
Filomat 31:11 (2017), 3307–3318
https://doi.org/10.2298/FIL1711307G

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this article we determine the coefficient bounds for functions in certain subclasses of analytic
functions defined by subordination which are related to the well-known classes of starlike and convex
functions. The main results deal with some open problems proposed by Q.H. Xu et al.([20], [21]). An
application of Jack lemma for certain subclass of starlike functions has been discussed.

To the memory of Professor Lj. Ćirić (1935–2016)

1. introduction

Let A denote the family of analytic functions f in the unit disk D := {z ∈ C : |z| < 1} normalized by
f (0) = 0 = f ′(0) − 1. If f ∈ A then f has the following representation

f (z) = z +

∞∑
n=2

anzn. (1)

A function f is said to be univalent in a domain Ω ⊆ C if it is injective in Ω. Let S denote the class of
univalent functions inA. A function f ∈ A is in the class S∗(α), called starlike functions of order α, if

Re
(

z f ′(z)
f (z)

)
> α for z ∈ D

and in the class C(α), called convex functions of order α, if

Re
(
1 +

z f ′′(z)
f ′(z)

)
> α for z ∈ D.

Clearly the classes S∗ := S∗(0) and C := C(0) are the well- known classes of starlike and convex functions
respectively. It is well -known that C ( S∗ ( S. A function f ∈ A is in the class SP(α), called α-Spiral
functions, if

Re
(
eiα z f ′(z)

f (z)

)
> 0 for z ∈ D.

2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C50
Keywords. Analytic,univalent, starlike, convex functions, subordination, coefficient estimates
Received: 09 February 2016; Accepted: 31 January 2017
Communicated by Miodrag Mateljević
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The class SP(α) has been introduced by Špaček [17] in 1933.
Let f and 1 be analytic functions in the unit diskD. A function f is said to be subordinate to 1, written

as f ≺ 1 or f (z) ≺ 1(z), if there exists an analytic function ω : D→ D with ω(0) = 0 such that f (z) = 1(ω(z)).
If 1 is univalent, then f ≺ 1 if and only if f (0) = 1(0) and f (D) ⊆ 1(D).

For A,B ∈ C with |B| ≤ 1, let S∗[A,B] denote the class of functions f ∈ A which satisfy the following
subordination relation

z f ′(z)
f (z)

≺
1 + Az
1 + Bz

for z ∈ D.

Without loss of generality we may assume that B is a real. In view of S∗[A,B] = S∗[−A,−B], we can
consider −1 ≤ B ≤ 0. For particular choice of parameters A and B, we can obtain S∗ := S∗[1,−1] and
S
∗(α) := S∗[1 − 2α,−1]. If we choose A = e−2iα and B = −1 then SP(α) := S∗[e−2iα,−1].

Nasr and Aouf [10–12] and Wiatrowski [22] extended the classes S∗(α) and C(α) by introducing S∗(γ)
and C(γ), the class of starlike functions of complex order γ and the class of convex functions of complex
order γ respectively.

More preciously, a function f ∈ A is said to be in the class S∗(γ), if it satisfies the following condition

Re
(
1 +

1
γ

(
z f ′(z)

f (z)
− 1

))
> 0 for z ∈ D and γ ∈ C \ {0}.

Similarly, a function f ∈ A is said to be in the class C(γ), if it satisfies the following condition

Re
(
1 +

1
γ

(
z f ′′(z)
f ′(z)

))
> 0 for z ∈ D and γ ∈ C \ {0}.

The function classesS∗(γ) andC(γ) have been extensively studied by many authors (for example, see [2–6]).
For fixed β > 1, the classesM(β) andN(β) are defined by

M(β) :=
{

f ∈ A : Re
(

z f ′(z)
f (z)

)
< β for z ∈ D

}
and

N(β) :=
{

f ∈ A : Re
(
1 +

z f ′′(z)
f ′(z)

)
< β for z ∈ D

}
.

If we choose γ = (1 − β) then the classM(β) := S∗(1 − β) and N(β) := C(1 − β). The classesM(β) and N(β)
have been extensively discussed by Obradovic et al. [13] and Firoz Ali and Vasudevarao [1].

In 2007, Altintas et al. [7] introduced the classes Sc(γ, λ, β) and B(γ, λ, β, µ). A function f ∈ A is in the
class Sc(γ, λ, β) for γ ∈ C \ {0}, 0 ≤ λ ≤ 1 and 0 ≤ β < 1 if it satisfies the following condition

Re
(
1 +

1
γ

(
z(λz f ′(z) + (1 − λ) f (z))′

(λz f ′(z) + (1 − λ) f (z))
− 1

))
> β for z ∈ D.

Clearly S∗(γ) := Sc(γ, 0, 0) and C(γ) := Sc(γ, 1, 0). A function w = f (z) belongs toA is said to be in the class
B(γ, λ, β, µ) if it satisfies the following non-homogeneous Cauchy-Euler differential equation

z2 d2w
dz2 + µz

dw
dz

+ µ(µ + 1)w = (µ + 1)(µ + 2)1(z),

where 1 ∈ Sc(γ, λ, β) and µ ∈ R \ (−∞,−1]. In [7], the authors obtained the coefficient bounds for functions
in the classes Sc(γ, λ, β) and B(γ, λ, β, µ) but the results were not sharp.

In 2011, Srivastava et al. [18] introduced the classesS(λ, γ,A,B) andK (λ, γ,A,B,m, µ). A function f ∈ A
is in the class S(λ, γ,A,B) if it satisfies the following subordination condition

1 +
1
γ

(
z(λz f ′(z) + (1 − λ) f (z))′

(λz f ′(z) + (1 − λ) f (z))
− 1

)
≺

1 + Az
1 + Bz

for z ∈ D,
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where γ ∈ C \ {0}, 0 ≤ λ ≤ 1 and −1 ≤ B < A ≤ 1. Similarly, a function w = f (z) belongs to A is said to be
in the class K (λ, γ,A,B,m, µ) if it satisfies the following non-homogeneous Cauchy-Euler type differential
equation of order m

zm dmw
dzm +

(
m
1

)
(µ + m − 1)zm−1 dm−1w

dzm−1 + · · · +

(
m
m

) m−1∏
j=0

(µ + j)w = 1(z)
m−1∏
j=0

(µ + j + 1), (2)

where 1 ∈ S(λ, γ,A,B), µ ∈ R \ (−∞,−1] and m ∈ N \ {1}. For particular choice of the parameters A and B,
we obtain Sc(γ, λ, β) := S(λ, γ, 1 − 2β,−1), S∗(γ) := S(0, γ, 1,−1) and C(γ) := S(1, γ, 1,−1). The coefficient
bounds for functions in the classes S(λ, γ,A,B) andK (λ, γ,A,B,m, µ) have been investigated by Srivastava
et al. [18] but the results are not sharp. Recently, Q-H Xu et al. [20] obtained the following sharp coefficient
bounds for functions in classes S(λ, γ,A,B) andK (λ, γ,A,B,m, µ) with some restriction on the parameters.

Theorem A. [20] Let f ∈ S(λ, γ,A,B) be given by (1), where γ ∈ C \ {0}, 0 ≤ λ ≤ 1 and −1 ≤ B < A ≤ 1. If

|γ(A − B) − B(n − 2)| ≥ (n − 2),

then

|an| ≤

∏n−2
j=0 |(A − B)γ − jB|

(1 + λ(n − 1))(n − 1)!
, n ∈N \ {1} (3)

and the estimates in (3) are sharp.

Theorem B. [20] Let f ∈ K (λ, γ,A,B,m, µ) be given by (1), where γ ∈ C \ {0}, 0 ≤ λ ≤ 1,−1 ≤ B < A ≤ 1,
µ ∈ R \ (−∞,−1] and m ∈N \ {1}. If

|γ(A − B) − B(n − 2)| ≥ (n − 2),

then

|an| ≤

∏n−2
j=0 |(A − B)γ − jB|

∏m−1
j=0 (µ + j + 1)

(1 + λ(n − 1))(n − 1)!
∏m−1

j=0 (µ + j + n)
, n,m ∈N \ {1} (4)

and the estimates in (4) are sharp.

In 2013, Xu et al. [20] proposed the following two problems concerning the coefficient bounds for
functions in the class S(λ, γ,A,B).

Problem 1.1. If the function f ∈ S(λ, γ,A,B) is given by (1) with γ ∈ C \ {0}, 0 ≤ λ ≤ 1 and −1 ≤ B < A ≤ 1 then
prove or disprove that

|an| ≤

∏n−2
j=0 |(A − B)γ − jB|

(1 + λ(n − 1))(n − 1)!
, n ∈N \ {1}. (5)

Problem 1.2. If the coefficient estimates in (5) do hold true then prove or disprove that these estimates are sharp.

In 2013, Xu et al. [21] considered the class Sβ(A,B) by the condition that a function f ∈ A is in the class
S
β(A,B) if it satisfies

(1 + i tan β)
z f ′(z)

f (z)
− i tan β ≺

1 + Az
1 + Bz

for z ∈ D,

where −π/2 < β < π/2 and −1 ≤ B < A ≤ 1 and obtained the following coefficient bounds for functions in
this class.
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Theorem C. [21] Let f ∈ Sβ(A,B) be given by (1) with −π/2 < β < π/2, −1 ≤ B < A ≤ 1 and n ∈ N \ {1}.
Suppose also that

(A − (n − 1)B)2 cos2 β + (n − 2)2(B2 sin2 β − 1) ≥ 0. (6)

Then

|an| ≤

n−2∏
j=0

(
|(A − B)e−iβ cos β − jB|

j + 1

)
, n ∈N \ {1} (7)

and the estimates in (7) are sharp .

We note that Theorem C is proved under the additional assumption (6). In the same paper the authors
proposed the following two problems concerning the coefficient bounds for functions in class Sβ(A,B)
without assuming the additional condition (6).

Problem 1.3. If the function f ∈ Sβ(A,B) is given by (1) with −π/2 < β < π/2 and −1 ≤ B < A ≤ 1, then prove
or disprove that

|an| ≤

n−2∏
j=0

(
|(A − B)e−iβ cos β − jB|

j + 1

)
, n ∈N \ {1}. (8)

Problem 1.4. If the coefficient estimates in (8) do hold true then prove or disprove that these estimates are sharp.

It is interesting to note that if we choose λ = 0 and γ = 1/(1 + i tan β) then the class S(λ, γ,A,B) reduces
toSβ(A,B). Hence it is sufficient to study Problem 1.1 and Problem 1.2 for functions in the classS(λ, γ,A,B).

The problem of coefficient estimates is one of the most exciting problem in the theory of univalent
functions. For f ∈ S of the form (1), it was proved that |a2| ≤ 2 and proposed a conjecture |an| ≤ n for
n ≥ 3 by Bieberbach in 1916. This celebrated conjecture was proved affirmatively by Branges in 1984. This
motivates us to determine the coefficient bounds for functions in some subclasses of analytic functions
which are defined by the subordination and these classes are related to the well-known classes of starlike
and convex functions.

The main aim of this paper is to attempt the aforementioned problems in much detailed. In fact, the
main results of this paper deal with some open problems proposed by Q.H. Xu et al.([20], [21]).

Before proving our main results, we recall the following lemma due to Xu et al. [20].

Lemma 1.5. [20] Let the parameters A,B λ, γ and m satisfy γ ∈ C\{0}, 0 ≤ λ ≤ 1,−1 ≤ B < A ≤ 1 and m ∈N\{1}.
If |γ(A − B) − B(m − 2)| ≥ (m − 2), then

|γ|2(A − B)2 +

m−1∑
k=2


∣∣∣|γ(A − B) − B(k − 1)|2 − (k − 1)2

∣∣∣
((k − 1)!)2

 k−2∏
j=0

|γ(A − B) − jB|2

=

∏m−2
j=0 |γ(A − B) − Bj|2

((m − 2)!)2 .

2. Coefficient estimates

In this section, we will estimate the modulus of the coefficients of function of the form (1), which belong
to the class of S(λ, γ,A,B) and K (λ, γ,A,B,m, µ). Moreover, the inequalities obtained will be examined in
terms of sharpness.
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Theorem 2.1. Let f ∈ S(λ, γ,A,B) be of the form (1), where γ ∈ C\{0}, 0 ≤ λ ≤ 1,−1 ≤ B < A ≤ 1 and n ∈N\{1}
be fixed and define Ak = |γ(A − B) − B(k − 1)| − (k − 1).

(i) If A2 ≤ 0, then

|an| ≤
|γ|(A − B)

(n − 1)(1 + λ(n − 1))
. (9)

(ii) If An−1 ≥ 0, then

|an| ≤

∏n−2
j=0 |γ(A − B) − jB|

(n − 1)!(1 + λ(n − 1))
. (10)

(iii) If Ak ≥ 0 and Ak+1 ≤ 0 for k = 2, 3, . . . ,n − 2, then

|an| ≤

∏k−1
j=0 |γ(A − B) − jB|

(k − 1)!(n − 1)(1 + λ(n − 1))
. (11)

The estimates in (9) and (10) are sharp.

Proof. The proof of part (ii) can be found in [20]. But for the sake of completeness of the result, we include
it here. Let f ∈ S(λ, γ,A,B). Then there exists an analytic function ω(z) in D with ω(0) = 0 and |ω(z)| < 1
such that

1 +
1
γ

(
z(λz f ′(z) + (1 − λ) f (z))′

(λz f ′(z) + (1 − λ) f (z))
− 1

)
=

1 + Aω(z)
1 + Bω(z)

. (12)

Using the series expansion (1) of f (z) in (12) and then after simplification we obtain

∞∑
k=2

(k − 1)(1 + λ(k − 1))akzk =

γ(A − B)z +

∞∑
k=2

(γ(A − B) − B(k − 1))(1 + λ(k − 1))akzk

ω(z)

which can be written as

n∑
k=2

(k − 1)(1 + λ(k − 1))akzk +

∞∑
k=n+1

bkzk =
(
γ(A − B)z +

n−1∑
k=2

(γ(A − B) − B(k − 1))(1 + λ(k − 1))akzk
)
ω(z)

for certain coefficients bk. Since |ω(z)| < 1, an application of Parseval’s theorem gives

n∑
k=2

(k − 1)2(1 + λ(k − 1))2
|ak|

2 +

∞∑
k=n+1

|bk|
2
≤ |γ|2(A − B)2 +

n−1∑
k=2

(
|γ(A − B) − B(k − 1)|2

)
(1 + λ(k − 1))2

|ak|
2

and therefore

(n − 1)2(1 + λ(n − 1)2)|an|
2
≤ |γ|2(A − B)2 +

n−1∑
k=2

(
|γ(A − B) − B(k − 1)|2 − (k − 1)2

)
(1 + λ(k − 1))2

|ak|
2. (13)

For n = 2, it follows from (13) that

|a2| ≤
|γ|(A − B)

1 + λ
. (14)

Note that if Ak ≥ 0 then Ak−1 ≥ 0 for k = 2, 3, . . ., because

|γ(A − B) − (k − 2)B| ≥ |γ(A − B) − (k − 1)B| − |B| ≥ (k − 1) − 1 = k − 2.
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Again, if Ak ≤ 0 then Ak+1 ≤ 0 for k = 2, 3, . . ., because

|γ(A − B) − kB| ≤ |γ(A − B) − (k − 1)B| + |B| ≤ (k − 1) + 1 = k.

If A2 ≤ 0 then from the above discussion we can conclude that Ak ≤ 0 for all k > 2. It follows from (13)
that

(n − 1)2(1 + λ(n − 1)2)|an|
2
≤ |γ|2(A − B)2

and consequently

|an| ≤
|γ|(A − B)

(n − 1)(1 + λ(n − 1))
. (15)

Equality in (15) is attained for the functions fn(z) where fn(z) satisfies the following differential equation

λz f ′n(z) + (1 − λ) fn(z) = z(1 + Bzn−1)
γ(A−B)
B(n−1) .

Next, let An−1 ≥ 0. Then from the above discussion we have A2,A3,A4, . . . ,An−2 ≥ 0. From (14) it is
clear that (10) is true for n = 2. Suppose that (10) is true for k = 2, 3, . . . ,n − 1. Then using the induction
hypothesis, it follows from (13) that

(n − 1)2(1 + λ(n − 1))2
|an|

2

≤ |γ|2(A − B)2 +

n−1∑
k=2

(
||γ(A − B) − B(k − 1)|2 − (k − 1)2

|

)
(1 + λ(k − 1))2

|ak|
2

≤ |γ|2(A − B)2 +

n−1∑
k=2

(
||γ(A − B) − B(k − 1)|2 − (k − 1)2

|

)
(1 + λ(k − 1))2

∏k−2
j=0 |γ(A − B) − jB|2

((k − 1)!)2(1 + λ(k − 1))2 .

An application of Lemma 1.5 shows that

(n − 1)2(1 + λ(n − 1))2
|an|

2
≤

∏n−2
j=0 |γ(A − B) − jB|2

((n − 2)!)2

and consequently,

|an| ≤

∏n−2
j=0 |γ(A − B) − jB|

((n − 1)!)(1 + λ(n − 1))
.

By the mathematical induction, (10) is true for all n ≥ 2. The equality in (10) is attained for the following
function

f (z) =



λ−1
λ

∫ z

0
t
λ−1
λ

λ(1+Bt)
B−A

B γ
dt for B , 0, λ , 0

z

(1+Bz)
B−A

B γ
for B , 0, λ = 0

1
λ

∫ z

0 t
1−λ
λ eAγt dt for B = 0, λ , 0

zeAγz for B = 0, λ = 0.
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Now if we assume that Ak ≥ 0 and Ak+1 ≤ 0 for k = 2, 3, . . . ,n − 2. Then A2,A3,A4, . . . ,Ak−1 ≥ 0 and
Ak+2,Ak+3, . . . ,An−2 ≤ 0. Using (10) and Lemma 1.5 in (13), we obtain

(n − 1)2(1 + λ(n − 1)2)|an|
2

≤ |γ|2(A − B)2 +

k∑
l=2

(
||γ(A − B) − B(l − 1)|2 − (l − 1)2

|

)
(1 + λ(l − 1))2

|al|
2

≤ |γ|2(A − B)2 +

k∑
l=2

(
||γ(A − B) − B(l − 1)|2 − (l − 1)2

|

)∏l−2
j=0 |γ(A − B) − jB|2

((l − 1)!)2

=

∏k−1
j=0 |γ(A − B) − jB|2

((k − 1)!)2 ,

from which (11) follows.

Theorem 2.2. Let f ∈ K (λ, γ,A,B,m, µ) be of the form (1) and γ ∈ C \ {0}, 0 ≤ λ ≤ 1,−1 ≤ B < A ≤ 1,m ∈
N \ {1} and µ ∈ R \ (−∞,−1]. Define Ak = |γ(A − B) − B(k − 1)| − (k − 1).

(i) If A2 ≤ 0, then

|an| ≤
|γ|(A − B)

(n − 1)(1 + (n − 1)λ)

∏m−1
j=0 (µ + j + 1)∏m−1
j=0 (µ + j + n)

. (16)

(ii) If An−1 ≥ 0, then

|an| ≤

∏n−2
j=0 |γ(A − B) − jB|

(n − 1)!(1 + λ(n − 1))

∏m−1
j=0 (µ + j + 1)∏m−1
j=0 (µ + j + n)

. (17)

(iii) If Ak ≥ 0 and Ak+1 ≤ 0 f or k = 2, 3, . . . ,n − 2, then

|an| ≤

∏k−1
j=0 |γ(A − B) − jB|

(n − 1)(k − 1)!(1 + λ(n − 1))

∏m−1
j=0 (µ + j + 1)∏m−1
j=0 (µ + j + n)

. (18)

The estimates in (16) and (17) are sharp.

Proof. Let f ∈ K (λ, γ,A,B,m, µ) be of the form (1). Then there exists 1 ∈ S(λ, γ,A,B) of the form 1(z) =
z +

∑
∞

n=2 bnzn such that (2) holds. By comparing the coefficients on both sides of (2), we obtain

an =


∏m−1

j=0 (µ + j + 1)∏m−1
j=0 (µ + j + n)

 bn,

where m,n ∈N\ {1} and µ ∈ R\ (−∞,−1]. Then the desired results follow from Theorem 2.1. The sharpness
of (16) and (17) easily follow from the sharpness of (9) and (10).

Corollary 2.3. Let f ∈ Sc(γ, λ, β) be given by (1).

(i) If |2γ(1 − β) + 1| ≤ 1, then

|an| ≤
2|γ|(1 − β)

(n − 1)(1 + (n − 1)λ)
. (19)

The equality in (19) occurs for the solution of equation

λz f ′n(z) + (1 − λ) fn(z) = z(1 − zn−1)
−2γ(1−β)

(n−1) .
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(ii) If |2γ(1 − β) + (n − 2)| ≥ (n − 2), then

|an| ≤

∏n−2
j=0 |2γ(1 − β) + j|

(n − 1)!(1 + (n − 1)λ)
. (20)

The inequality (20) is sharp.
(iii) If |2γ(1 − β) + (k − 1)| ≥ (k − 1), then

|an| ≤

∏k−1
j=0 |2γ(1 − β) + j|

(n − 1)(k − 1)!(1 + (n − 1)λ)
.

Corollary 2.4. Let f ∈ B(γ, λ, β, µ) be given by (1).

(i) If |2γ(1 − β) + 1| ≤ 1, then

|an| ≤
2|γ|(1 − β)

(n − 1)(1 + (n − 1)λ)
(µ + 1)(µ + 2)

(µ + n)(µ + n + 1)
. (21)

The inequality (21) is sharp.
(ii) If |2γ(1 − β) + (n − 2)| ≥ (n − 2), then

|an| ≤

∏n−2
j=0 |2γ(1 − β) + j|

(n − 1)!(1 + (n − 1)λ)
(µ + 1)(µ + 2)

(µ + n)(µ + n + 1)
. (22)

The inequality (22) is sharp.
(iii) If |2γ(1 − β) + (k − 1)| ≥ (k − 1), then

|an| ≤

∏k−1
j=0 |2γ(1 − β) + j|

(n − 1)(k − 1)!(1 + (n − 1)λ)
(µ + 1)(µ + 2)

(µ + n)(µ + n + 1)
.

The following two results give the sharp coefficient bounds for functions in the classes S∗(γ) and C(γ)
under some assumptions.

Corollary 2.5. Let f ∈ S∗(γ) be given by (1).

(i) If |2γ + 1| ≤ 1, then

|an| ≤
2|γ|

n − 1
. (23)

The equality in (23) occurs for the functions fn(z) where fn(z) is defined by

fn(z) = z(1 − zn−1)
−2γ

(n−1) .

(ii) If |2γ + (n − 2)| ≥ (n − 2), then

|an| ≤

∏n−2
j=0 |2γ + j|

(n − 1)!
. (24)

The inequality (24) is sharp for the function f (z) where f (z) is defined by

f (z) =
z

(1 − z)2γ .

Corollary 2.6. Let f ∈ C(γ) be given by (1).
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(i) If |2γ + 1| ≤ 1, then

|an| ≤
2|γ|

n(n − 1)
. (25)

The equality in (25) occurs for the functions fn(z) where fn(z) is defined by

f ′n(z) = (1 − zn−1)
−2γ

(n−1) .

(ii) If |2γ + (n − 2)| ≥ (n − 2), then

|an| ≤

∏n−2
j=0 |2γ + j|

n!
. (26)

The inequality (26) is sharp for the function f (z) where f (z) is defined by

f (z) =

∫ z

0

dt
(1 − t)2γ .

It is interesting to note that if we choose γ = 1 − β in Corollaries 2.5 and 2.6 then we can obtain the
sharp coefficient bounds for functions in the classesM(β) andN(β). In fact these results extend the results
obtained by Firoz Ali and Vasudevarao [1].

3. Application of Jack Lemma

In 1999, Silverman [16] investigated the class Gb for 0 < b ≤ 1 which involves the quotient of analytic
representations of convexity and starlikeness of a function. More precisely, for 0 < b ≤ 1, consider the
following class

Gb :=
{

f ∈ A :
∣∣∣∣∣1 + z f ′′(z)/ f (z)

z f ′(z)/ f (z)
− 1

∣∣∣∣∣ ≤ b for z ∈ D
}
.

It was proved [16] that Gb ⊂ S
∗(2/(1 +

√
1 + 8b)). In 2000, Obradović and Tuneski [14] improved this result

by showing Gb = S∗[0,−b] ⊂ S∗(2/(1 +
√

1 + 8b)). In 2003, Tuneski [19] found a nice relation among A,B and
b so that functions f in the class Gb also belong to the class S∗[A,B]. In this paper, we prove a sufficient
condition for function f ∈ Gb to be in the class SP(α).

The following lemma, known as Jack lemma, is helpful in proving for our main results.

Lemma 3.1. [8] Let ω be a non-constant analytic function in the unit disk D with ω(0) = 0. If |ω(z)| attains its
maximum value on the circle |z| = r at the point z0 then z0ω′(z0) = k0ω(z0) and k0 ≥ 1.

The recent applications of Jack lemma we refer to [9, 15]. Using the above Jack lemma we prove the
following lemma.

Lemma 3.2. Let p be an analytic function in the unit diskD with p(0) = 1 and A = e−2iα be a complex constant with
|α| < π/2. If p satisfies the following condition

zp′(z)
p2(z)

≺
(A + 1)z
(1 + Az)2 := h1(z) for z ∈ D (27)

then

p(z) ≺
1 + Az
1 − z

for z ∈ D, (28)

that is, p ∈ SP(α).
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Proof. Let p(z) = (1 + Aω(z))/(1 − ω(z)). Then ω is analytic inD and ω(0) = 0. A simple computation shows
that

zp′(z)
p2(z)

≺
(A + 1)zω′(z)

(1 + ω(z))2 for z ∈ D.

Now the subordination relation (28) holds if and only if |ω(z)| < 1 for z in D. Assume that there exists a
point z0 ∈ D such that |ω(z0)| = 1. Then by Jack lemma, z0ω′(z0) = k0ω(z0) and k0 ≥ 1. For such z0 we have
z0p′(z0)/p2(z0) = k0h1(ω(z0)) which does not contain in h1(D) because |ω(z0)| = 1 and k0 ≥ 1. This contradicts
the subordination condition (27). Hence |ω(z)| < 1 for all z ∈ Dwhich yields the desired result.

Using Lemma 3.2 we prove the following theorem.

Theorem 3.3. Let f ∈ A and A = e−2iα be a complex constant with |α| < π/2. If

1 + z f ′′(z)/ f ′(z)
z f ′(z)/ f (z)

≺ 1 +
(1 + A)z
(1 + Az)2 for z ∈ D

then f ∈ SP(α).

