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Abstract. A fixed point theorems for pointwise contractive semigroup of self-mappings in setting of
generalized metric space are proved. Using the basic result some consequences are derived. This is a
generalization of some well known fixed point results in metric spaces.
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1. Introduction

Fixed point theory is one of the most powerful and useful tools in nonlinear functional analysis. The
application of this theory is remarkable in a wide scale of mathematical, engineering, economic, physical,
computer science and other fields of science.The intrinsic subject of fixed point theorems is concerned with
the conditions for the existence, uniqueness and exact methods of evaluation of fixed point of a mapping.
The Banach contraction principle [4] is a simplest and limelight result in this direction. In many papers,
following the Banach contraction principle, the existence of weaker contractive conditions combined with
stronger additional assumptions on the mapping or on the space, is investigated. Moreover, since all these
results are based on an iteration process, they can be implemented in almost all branches of quantitative
sciences.

Consideration various generalizations of metric spaces (partial metric spaces, fuzzy metric spaces, prob-
ability metric spaces, quasi-metric, uniform spaces, ultra metric spaces, b-metric spaces, cone metric spaces)
leads to opportunity to use distinct advantages by creating topological structure suitable for application in
some cases when the classical metric does not give the answer.

Sehgal [22] initiated the study of fixed point for mappings with contractive iterate at a point. This result
was extended and applied by many authors and we quote some of them [7], [11], [12], [17], [18], [21].

In metric space (X, d), the mapping T : X → X is said to be with contractive iterate at a point x ∈ X if
there is a positive integer such that for all y ∈ X

d(Tn(x)x,Tn(x)y) ≤ q(d(x, y)),
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where q ∈ (0, 1).
In [21], V.M.Sehgal and J.W.Thomas proved a common fixed point result for a family of pointwise

contractive self-mappings in metric space (X, d).
Let (X, d) be a complete metric space and M ⊆ X. Let F be a commutative semigroup of self-mappings

(not necessarily continuous) of M. The semigroup F is pointwise contractive in M if for each x ∈M, there is
an fx ∈ F such that

d( fx(y), fx(x) ≤ ϕ(d(y, x)),

for all y ∈M, where ϕ is some real valued function defined on the nonnegative reals.

Theorem 1.1. [21] Let M be a closed subset of X and F a commutative semigroup of self-mappings of M, which is
pointwise contractive in M for some ϕ : [0,∞) → [0,∞), where ϕ is nondecreasing, continuous on the right and
satisfies ϕ(r) < r for all r > 0. If for some x0 ∈M,

sup{d( f (x0), x0) : f ∈ F} < ∞,

then, there exists a unique ξ ∈ M such that f (ξ) = ξ for each f ∈ F. Moreover, there is a sequence {1n} ⊂ F with
1n(x)→ ξ for each x ∈M.

In our paper we consider the related result in setting of G-metric spaces. The aim is to show that this
result is valid in a more general class of spaces and wide class of functions ϕ.

2. Preliminaries

On 1963. S. Gähler introduced 2-metric spaces, but other authors proved that there is no relation between
two distance functions and there is no easy relationship between results obtained in these two settings. B. C.
Dhage introduced a new concept of the measure of nearness between three or more objects. But topological
structure of so called D-metric spaces was incorrect. Finally, Z. Mustafa and B. Sims [14] introduced correct
definition of a generalized metric space as follows.

Definition 2.1. [14] Let X be a nonempty set, and let G : X × X × X → R+ be a function satisfying the following
properties

(G1) G(x, y, z) = 0 if x = y = z;

(G2) 0 < G(x, x, y), for all x, y ∈ X, with x , y;

(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X, with z , y;

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ..., (symmetry in all three variables);

(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z), for all x, y, z, a ∈ X.

Then function G is called a generalized metric, abbreviated G-metric on X, and the pair (X,G) is called a G-metric
space.

Clearly these properties are satisfied when G(x, y, z) is the perimeter of the triangle with vertices at x, y
and z ∈ R2, moreover taking a in the interior of the triangle shows that (G5) is the best possible.

Example 1.1[14] Let (X, d) be an ordinary metric space, then (X, d) defines G-metrics on X by

Gs(x, y, z) = d(x, y) + d(y, z) + d(x, z),

Gm(x, y, z) = max
{
d(x, y), d(y, z), d(x, z)

}
.
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Example 1.2[14] Let X = {a, b}. Define G on X × X × X by

G(a, a, a) = G(b, b, b) = 0, G(a, a, b) = 1, G(a, b, b) = 2,

and extend G to X × X × X by using the symmetry in the variables. Then it is clear the (X,G) is a G-metric
space.

The following useful properties of a G-metric are readily derived from the axioms.

Proposition 2.2. [14] Let (X,G) be a G-metric space, then for any x, y, z and a from X it follows that:

1. if G(x, y, z) = 0, then x = y = z,
2. G(x, y, z) ≤ G(x, x, y) + G(x, x, z),
3. G(x, y, y) ≤ 2G(y, x, x),
4. G(x, y, z) ≤ G(x, a, z) + G(a, y, z),
5. G(x, y, z) ≤ 2

3 (G(x, y, a) + G(x, a, z) + G(a, y, z)),
6. G(x, y, z) ≤ G(x, a, a) + G(y, a, a) + G(z, a, a).

Definition 2.3. [14] Let (X,G) be a G-metric space, and let {xn} be a sequence of points of X. A point x ∈ X is said
to be the limit of the sequence {xn} if lim

n,m→∞
G(x, xn, xm) = 0, and one says that the sequence {xn} is G-convergent to x.

Definition 2.4. [14] Subset B ⊆ X is bounded if there exists r > 0 such that for some x0 ∈ B, G(x0, x0, x) ≤ r for all
x ∈ B.

Proposition 2.5. [14] Let (X,G) be a G-metric space, then for a sequence {xn} ⊆ X and a point x ∈ X the following
are equivalent:

1. {xn} is G-convergent to x,
2. G(xn, xn, x)→ 0 as n→∞,
3. G(xn, x, x)→ 0 as n→∞.

Definition 2.6. [14] Let (X,G) be a G-metric space, a sequence {xn} is called G-Cauchy if for every ε > 0, there is
N ∈N such that G(xn, xm, xl) < ε, for all n,m, l ≥ N, that is, if G(xn, xm, xl)→ 0 as n,m, l→∞.

Proposition 2.7. [14] In a G-metric space (X,G), the following are equivalent:

1. the sequence {xn} is G-Cauchy,
2. for every ε > 0, there exists an n0 ∈N such that G(xn, xm, xm) < ε, for all n,m ≥ n0.

A G-metric space (X,G) is G-complete (or complete G-metric), if every G-Cauchy sequence in (X,G) is
G-convergent in (X,G).

Proposition 2.8. [14] Let (X,G) be a G-metric space, then the function G(x, y, z) is jointly continuous in all three of
its variables.

Definition 2.9. (X,G) is symmetric G-metric space if G(x, y, y) = G(y, x, x) for all x, y ∈ X.

Fixed point theorems in symmetric G-metric space are mostly consequences of the related fixed point results
in metric spaces. In this paper we discuss non-symmetric case.

In [8] it was shown that if (X,G) is a G-metric space, putting δ(x, y) = G(x, y, y), (X, δ) is a quasi metric
space (generally, δ is not symmetric). It is well known that any quasi metric induces different metrics and
mostly used are

(µ) µ(x, y) = δ(x, y) + δ(y, x),

(ρ) ρ(x, y) = max{δ(x, y), δ(y, x)}.
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The following result is an immediate consequence of above definitions and relations.

Theorem 2.10. let (X,G) be a G-metric space and let D ∈ {δ, ρ}. Then

1. {xn} ⊂ X is G-convergent to x ∈ X if and only if {xn} is convergent to x in (X,D);
2. {xn} ⊂ X is G-Cauchy if and only if {xn} is Cauchy in (X,D);
3. (X,G) is G-complete if and only if (X,D) is complete.

Recently, Samet at all [19] and Jleli,Samet [8] observed that some fixed point theorems in context of G-metric
space can be proved (by simple transformation) using related existing results in the setting of (quasi) metric
space. Namely, if the contraction condition of the fixed point theorem on G-metric space can be reduced
to two variables, then one can construct an equivalent fixed point theorem in setting of usual metric space.
This idea is not completely new, but it was not successfully used before (see [15]). Karapinar and Agarval
in [9] continued to develop Jleli-Samet technique in G-metric space, but, on the other side, they proved
fixed point theorems on the context of G-metric space for which Jleli-Samet technique is not applicable. So,
in some cases, as it is noticed even in Jleli-Samet paper [8], when the contraction condition is of nonlinear
type, this strategy cannot be always successfully used. This is exactly the case in our paper where the use of
Jleli-Simet technique does not give satisfactory results. Namely, if the assumption (contraction inequality)
imposed on the function f is dependent of the variable x ∈ X, then fx is not the same function for all
x ∈ X, which is the case in Sehgal-Thomas type fixed point theorems. It implies that conditions which
the contractor ϕ in related metric space must satisfy become significantly more restrictive if the Jleli-Simet
technique is used. But, using directly G-metric G, the proofs of theorems in our paper are given. The
conclusion is that results from our paper cannot be deduced from the usual one in metric or quasi metric
space and cannot be derived from the results of Samet et al [19] and Jleli, Samet [8].

For more fixed point results in generalized metric spaces related to our paper, we refer the reader to [1],
[2], [3], [6], [18], [20].

3. Main Results

On 1975 Matkowski introduced the following class of mappings:

Definition 3.1. [10] