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Abstract. In this paper we provide existence and uniqueness results for linear operator equations of the
form (I + Am) x = f , where A is a self-adjoint operator in Hilbert space. Some applications to the study of
invertible matrices are also presented.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction and Preliminaries

Many problems in science and engineering have their mathematical formulation as an operator equation
Tx = f , where T is a linear or nonlinear operator between certain function spaces. Therefore, we consider
as interesting to present here, in a simple form, some existence and uniqueness results regarding linear
operator equations involving self-adjoint operators from a Hilbert space into itself.

The methods of functional analysis including those from fixed point theory had a major contribution in
the study of many linear or nonlinear equations. The papers [1-3] represent just a few of the many basic
works regarding the study of operator equations using the methods of functional analysis.

Let H be a Hilbert space(real or complex) endowed with the inner product 〈·, ·〉 and the corresponding
norm denoted by ‖·‖.

LetB(H) be the Banach algebra of all linear and bounded operators T : H→ H, endowed with the norm

‖T‖B(H) = sup
‖x‖≤1
‖Tx‖ .

We recall that if T ∈ B(H), then ‖Tx‖ ≤ ‖T‖B(H) · ‖x‖ for all x ∈ H.
An operator T : H→ H is said to be
i) self-adjoint if

〈
Tx, y

〉
=

〈
x,Ty

〉
for all x, y ∈ H;

ii) positive if 〈Tz, z〉 ≥ 0 for all z ∈ H.
Clearly, if T is self-adjoint, then I + Tp is self-adjoint for all natural number p ≥ 1.
In this paper we give existence and uniqueness results for the equation (I + Am) x = f , where A : H→ H

is a self-adjoint operator, m ≥ 1 is a natural number and f ∈ H.

2010 Mathematics Subject Classification. Primary 47A05; Secondary 47A50, 47A55
Keywords. linear operator equation, self-adjoint operator, complex matrix
Received: 17 October 2016; Accepted: 18 April 2017
Communicated by Vladimir Rakočević
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2. Main Result

The proof of the following theorem uses an application of the Banach contraction principle in Hilbert
spaces.

Theorem 2.1. Let H be a real or complex Hilbert space and A ∈ B(H) be a self-adjoint operator.
i) The equation x + A2kx = f has a unique solution in H for all f ∈ H(k ≥ 1).
ii) If in addition A is positive, then the equation x + A2k+1x = f has a unique solution in H for all f ∈ H(k ≥ 0).
Proof. i) The equation x + A2kx = f can be equivalently written as (I + A2k)x = f , where I is the identity

of H.
We have∥∥∥(I + A2k)x

∥∥∥ ≤ ‖x‖ +
∥∥∥A2kx

∥∥∥ ≤ (
1 + ‖A‖2k

B(H)

)
‖x‖

and〈
(I + A2k)x, x

〉
= 〈x, x〉 +

〈
A2kx, x

〉
= ‖x‖2 +

〈
Akx,Akx

〉
= ‖x‖2 +

∥∥∥Akx
∥∥∥2
≥ ‖x‖2

for all x ∈ H.
We note:

α = ‖A‖B(H) ,

therefore∥∥∥(I + A2k)x
∥∥∥ ≤ (

1 + α2k
)
‖x‖ for all x ∈ H.

For γ > 0 we consider now the operator Sγ : H→ H defined by

Sγx = x − γ
(
(I + A2k)x − f

)
.

We obtain∥∥∥Sγx − Sγy
∥∥∥2

=
〈
Sγx − Sγy,Sγx − Sγy

〉
=

〈
(x − y) − γ(I + A2k)(x − y), (x − y) − γ(I + A2k)(x − y)

〉
=

∥∥∥x − y
∥∥∥2
− 2γ

〈
(I + A2k)(x − y), x − y

〉
+ γ2

∥∥∥(I + A2k)(x − y)
∥∥∥2

≤

(
1 − 2γ + γ2

(
1 + α2k

)2
) ∥∥∥x − y

∥∥∥2
,

so∥∥∥Sγx − Sγy
∥∥∥ ≤ √

1 − 2γ + γ2 (
1 + α2k)2

∥∥∥x − y
∥∥∥

for all x, y ∈ H.

We remark that if γ ∈
(
0, 2

(1+α2k)2

)
, then Sγ is a contraction and, due to the Banach fixed point theorem,

it results that Sγ has a unique fixed point u ∈ H.
Now u is the unique solution of the equation x + A2kx = f .
To prove ii) we use that∥∥∥(I + A2k+1)x

∥∥∥ ≤ ‖x‖ +
∥∥∥A2k+1x

∥∥∥ ≤ (
1 + ‖A‖2k+1

B(H)

)
‖x‖
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and〈
(I + A2k+1)x, x

〉
= 〈x, x〉 +

〈
A2k+1x, x

〉
= ‖x‖2 +

〈
A(Akx),Akx

〉
≥ ‖x‖2 ,

due to the positivity of A.
Now the operator Sγ is defined as

Sγx = x − γ
(
(I + A2k+1)x − f

)
,

the contraction constant is
√

1 − 2γ + γ2 (
1 + α2k+1)2 with γ ∈

(
0, 2

(1+α2k+1)2

)
, and we use the same type of

reasoning as in the proof of i). So the proof of Theorem 2.1 is complete.�
In both cases the solution can be approximated using the Picard iteration associated to the contraction

Sγ.
Theorem 2.1 has interesting consequences if we replace the self-adjoint operator A with a sum or a

product of two self-adjoint operators:
Theorem 2.2. Let H be a real or complex Hilbert space and A,B ∈ B(H) be two self-adjoint operators.
i) The equation x + (A + B)2k x = f has a unique solution in H for all f ∈ H(k ≥ 1).
ii) If in addition A + B is positive, then the equation x + (A + B)2k+1 x = f has a unique solution in H for all

f ∈ H(k ≥ 0).
Proof . Clearly A + B is self-adjoint, and it is sufficient to apply Theorem2.1.�
Theorem 2.3. Let H be a real or complex Hilbert space and A,B ∈ B(H) be two self-adjoint operators with

AB = BA.
i) The equation x + (AB)2k x = f has a unique solution in H for all f ∈ H(k ≥ 1).
ii) If in addition AB is positive, then the equation x+(AB)2k+1 x = f has a unique solution in H for all f ∈ H(k ≥ 0).
Proof . According to Theorem 2.1 it is sufficient to prove that AB is a self-adjoint operator. Indeed we

have 〈
ABx, y

〉
=

〈
Bx,Ay

〉
=

〈
x,BAy

〉
=

〈
x,ABy

〉
for all x, y ∈ H.�

3. Remark

Theorem 2.1 can be applied to obtain results regarding the invertibility of some matrices. Hence we
obtain

Theorem 3.1. Let A be a n × n complex matrix, A∗ the adjoint matrix of A, A = A∗ and In the unit complex
matrix.

i) The matrix In + A2k is invertible for all k ≥ 0.
ii) If the matrix A is positive(as linear operator, according to the above given definition) , then the matrix In +A2k+1

is invertible for all k ≥ 0,
and the appropriate consequences of Theorem 2.2 and Theorem 2.3, which we do not more mention.
Moreover, the method used in proving Theorem 2.1 shows that we can use the Picard iteration to

approximate the solution of some linear algebraic systems proper to matrices of the form I+Am, A satisfying
the above given conditions.
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