Proof. Let p(z) =
z f ′(z)

f (z) . Then p is analytic inD and p(0) = 1. A simple computation shows that

zp′(z)
p2(z)

=
1 + z f ′′(z)/ f ′(z)

z f ′(z)/ f (z)
− 1 ≺

(1 + A)z
(1 + Az)2 for z ∈ D.

In view of Lemma 3.2, it follows that p(z) ≺ (1 + Az)/(1 − z) and hence f ∈ SP(α).
Using Theorem 3.3, we obtain the following result.

Corollary 3.4. Let A = e−2iα be a complex constant with |α| < π/2. Then Gb ⊂ S
∗[A,−1] := SP(α) when

b = |1 + A|/4.

Proof. For f ∈ Gb, we have
1 + z f ′′(z)/ f ′(z)

z f ′(z)/ f (z)
≺ 1 + bz for z ∈ D.

Let h2(z) = 1 +
(1+A)z
(1+Az)2 . Then a simple computation shows that

min{|h2(eiθ) − 1| : θ ∈ [0, 2π)} =
|1 + A|

4
.

If b = |1 + A|/4 then by using the definition of subordination we obtain 1 + bz ≺ h2(z). Therefore from
Theorem 3.3, it follows that f ∈ S∗[A,−1] := SP(α).

3.1. Starlike univalent functions of order α
Let B(z0; r) denote the open ball centered at z0 and radius r. We say that f ∈ H(α), 0 < α < 1, if f ∈ A

and Aα(z) =
2α f (z)
z f ′(z) maps the unit diskD into B(1; 1). Since the conformal mapping B(w) = (1 + w)−1 mapsD

onto Re w > 1/2, one can see that the classes S∗(α) andH(α) coincide.
Let f ∈ H(α) and consider the function h(z) := hβ(z) = ( z

f (z) )
β
− 1, where 0 < β ≤ 1. If f ∈ H(α),

1/2 ≤ α < 1, using Jack’s lemma, Örnek [15] showed that h satisfies the condition of the Schwarz lemma: h
mapsD onto itself and h(0) = 0, and he has proved

Lemma 3.5. Let f ∈ H(α), 1/2 ≤ α < 1 and 1/β = 2(1 − α). Then

(i) | f (z)| ≤
|z|

(1 − |z|)1/β
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(ii) | f ′′(0)| ≤ 2/β.

For β = 1, we find

(i’) | f (z)| ≤
|z|

(1 − |z|)

(ii’) | f ′′(0)| ≤ 2.

Example 3.6. Let kβ(z) = z(1 + z)−1/β, 0 < β ≤ 1. Then
zk′β(z)

kβ(z) = Aβ, where Aβ(z) = 1− 1
β

z
1+z . Since Aβ mapsD onto

Re w > 1 − 1
2β . One can see that kβ belongs S∗(α) if and only if β ≥ 1

2(1−α) . If 1/β > 2 then kβ is not univalent inD.

The subject related to Jack’s lemma has been discussed by Örnek [15] in a recent paper. Recently,
Mateljević [9] has extended Örnek’s result and obtained the following.

Theorem 3.7. If f belongs S∗(α), 0 ≤ α < 1, and 1/β = 2(1 − α), then

(i) | f (z)| ≤
|z|

(1 − |z|)1/β

(ii) | f ′′(0)| ≤ 2/β.

In particular, it can be seen that Ornek’s result (i’) | f (z)| ≤ |z|
(1−|z|) and (ii’)| f ′′(0)| ≤ 2 if f belongs to the class

S
∗(1/2). For convex functions (i’) holds. Since convex functions are in S∗(1/2), this result is a generalization

of corresponding one for convex functions.
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[13] M. Obradović, S. Ponnusamy and K.-J. Wirths, Characteristics of the coefficients and partial sums of some univalent functions,

(Russian summary) Sibirsk. Mat. Zh. 54 (4) (2013) 852–870; translation in Sib. Math. J. 54 (4) (2013) 679–696.
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