈ A. Clearly, ∅ and X are closed, the arbitrary

intersection of closed sets is closed, and the finite union of closed sets is closed. Nevertheless, this topology need not
to be either T2 (see Remark 2.13 in [28] in graphical metric spaces) or T1 (because it is not ensured that singleton {x}
is closed when d (x, x) > 0).

Remark 4.13. In [13], Example 2.1, Jachymski advised that condition ∆ ⊆ E (G) was stated in order that all constant
mappings were G-contractions. Concretely, his definition of G-contraction T : X → X in metric spaces endowed
with a graph G included two aspects:{

• T preserves edges of G, that is, if
(
x, y

)
∈ E (G), then

(
Tx,Ty

)
∈ E (G) ;

• there is λ ∈ (0, 1) such that d
(
Tx,Ty

)
≤ λ d

(
x, y

)
for all

(
x, y

)
∈ E (G) .

A constant mapping from a metric space into itself always satisfies the second condition, so condition ∆ ⊆ E (G) was
imposed for guaranteeing that constant mappings preserved edges of G. This condition holds in BRDS if we assume
that the binary relation S is reflexive. However, we are not interested in constant mappings (for which we know that
they always have a unique fixed point). We prefer to develop our study in a general setting in order to cover the
widest possible set of self-mapping although, in some particular cases, we are not considering the family of constant
mappings. This is coherent with the fact that we have omitted the condition “d (x, x) = 0 for all x ∈ X”: if there are
two points x0, y0 ∈ X such that d (x0, x0) > 0, d

(
y0, y0

)
= 0 and y0Sy0, then the constant mapping Tx ≡ x0 does not

satisfy the second condition of a G-contraction. This is the reason why we are not definitively interested in constant
mappings. Nevertheless we point out that under some additional conditions (like “S is reflexive” and “d (x, x) = 0
for all x ∈ X”), our study is also applicable to constant mappings.
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Remark 4.14. It can be proved, by induction methodology, that if (X, d,S) is a BRDS and x0, x1, . . . , xn ∈ X (n ≥ 2)
are points such that xi ∈ [xi−1]S for all i ∈ {1, 2, . . . ,n}, then

d (x0, xn) ≤
n∑

i=1
d (xi−1, xi) .

In particular, this inequality holds if x0, x1, . . . , xn is a directed S-path in X. However, this inequality may be false if
the considered points are not in an appropriate directed S-path.

Let us show that the notion of BRDS properly extends the notion of graphical metric space.

Lemma 4.15. Let (X, dG) be a graphical metric space and let ω be a point such that ω < X. Let Xω = X ∪ {ω} and
let define D : Xω × Xω → [0,∞) by:

D
(
x, y

)
=


dG(x, y), if x, y ∈ X,
1, if x = y = ω,
0, if x , y and ω ∈ {x, y}.

Also consider the binary relation S on Xω given by:

xSy if
(

x, y ∈ X and
(
x, y

)
∈ E (G)

)
.

Then (Xω,D,S) is a BRDS that satisfies condition
(
B′1

)
, but (Xω,D) is not a graphical metric space.

Proof. On the one hand, let x, y ∈ Xω be such that D
(
x, y

)
= 0 and y ∈ [x]S. Then there is an S-path

z0 = x, z1, . . . , zr = y ∈ Xω from x to y. Since zi−1Szi for all i ∈ {1, 2, . . . , r}, but ω is not S-comparable to
points of X, then z0, z1, . . . , zr ∈ X. In particular, x, y ∈ X. Therefore, dG(x, y) = D

(
x, y

)
= 0, so x = y by

condition (GM2). On the other hand, D is clearly symmetric. Finally, let x, y, z ∈ Xω be such that y ∈ [x]S
and z ∈

[
y
]
S

. Since ω is not S-comparable to any other point in Xω (even to itself), then ω does not belong
to any path from x to y and from y to z by involving S-comparable points. Hence, all points in such paths
are in X (in particular, x, y, z ∈ X), and all edges are in E(G). Therefore, (xPz)G and y ∈ (xPz)G. By (GM4),
dG(x, z) ≤ dG

(
x, y

)
+ dG

(
y, z

)
, so D(x, z) ≤ D

(
x, y

)
+ D

(
y, z

)
and (B3) holds. Thus, (Xω,D,S) is a BRDS that

also satisfies condition
(
B′1

)
. However, (Xω,D) is not a graphical metric space because D (ω,ω) = 1 , 0.

Furthermore, if x ∈ X, then D (x, ω) = 0, but x , ω.

The following result is a way to reduce our arguments to infinite sequences.

Proposition 4.16. Let (X, d,S) be a BRDS and let {xn} ⊆ X be a d-Cauchy T-Picard sequence on X such that
xn+1 ∈ [xn]S for all n ∈ N. Then either {xn} is infinite or {xn} contains a fixed point ω of T (in the last case,
d (ω,ω) = 0 and {xn} d-converges to ω).

Proof. Suppose that the Picard sequence {xn} of the operator T : X → X is not infinite. Then there are
n0,m0 ∈N such that n0 < m0 and xn0 = xm0 . Let h0 = m0 − n0 ∈N∗. It is easy to prove by induction that, for
all k ∈N, xn0+k = xm0+k and xp0+k h0 = xp0 for all p0 ≥ n0. As the terms of {xn} are repeated in a cyclic way from
n0 and so on, { xn : n ≥ n0 } =

{
xn0 , xn0+1, . . . , xm0−1

}
. Let ε0 = max

({
d
(
xi, x j

)
: i, j ∈ {n0,n0 + 1, . . . ,m0 − 1 }

})
.

To show that ε0 = 0, suppose that ε0 > 0. Let i0, j0 ∈ {n0,n0 + 1, . . . ,m0 − 1 } be such that ε0 = d
(
xi0 , x j0

)
. As

{xn} is a d-Cauchy sequence, there is r0 ≥ n0 such that d (xn, xm) < ε0/2 for all n,m ≥ r0. Let k0 ∈ N be an
integer number such that n0 + k0 h0 ≥ r0. Therefore

ε0 = d
(
xi0 , x j0

)
= d

(
xi0+k0 h0 , x j0+k0 h0

)
≤
ε0

2
,

which is a contradiction. Hence, ε0 = 0 and d
(
xi, x j

)
= 0 for all i, j ∈ {n0,n0 + 1, . . . ,m0 − 1 }. As the

sequence is cyclic, d (xn, xm) = 0 for all n,m ≥ n0. In particular, since Txn0 = xn0+1 ∈
[
xn0

]
S

and d
(
xn0 ,Txn0

)
=

d
(
xn0 , xn0+1

)
= 0, condition (B1) guarantees that Txn0 = xn0 , so ω = xn0 is a fixed point of T. In this case,

d (ω,ω) = d
(
xn0 ,Txn0

)
= 0. Furthermore, xn = ω for all n ≥ n0, so d (xn, ω) = d (ω,ω) = 0, which means that

{xn} d-converges to ω.
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5. Fixed Point Theory in Binary Related Distance Spaces

In this section we introduce some fixed point theorems in the setting of binary related distance spaces.
The contractivity conditions play a key role in the following results because we will not assume any a priori
condition on the binary relation.

5.1. Berinde-Rus type fixed point theory in binary related distance spaces
In our first main result, we describe the behavior of a Picard sequence starting from an appropriate

initial condition.

Theorem 5.1. Let (X, d,S) be a BRDS and let T : X → X be an S-nondecreasing self-mapping such that there is
φ ∈ F (c)

com satisfying

d
(
Tx,Ty

)
≤ φ

(
d
(
x, y

))
for all x, y ∈ X such that xSy. (2)

Suppose that there exists x0 ∈ X such that x0 ∈ [x0]S, Tx0 ∈ [x0]S andOT (x0) is (d,S)-nondecreasing-connected-
precomplete. Also suppose that at least one of the following conditions hold:

(a) T is (d,S)-nondecreasing-connected-continuous.

(b) For allS-nondecreasing-connected, d-Cauchy, d-convergent, infinite, Picard sequence {xn} of T, there exist a limit
ω ∈ X of {xn} and n0 ∈N such that xnSω or ωSxn for all n ≥ n0.

Then there exists a point ω ∈ X such that the Picard sequence of T based on x0 is S-nondecreasing-connected and
it converges, at the same time, to ω and to Tω.

The previous theorem improves Theorem 3.1 in several senses:

• BRDS are more general than graphical metric spaces. In particular, the condition “d (x, x) = 0 for all
x ∈ X” is omitted.

• The binary relation need not satisfy any condition (in particular, it is not necessarily reflexive).

• The contractivity condition is weaker because φ ∈ F (c)
com.

• Condition (b) in Theorem 5.1 is weaker than condition (b) in Theorem 3.1 because we consider a
restrictive family of sequences.

• We introduce an alternative condition to (b) which was not considered in Theorem 3.1.

Proof. Let {xn} be the Picard sequence of T based on the point x0 ∈ X such that x0 ∈ [x0]S and Tx0 ∈ [x0]S.
Since x1 = Tx0 ∈ [x0]S, there is a finite path z0, z1, . . . , zr ∈ X from z0 = x0 to zr = x1 = Tx0 (of length r)
such that zi−1Szi for all i ∈ {1, 2, . . . , r}. Let t0 = max1≤i≤r d (zi−1, zi). If t0 = 0, then d (zi−1, zi) = 0 for all
i ∈ {1, 2, . . . , r}. By (B1), zi−1 = zi for all i, so Tx0 = x1 = zr = z0 = x0. In this case, x0 is a fixed point of T and
the sequence {xn} satisfies xn = x0 for all n ∈ N. As d (x0, x0) = d (z0, z1) = 0, then {xn} d-converges to x0 and
to Tx0, and the proof is finished.

On the contrary case, assume that t0 > 0. As zi−1Szi for all i ∈ {1, 2, . . . , r} and T is S-nondecreasing, then
Tzi−1STzi for all i ∈ {1, 2, . . . , r}. By induction,

(Tnzi−1)S(Tnzi) for all i ∈ {1, 2, . . . , r} and all n ∈N. (3)

In particular, {xn = Tnz0,Tnz1, . . . ,Tnzr = TnTx0 = xn+1} is a finite path (of length r) from xn to xn+1 whose
terms areS-increasingly comparable, so xn+1 ∈ [xn]S for all n ∈N, and the sequence {xn} isS-nondecreasing-
connected. Moreover, applying the contractivity condition (2), for all i ∈ {1, 2, . . . , r} and all n ∈N,

d (Tnzi−1,Tnzi) ≤ φ
(
d
(
Tn−1zi−1,Tn−1zi

))
≤ φ2

(
d
(
Tn−2zi−1,Tn−2zi

))
≤ . . . ≤ φn (d (zi−1, zi)) .
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As φn is nondecreasing,

d (Tnzi−1,Tnzi) ≤ φn (d (zi−1, zi)) ≤ φn
(
max
1≤ j≤r

d
(
z j−1, z j

))
= φn (t0)

Thus, for k ∈N∗,

d (xk−1, xk) = d
(
Tk−1x0,Tkx0

)
= d

(
Tk−1x0,Tk−1Tx0

)
= d

(
Tk−1z0,Tk−1zr

)
≤

r∑
i=1

d
(
Tk−1zi−1,Tk−1zi

)
≤

r∑
i=1
φk−1 (t0) = rφk−1 (t0) .

As limn→∞ φn (t0) = 0, then limn→∞ d (xn, xn+1) = 0. Next, let n ∈N and m ∈N∗ with m ≥ 2. In this case,

d (xn, xn+m) ≤
n+m∑

k=n+1
d (xk−1, xk) ≤

n+m∑
k=n+1

rφk−1 (t0) ≤ r
∞∑

k=n
φk (t0) .

As φ ∈ F (c)
com, the values of d (xn, xn+m) are arbitrarily near to zero for n large enough. Similarly, from

x0 ∈ [x0]S, we can also deduce that the values of d (xn, xn) are arbitrarily near to zero for n large enough.
Hence, {xn} is a d-Cauchy sequence. If {xn} is not infinite, Proposition 4.16 shows that it contains a fixed
point of T and {xn} d-converges to such fixed point, so the proof is finished. On the contrary case, assume
that {xn} is infinite. In this case, {xn} is a d-Cauchy, infinite, Picard sequence {xn} of T. As OT (x0) is (d,S)-
nondecreasing-connected-precomplete, there is ω ∈ X such that {xn} d-converges to ω. Next, we consider
two cases.

Case (a) . In this case, as {xn} is an S-nondecreasing-connected sequence such that {xn}
d
→ x0, then

{xn+1 = Txn}
d
→ Tx0, so {xn} d-converges, at the same time, to ω and to Tω.

Case (b) . In this case, {xn} is a d-Cauchy, d-convergent, infinite, Picard sequence of T, so condition (b)
guarantees that there exist a limit ω ∈ X of {xn} and n0 ∈ N such that xnSω or ωSxn for all n ≥ n0. In any
case, the contractivity condition (2) yields

d (xn,Tω) = d (Txn−1,Tω) ≤ φ (d (xn−1, ω)) for all n ≥ n0 + 1.

As φ is continuous at t = 0 and φ (0) = 0, then {xn} also d-converges to Tω.

Theorem 5.2. Under the hypothesis of Theorem 5.1, additionally assume that the following property holds:

(S) whenever an S-nondecreasing-connected, d-Cauchy, d-convergent, infinite, Picard sequence {xn} of T has two
d-limits ω ∈ X and ω∗ ∈ T(X), then ω = ω∗.

Then T has a fixed point.
Furthermore, if ω,ω′ ∈ Fix(T) satisfy ω ∈ [ω′]S, then d (ω,ω′) = 0 and ω = ω′. In particular, d (ω,ω) = 0 for

all ω ∈ Fix(T) such that ω ∈ [ω]S.

Proof. We have proved that if {xn = Tnx0}n∈N is not infinite, then it contains a fixed point of T. In other case,
it converges, at the same time, to ω and to Tω, so condition (S) leads to Tω = ω.

Next let ω,ω′ ∈ Fix(T) be two fixed points of T such that ω ∈ [ω′]S. Then there is a finite path
z0, z1, . . . , zr ∈ X from z0 = ω to zr = ω′ (of length r) such that zi−1Szi for all i ∈ {1, 2, . . . , r}. As we proved
in (3), as T is S-nondecreasing, for all n ∈ N, Tnz0,Tnz1, . . . ,Tnzr ∈ X is a finite path from Tnz0 = Tnω = ω
to Tnzr = Tnω′ = ω′ (of length r) such that (Tnzi−1)S(Tnzi) for all i ∈ {1, 2, . . . , r}. Applying the contractivity
condition (2), for all i ∈ {1, 2, . . . , r} and all n ∈N,

d (Tnzi−1,Tnzi) ≤ φ
(
d
(
Tn−1zi−1,Tn−1zi

))
≤ φ2

(
d
(
Tn−2zi−1,Tn−2zi

))
≤ . . . ≤ φn (d (zi−1, zi)) .
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If t0 = max1≤ j≤r d
(
z j−1, z j

)
, as φn is nondecreasing,

d (Tnzi−1,Tnzi) ≤ φn (d (zi−1, zi)) ≤ φn
(
max
1≤ j≤r

d
(
z j−1, z j

))
= φn (t0) .

Thus, for n ∈N∗,

d (ω,ω′) = d (Tnω,Tnω′) = d (Tnz0,Tnzr)

≤

r∑
i=1

d (Tnzi−1,Tnzi) ≤
r∑

i=1
φn (t0) = rφn (t0) .

If t0 = 0, then φn (t0) = 0, so d (ω,ω′) = 0. If t0 > 0, then limn→∞ φn (t0) = 0, and we may also deduce that
d (ω,ω′) = 0. In any case, d (ω,ω′) = 0. From (B1) we conclude that ω = ω′.

In the following result we study the uniqueness of the fixed point under an additional condition.

Theorem 5.3. Let (X, d,S) be a BRDS and let T : X → X be an S-nondecreasing self-mapping such that there is
φ ∈ F (c)

com satisfying

d
(
Tx,Ty

)
≤ φ

(
d
(
x, y

))
for all x, y ∈ X such that xSy. (4)

Suppose that there exists x0 ∈ X such that x0 ∈ [x0]S, Tx0 ∈ [x0]S andOT (x0) is (d,S)-nondecreasing-connected-
precomplete. Also suppose that at least one of the following conditions hold:

(a) T is (d,S)-nondecreasing-connected-continuous.

(b) For allS-nondecreasing-connected, d-Cauchy, d-convergent, infinite, Picard sequence {xn} of T, there exist a limit
ω ∈ X of {xn} and n0 ∈N such that xnSω or ωSxn for all n ≥ n0.

Additionally assume that the following properties holds:

(S) whenever an S-nondecreasing-connected, d-Cauchy, d-convergent, infinite, Picard sequence {xn} of T has two
d-limits ω ∈ X and ω∗ ∈ T(X), then ω = ω∗;

(U) for all ω,ω′ ∈ Fix(T) we have that ω ∈ [ω′]S or ω′ ∈ [ω]S.

Then T has a unique fixed point.

Proof. Theorem 5.2 guarantees that T has at least a fixed point. To study the uniqueness, let ω,ω′ ∈ Fix(T)
be two fixed points of T. By condition (U), we have that ω ∈ [ω′]S or ω′ ∈ [ω]S. In any case, Theorem 5.2
also guarantees that ω = ω′, so T has a unique fixed point.

The following result is another way to guarantee existence and uniqueness of fixed points. Let define

XT,S = { x ∈ X : xSTx } .

Clearly, if S is reflexive on Fix(T), then Fix(T) ⊆ XT,S.

Theorem 5.4. Let (X, d,S) be a BRDS and let T : X → X be an S-nondecreasing self-mapping such that there is a
function φ : [0,∞)→ [0,∞) satisfying φ (t) < t for all t > 0 and

d
(
Tx,Ty

)
≤ φ

(
d
(
x, y

))
for all x, y ∈ X such that xSy. (5)

Suppose that XT,S is nonempty and that the function

f : XT,S → [0,∞) , x 7→ f (x) = d (x,Tx)

has an absolute minimum at ω ∈ XT,S. Then ω is a fixed point of T and d (ω,ω) = 0.
Furthermore, if φ ∈ F (c)

com and property (U) of Theorem 5.3 holds, then T has a unique fixed point.
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Proof. We prove that d (ω,Tω) = 0 by contradiction. Suppose that d (ω,Tω) > 0. Since ω is an absolute
minimum of f , then

d (ω,Tω) ≤ d (x,Tx) for all x ∈ XT,S.

Let ω′ = Tω. Since ω ∈ XT,S, ωSTω. As T is S-nondecreasing, TωST2ω, so ω′STω′, which means that
ω′ ∈ XT,S. Then d (ω,Tω) ≤ d (ω′,Tω′). Nevertheless, by (5),

d (ω′,Tω′) = d
(
Tω,T2ω

)
≤ φ (d (ω,Tω)) < d (ω,Tω) .

This contradiction proves that d (ω,Tω) = 0. Hence axiom (B1) guarantees that ω = Tω. In particular
Fix(T) , ∅. Furthermore d (ω,ω) = d (ω,Tω) = 0. Finally, the uniqueness of the fixed point follows by
repeating the arguments of the proof of Theorem 5.3.

Remark 5.5. Very recently, Samet [25] have shown the equivalence between general theorems in metric spaces
endowed with a partial order 4 with their corresponding results in metric spaces. To do that, he considered the
complete metric space given as the closure of the orbit of the initial condition x0, that is,Z = OT (x0). In this case, we
only need to suppose that the contractivity condition holds in a proper subset of X.

5.2. Banach type fixed point theory in graphical metric spaces
In this subsection we obtain some consequences of the above obtained results in the setting of graphical

metric spaces. Before that, we translate some notions on graphical spaces to BRDS. As a framework, let
(X, dG) be a graphical metric space, let G′ be a subgraph of G such that V (G′) = X and let T : X → X be a
mapping. Consider on X the binary relation SG′ given, for x, y ∈ X, by

xSG′ y if
(
x, y

)
∈ E (G′) . (6)

Proposition 5.6. The following properties hold.

1. (X, dG,SG′ ) is a BRDS.
2. If T is a (G,G′)-graphical contraction with constant λ ∈ [0, 1), then T is SG′ -nondecreasing and

d
(
Tx,Ty

)
≤ λ d

(
x, y

)
for all x, y ∈ X such that xSG′y.

3. If there exists a point x0 ∈ X such that Tx0 ∈ [x0]l
G′ (for some l ∈N), then x0 ∈ [x0]SG′

and Tx0 ∈ [x0]SG′
.

4. If (X, dG) is G′-complete, then any nonempty subset A of X is (dG,SG′ )-nondecreasing-connected-precomplete
(in particular, OT (x0) is).

5. If property (B) in Theorem 3.1 holds, then assumption (b) in Theorem 5.2 also holds.
6. If the quadruple (X, dG,G′,T) satisfies the property (S) in Theorem 3.1, then condition (S) in Theorem 5.2 also

holds.

Proof. Item 1 follows from Lemma 4.11 and items 2, 3, 5 and 6 are trivial. Let us prove item 4. Suppose
that (X, dG) is G′-complete and let A ⊆ X be a nonempty subset. To prove that A is (dG,SG′ )-nondecreasing-
connected-precomplete, let {an} ⊆ A be an SG′ -nondecreasing-connected, d-Cauchy sequence. Proposition
4.3 guarantees that there exists an SG′ -nondecreasing sequence {yn} ⊆ X such that {an} is a subsequence of
{yn}, that is, there exists an strictly increasing function σ : N → N such that σ (0) = 0 and an = yσ(n) for
all n ∈ N. Since {yn} is SG′ -nondecreasing, then ykSG′ yk+1 for all k ∈ N, that is,

(
yk, yk+1

)
∈ E (G′) for all

k ∈ N. Then an = yσ(n), yσ(n)+1, yσ(n)+2, . . . , yσ(n+1) = an+1 is a directed path on G′ from each an to an+1, that is,
an+1 ∈ [an]G′ for all n ∈ N. As a result, {an} is a G′-termwise connected sequence. As (X, dG) is G′-complete
and {an} is a G′-termwise connected, dG-Cauchy sequence, there is ω ∈ X such that {an} dG-converges to ω.
Therefore, A is (dG,SG′ )-nondecreasing-connected-precomplete.

As a consequence of the previous proposition, we deduce that the main result in [28] (in the setting of
graphical metric spaces) trivially follows from Theorem 5.2 (in the setting of BRDS).
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Theorem 5.7. Theorem 3.1 is an immediate consequence of Theorem 5.2.

Proof. Under the hypothesis of Theorem 3.1, let S = SG′ the binary relation on X defined in (6). Proposition
5.6 guarantees that all hypotheses of Theorem 5.2 are fulfilled, so the existence of a fixed point of T is
ensured.

Notice that we cannot establish that Theorem 3.2 is a consequence of Theorem 5.3 because, as we have
demonstrated in Section 3, the weakly connectedness of XT is not strong enough to guarantee that the fixed
point of T is unique. To guarantee uniqueness of the fixed point of T, we need to assume that every two
possible fixed points of T are the extremes of a directed path (see Theorem 5.3).

In order to introduce a version of our main results in the setting of graphical metric spaces, we need the
following notion.

Definition 5.8. Let (X, dG) be a graphical metric space, let G′ be a subgraph of G such that V (G′) = X and let
T : X → X be a mapping. We will say that the mapping T is (dG,G′)-termwise-connected-continuous at x0 ∈ X

if {Txn}
dG
→ Tx0 for all G′-termwise connected sequence {xn} ⊆ X such that {xn}

dG
→ x0. And T is (dG,G′)-termwise-

connected-continuous if it is (dG,G′)-termwise-connected-continuous at each point x ∈ X.

Proposition 5.9. If T is (dG,G′)-termwise-connected-continuous at x0 ∈ X, then T is (dG,SG′ )-nondecreasing-
connected-continuous at x0.

Corollary 5.10. Let (X, dG) be a G′-complete graphical metric space and let T : X→ X be a mapping. Suppose that
the following conditions are fulfilled:

(A) there exists x0 ∈ X such that Tx0 ∈ [x0]`G′ for some ` ∈N;

(C) if
(
x, y

)
∈ E (G′) then

(
Tx,Ty

)
∈ E (G′) (that is, T preserves the edges of G′);

(D) there is φ ∈ F (c)
com such that

d
(
Tx,Ty

)
≤ φ

(
d
(
x, y

))
for all x, y ∈ X such that

(
x, y

)
∈ E (G′) .

Also suppose that at least one of the following conditions holds:(
agr

)
T is (dG,G′)-termwise-connected-continuous.(

bgr

)
For all G′-termwise connected, dG-Cauchy, dG-convergent, infinite, Picard sequence {xn} of T, there exist a
dG-limit ω ∈ X of {xn} and n0 ∈N such that (xn, ω) ∈ E(G′) or (ω, xn) ∈ E(G′) for all n > n0.

Then, there exists ω ∈ X such that the T-Picard sequence {xn} with initial value x0 ∈ X is G′-termwise connected
and it dG-converges at the same time to both, ω and Tω. In addition to this, suppose that:(
Sgr

)
whenever a G′-termwise connected, dG-Cauchy, dG-convergent, infinite, Picard sequence {xn} of T has two
dG-limits ω ∈ X and ω∗ ∈ T(X), then ω = ω∗.

Then T has a fixed point in X.
Furthermore, if ω,ω′ ∈ Fix(T) satisfy ω ∈ [ω′]G′ , then ω = ω′.

Proof. It easily follows by applying Theorem 5.2 to the BRDS (X, dG,SG′ ) and taking into account properties
of Propositions 5.6 and 5.9.

Corollary 5.11. Under the hypothesis of Corollary 5.10, additionally assume that the following property holds:(
Ugr

)
for all ω,ω′ ∈ Fix(T) we have that ω ∈ [ω′]G′ or ω′ ∈ [ω]G′ .

Then T has a unique fixed point.

Proof. It follows from Theorem 5.3 because [x]G′ = [x]SG′
for all x ∈ X.
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5.3. Banach type fixed point results in binary related distance spaces
The following results are particularizations of Theorems 5.2 and 5.3 by using the (c)-comparison function

φλ(t) = λ t for all t ∈ [0,∞), where λ ∈ [0, 1), which originates the classical Banach type contractivity
condition (that only has to be verified for S-comparable points).

Corollary 5.12. Let (X, d,S) be a BRDS and let T : X → X be an S-nondecreasing self-mapping such that there is
λ ∈ [0, 1) satisfying

d
(
Tx,Ty

)
≤ λ d

(
x, y

)
for all x, y ∈ X such that xSy.

Suppose that there exists x0 ∈ X such that x0 ∈ [x0]S, Tx0 ∈ [x0]S and OT (x0) is (d,S)-nondecreasing-connected-
precomplete. Assume that

(S) whenever an S-nondecreasing-connected, d-Cauchy, d-convergent, infinite, Picard sequence {xn} of T has two
d-limits ω ∈ X and ω∗ ∈ T(X), then ω = ω∗.

Suppose that at least one of the following conditions hold:

(a) T is (d,S)-nondecreasing-connected-continuous.

(b) For allS-nondecreasing-connected, d-Cauchy, d-convergent, infinite, Picard sequence {xn} of T, there exist a limit
ω ∈ X of {xn} and n0 ∈N such that xnSω or ωSxn for all n ≥ n0.

Then T has a fixed point.
Furthermore, if ω,ω′ ∈ Fix(T) satisfy ω ∈ [ω′]S, then d (ω,ω′) = 0 and ω = ω′. In particular, d (ω,ω) = 0 for

all ω ∈ Fix(T) such that ω ∈ [ω]S.

Corollary 5.13. Under the hypothesis of Corollary 5.12, additionally assume that the following property holds:

(U) for all ω,ω′ ∈ Fix(T) we have that ω ∈ [ω′]S or ω′ ∈ [ω]S.

Then T has a unique fixed point.

5.4. A Caristi type fixed point theorem in binary related distance spaces
In this subsection we introduce a Caristi type fixed point theorem in the setting of binary related distance

metric spaces.

Theorem 5.14. Let (X, d,S) be a BRDS and let T : X → X be an S-nondecreasing and (d,S)-nondecreasing-
continuous mapping such that T(X) isS-nondecreasing-precomplete. Suppose that there is a functionφ : X→ [0,∞)
such that

max { d (x, x) , d (x,Tx) } ≤ φ (x) − φ (Tx) for all x ∈ X such that xSTx. (7)

Additionally, assume that:

(S′) whenever an S-nondecreasing, d-Cauchy, d-convergent, infinite, Picard sequence {xn} of T has two d-limits
ω ∈ X and ω∗ ∈ T(X), then ω = ω∗.

If there is x0 ∈ X such that x0STx0, then T has a fixed point.

Proof. Let {xn} be the Picard sequence of T based on the point x0 ∈ X such that x0STx0. As T is S-
nondecreasing, xnSxn+1 for all n ∈N. Using the contractivity condition (7), for all n ∈N,

0 ≤ max { d (xn, xn) , d (xn, xn+1) } = max { d (xn, xn) , d (xn,Txn) }
≤ φ (xn) − φ (Txn) = φ (xn) − φ (xn+1) .
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In particular, 0 ≤ φ (xn+1) ≤ φ (xn) for all n ∈ N, so the sequence {φ (xn)} is non-increasing and bounded
below. Hence, it is dE-convergent, so it is also dE-Cauchy. Let us show that {xn} is a d-Cauchy sequence.
Let ε > 0. As {φ (xn)} is dE-Cauchy, there is n0 ∈ N such that

∣∣∣φ (xn) − φ (xn+m)
∣∣∣ < ε for all n ≥ n0 and all

m ∈ N. Thus, given n ≥ n0 and m ∈ N∗, since xn, xn+1, . . . , xn+m is a finite path such that xn+kSxn+k+1 for all
k ∈ {0, 1, . . . ,m − 1},

d (xn, xn+m) ≤
m∑

i=1
d (xi−1, xi) =

m∑
i=1

d (xi−1,Txi−1) ≤
m∑

i=1

[
φ (xi−1) − φ (Txi−1)

]
= φ (xn) − φ (xn+m) ≤

∣∣∣φ (xn) − φ (xn+m)
∣∣∣ < ε.

Similarly, if n ≥ n0,

d (xn, xn) ≤ max { d (xn, xn) , d (xn, xn+1) } ≤ φ (xn) − φ (xn+1)

≤

∣∣∣φ (xn) − φ (xn+1)
∣∣∣ < ε.

As a consequence, {xn} is a d-Cauchy sequence. Taking into account that T(X) is S-nondecreasing-
precomplete, {xn : n ≥ 1} ⊆ T(X) and {xn} is S-nondecreasing, there is z0 ∈ X such that {xn} d-converges to
z0. Furthermore, as T is (d,S)-nondecreasing-continuous, {xn+1 = Txn} also d-converges to Tz0 ∈ T (X). By
Proposition 4.16, either {xn} is infinite or {xn} contains a fixed point ω of T. In the second case, the proof is
finished. If we suppose that {xn} is infinite, we conclude that Tz0 = z0 by condition (S′). In any case, T has
a fixed point.

Corollary 5.15. (Alfuraidan and Khamsi [3], Theorem 3) Let (X,4) be a partially ordered set and suppose that there
exists a distance d in X such that (X, d) is a complete metric space. Let T : X → X be a continuous and monotone
increasing mapping. Assume that there exists a lower semi-continuous function φ : X→ [0,∞) such that

d (x,Tx) ≤ φ (x) − φ (Tx) whenever Tx 4 x.

Then T has a fixed point if, and only if, there exists x0 ∈ X such that Tx0 4 x0.

Proof. Let S be the binary relation on X such that xSy if y 4 x. If T has a fixed point ω, then TωSω = ωSω
because 4 is reflexive. For the converse, we have only to apply Theorem 5.14. As (X, d) is a complete
metric space, then (X, d,S) is a BRDS such that T(X) is S-nondecreasing-precomplete. Furthermore, T is
S-nondecreasing, and Tx0 4 x0 implies that x0STx0. Moreover, as T is a G-Caristi mapping, then T satisfies
(7). As the limit of a convergent sequence in a metric space is unique, condition (S′) of Theorem 5.14
immediately holds. Hence, such result guarantees that T has a fixed point.

In the setting of metric spaces endowed with a graph, we highlight the following Caristi’s type result.

Corollary 5.16. (Alfuraidan and Khamsi [3], Theorem 8) Let G be an oriented graph on the set X with E (G)
containing all loops and suppose that there exists a distance d in X such that (X, d) is a complete metric space. Let
T : X→ X be a continuous mapping satisfying:

• T is G-edge preserving, that is,
(
Tx,Ty

)
∈ E (G) for all x, y ∈ X such that

(
x, y

)
∈ E (G);

• T is a G-Caristi mapping, that is, there is a lower semi-continuous function φ : X→ [0,∞) such that

d (x,Tx) ≤ φ (x) − φ (Tx) whenever (Tx, x) ∈ E (G) .

Then T has a fixed point if, and only if, there exists x0 ∈ X such that (Tx0, x0) ∈ E (G).

Proof. We may repeat here all the argument of the proof of Corollary 5.15 by using the binary relation S′G
on X such that xS′Gy if

(
y, x

)
∈ E (G) (notice that S′G does not coincide with SG because of the order of the

arguments of the edges of G).
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5.5. Kannan type fixed point theorems in binary related distance spaces

In [15], Kannan introduced the following contractivity condition in the setting of metric spaces:

d
(
Tx,Ty

)
≤ λ

(
d (x,Tx) + d

(
y,Ty

) )
for all x, y ∈ X,

where λ ∈ [0, 1/2). In this subsection, we show some Kannan type fixed point theorems in the setting of
binary related distance metric spaces.

Theorem 5.17. Let (X, d,S) be a BRDS and let T : X → X be an S-nondecreasing and (d,S)-nondecreasing-
continuous mapping. Suppose that there is a constant λ ∈ [0, 1/2) such that

d
(
Tx,Ty

)
≤ λ

(
d (x,Tx) + d

(
y,Ty

) )
for all x, y ∈ X such that xSy. (8)

Additionally, assume that:

(S′) whenever an S-nondecreasing, d-Cauchy, d-convergent, infinite, Picard sequence {xn} of T has two d-limits
ω ∈ X and ω∗ ∈ T(X), then ω = ω∗.

If there is x0 ∈ X such that x0Sx0, x0STx0 and OT (x0) is S-nondecreasing-precomplete, then T has a fixed point.

Proof. Let κ = λ/(1 − λ) ∈ [0, 1) and let {xn} be the Picard sequence of T based on the point x0 ∈ X such that
x0Sx0 and x0STx0. As T is S-nondecreasing, then xnSxn and xnSxn+1 for all n ∈ N (in particular, {xn} is
S-nondecreasing). Using the contractivity condition (8), for all n ∈N,

d (xn+1, xn+2) = d (Txn,Txn+1) ≤ λ
(

d (xn,Txn) + d (xn+1,Txn+1)
)

≤ λ
(

d (xn, xn+1) + d (xn+1, xn+2)
)
.

Then

d (xn+1, xn+2) ≤
λ

1 − λ
d (xn, xn+1) = κ d (xn, xn+1) for all n ∈N.

In particular,

d (xn, xn+1) ≤ κn d (x0, x1) for all n ∈N,

which implies that {d (xn, xn+1)} → 0. Furthermore, as xn, xn+1, . . . , xn+m is a directed S-path from xn to xn+m,
we derive that, for all n ∈N and all m ∈N∗, m ≥ 2,

d (xn, xn+m) ≤
n+m∑

i=n+1
d (xi−1, xi) ≤

n+m∑
i=n+1

κi−1 d (x0, x1) = d (x0, x1)
n+m∑

i=n+1
κi−1

= d (x0, x1)
κn
− κn+m

1 − κ
≤ κn d (x0, x1)

1 − κ
.

Using that x0Sx0 we similarly obtain that {d (xn, xn)} → 0, so {xn} is a d-Cauchy sequence. As OT (x0) is S-
nondecreasing-precomplete, there existsω ∈ X such that {xn} d-converges toω. If the sequence {xn} contains
a fixed point of T, the proof is finished. In other case, Proposition 4.16 guarantees that {xn} is infinite. In
this case, as T is a (d,S)-nondecreasing-continuous mapping, we also have that {xn} also d-converges to Tω.
Finally, by condition (S′), we conclude that Tω = ω.
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In the following result we omit the condition on the (d,S)-nondecreasing-continuity of T. However,
we need to include additional hypotheses, as a kind of semi-continuity of the measure d. Notice that,
in a BRDS, two basic tools of metric theory fail: the limit of a d-convergent sequence is not necessarily
unique and the function d : X × X → [0,∞) is not necessarily unique. In fact, these statements also fail in
graphical metric spaces (see Remarks 2.13 and 2.15 in [28]), which are BRDS. Furthermore, a sequence can
have infinite distinct limits. Nevertheless, we focus in the case in which either some sequences (such as
S-nondecreasing, d-Cauchy, d-convergent, infinite, Picard sequences) can have a unique limit or, if it is not
unique, the mapping d is “continuously compatible” with such kind of sequences.

Theorem 5.18. Let (X, d,S) be a BRDS and let T : X→ X be an S-nondecreasing mapping. Suppose that there is a
constant λ ∈ [0, 1/2) such that

d
(
Tx,Ty

)
≤ λ

(
d (x,Tx) + d

(
y,Ty

) )
for all x, y ∈ X such that xSy. (9)

Additionally, assume that:

(T) if {zn} ⊆ X is an S-nondecreasing, d-Cauchy, d-convergent, infinite, Picard sequence of T, then there is a d-limit
z ∈ X of {zn} satisfying: • d (z,Tz) ≤ 2 lim sup

n→∞
d (xn,Tz) , and

• there is n0 ∈N such that xnSz or zSxn for all n ≥ n0;
(10)

(S′) whenever an S-nondecreasing, d-Cauchy, d-convergent, infinite, Picard sequence {xn} of T has two d-limits
ω ∈ X and ω∗ ∈ T(X), then ω = ω∗.

If there is x0 ∈ X such that x0Sx0, x0STx0 and OT (x0) is S-nondecreasing-precomplete, then T has a fixed point.

Proof. By repeating the arguments of the proof of Theorem 5.17, we deduce that the Picard sequence {xn} of
T based on the point x0 ∈ X such that x0Sx0 and x0STx0 is S-nondecreasing, d-Cauchy and d-convergent.
If it contains a fixed point of T, the proof is finished. In other case, Proposition 4.16 guarantees that {xn} is
infinite. In this case, condition (T) ensures us that there is a d-limit ω ∈ X of {xn} satisfying (10). For n ≥ n0,
the contractivity condition (9) guarantees that

d (xn+1,Tω) = d (Txn,Tω) ≤ λ
(

d (xn,Txn) + d (ω,Tω)
)

≤ λ
(

d (xn, xn+1) + d (ω,Tω)
)
. (11)

As {d (xn, xn+1)} → 0, it follows that

lim sup
n→∞

d (xn+1,Tω) ≤ λ d (ω,Tω) .

However, from (10),

d (ω,Tω) ≤ 2 lim sup
n→∞

d (xn,Tω) ≤ 2λ d (ω,Tω) .

As λ ∈ [0, 1/2), then d (ω,Tω) = 0. In particular, from (11), it follows that d (xn+1,Tω) ≤ λ d (xn, xn+1) for all
n ≥ n0, so {xn} also d-converges to Tω. Assumption (S) concludes that Tω = ω.

Theorem 5.19. Under the hypothesis of Theorem 5.17 (respectively, Theorem 5.18), also assume that ωSω, ω′Sω′

and ( ωSω′ or ω′Sω ) for all ω,ω′ ∈ Fix(T). Then T has a unique fixed point.
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Proof. Let ω,ω′ ∈ Fix(T) be two fixed points of T. By hypothesis, ωSω, ω′Sω′ and ( ωSω′ or ω′Sω ).
Therefore

d (ω,ω) = d (Tω,Tω) ≤ λ
(

d (ω,Tω) + d (ω,Tω)
)

= 2λ d (ω,ω) .

As 2λ < 1, then d (ω,ω) = 0. Similarly, d (ω′, ω′) = 0. Finally,

d (ω,ω′) = d (Tω,Tω′) ≤ λ
(

d (ω,Tω) + d (ω′,Tω′)
)

= λ
(

d (ω,ω) + d (ω′, ω′)
)

= 0.

By assumption (B1), we conclude that ω = ω′.

Theorems 5.17 and 5.18 can be particularized to the setting of graphical metric spaces. We show the
process for the first one.

Definition 5.20. Let (X, dG) be a graphical metric space, let G′ be a subgraph of G such that V (G′) = X and let
T : X → X be a mapping. A nonempty subset A ⊆ X is (dG,G,G′)-termwise-precomplete if for all G′-termwise
dG-Cauchy sequence {an} ⊆ A, there exists x ∈ X such that {an} dG-converges to x.

Corollary 5.21. Let (X, dG) be a graphical metric space, let G′ be a subgraph of G such that V (G′) = X and let
T : X→ X be a (d,G,G′)-termwise-continuous mapping that preserves edges of G′. Suppose that there is a constant
λ ∈ [0, 1/2) such that

d
(
Tx,Ty

)
≤ λ

(
d (x,Tx) + d

(
y,Ty

) )
for all x, y ∈ X such that

(
x, y

)
∈ E (G′) .

Additionally, assume that:

(S′) whenever a G′-termwise, dG-Cauchy, dG-convergent, infinite, Picard sequence {xn} of T has two dG-limits ω ∈ X
and ω∗ ∈ T(X), then ω = ω∗.

If there is x0 ∈ X such that (x0,Tx0) ∈ E (G′) and OT (x0) is (dG,G,G′)-termwise-precomplete, then T has a fixed
point.

Proof. It is only necessary to apply Theorem 5.17 to the BRDS (X, dG,SG′ ) and T.

In the following result, we modify the family of pairs of points for which the contractivity condition
must be satisfied. In this way, the contractivity condition is stronger but the initial condition is weaker.

Theorem 5.22. Let (X, d,S) be a BRDS and let T : X → X be an S-nondecreasing and (d,S)-nondecreasing-
connected-continuous mapping. Suppose that there is a constant λ ∈ [0, 1/2) satisfying:

d
(
Tx,Ty

)
≤ λ

(
d (x,Tx) + d

(
y,Ty

) )
for all x, y ∈ X such that y ∈ [x]S. (12)

Additionally, assume that:

(S′′′) whenever an S-nondecreasing-connected, d-Cauchy, d-convergent, infinite, Picard sequence {xn} of T has two
d-limits ω,ω∗ ∈ X, then ω = ω∗.

If there is x0 ∈ X such that x0,Tx0 ∈ [x0]S and OT (x0) is S-nondecreasing-connected-precomplete, then T has a
fixed point.
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Proof. Let {xn} be the Picard sequence of T based on the point x0 ∈ X such that x0,Tx0 ∈ [x0]S. Then there is
a directed S-path z0 = x0, z1, . . . , zr = Tx0 ∈ X from x0 to x1 = Tx0. As zi−1Szi for all i ∈ {1, 2, . . . , r} and T is S-
nondecreasing, then (Tnzi−1)S(Tnzi) for all i ∈ {1, 2, . . . , r} and all n ∈N. In particular, Tnz0,Tnz1, . . . ,Tnzr ∈ X
is a directed S-path from Tnz0 = Tnx0 = xn to Tnzr = TnTx0 = xn+1. Hence xn+1 ∈ [xn]S for all n ∈ N, that
is, {xn} is an S-nondecreasing-connected sequence in X. The arguments of the proof of Theorem 5.17 show
that {xn} is a d-Cauchy sequence (using the constant κ = λ/(1 − λ) ∈ [0, 1)). As OT (x0) is S-nondecreasing-
connected-precomplete, {xn} is d-convergent. If it contains a fixed point of T, the proof is finished. In
other case, Proposition 4.16 guarantees that {xn} is infinite. Let ω be a d-limit of {xn}. As T is (d,S)-
nondecreasing-connected-continuous, then {xn} also d-converges to Tω. Hence, by (S′′′), we conclude that
Tω = ω.

Theorem 5.23. Let (X, d,S) be a BRDS and let T : X→ X be an S-nondecreasing mapping. Suppose that there is a
constant λ ∈ [0, 1/2) such that

d
(
Tx,Ty

)
≤ λ

(
d (x,Tx) + d

(
y,Ty

) )
for all x, y ∈ X such that y ∈ [x]S. (13)

Additionally, assume that:

(T′) if {zn} ⊆ X is an S-nondecreasing-connected, d-Cauchy, d-convergent, infinite, Picard sequence of T, then there
is a d-limit z ∈ X of {zn} satisfying: • d (z,Tz) ≤ 2 lim sup

n→∞
d (xn,Tz) , and

• there is n0 ∈N such that xn ∈ [ω]S or ω ∈ [xn]S for all n ≥ n0;
(14)

(S′′′) whenever an S-nondecreasing-connected, d-Cauchy, d-convergent, infinite, Picard sequence {xn} of T has two
d-limits ω ∈ X and ω∗ ∈ T(X), then ω = ω∗.

If there is x0 ∈ X such that x0,Tx0 ∈ [x0]S and OT (x0) is S-nondecreasing-connected-precomplete, then T has a
fixed point.

Proof. Repeating the arguments of the proof of Theorem 5.22, we deduce that the Picard sequence {xn}

of T based on the point x0 ∈ X such that x0,Tx0 ∈ [x0]S is S-nondecreasing-connected, d-Cauchy and d-
convergent. If it contains a fixed point of T, the proof is finished. In other case, Proposition 4.16 guarantees
that {xn} is infinite. In such a case, by condition (T′), there is a d-limit ω ∈ X of {xn} satisfying (14). For
n ≥ n0, the contractivity condition (13) guarantees that

d (xn+1,Tω) = d (Txn,Tω) ≤ λ
(

d (xn,Txn) + d (ω,Tω)
)

≤ λ
(

d (xn, xn+1) + d (ω,Tω)
)
. (15)

As {d (xn, xn+1)} → 0, it follows that

lim sup
n→∞

d (xn+1,Tω) ≤ λ d (ω,Tω) .

However, from (14),

d (ω,Tω) ≤ 2 lim sup
n→∞

d (xn,Tω) ≤ 2λ d (ω,Tω) .

As λ ∈ [0, 1/2), then d (ω,Tω) = 0. In particular, from (15), it follows that d (xn+1,Tω) ≤ λ d (xn, xn+1) for all
n ≥ n0, so {xn} also d-converges to Tω. Assumption (S′) concludes that Tω = ω.

Theorem 5.24. Under the hypothesis of Theorem 5.22 (respectively, Theorem 5.23), also assume that ω ∈ [ω]S,
ω′ ∈ [ω′]S and ( ω ∈ [ω′]S or ω′ ∈ [ω]S ) for all ω,ω′ ∈ Fix(T). Then T has a unique fixed point.
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Proof. Let ω,ω′ ∈ Fix(T) be two fixed points of T. By hypothesis, ω ∈ [ω]S, ω′ ∈ [ω′]S and ( ω ∈ [ω′]S or
ω′ ∈ [ω]S ). Therefore

d (ω,ω) = d (Tω,Tω) ≤ λ
(

d (ω,Tω) + d (ω,Tω)
)

= 2λ d (ω,ω) .

As 2λ < 1, then d (ω,ω) = 0. Similarly, d (ω′, ω′) = 0. Finally,

d (ω,ω′) = d (Tω,Tω′) ≤ λ
(

d (ω,Tω) + d (ω′,Tω′)
)

= λ
(

d (ω,ω) + d (ω′, ω′)
)

= 0.

By assumption (B1), as ω ∈ [ω′]S or ω′ ∈ [ω]S, we conclude that ω = ω′.

Remark 5.25. The first condition in (10) and (14) recalls the following assumption on Jleli and Samet’s spaces [14]
(see also the extension [23]):

(D3) there exists C > 0 such that

if x, y ∈ X and {xn}
D
→ x, then D(x, y) ≤ C lim sup

n→∞
D(xn, y).
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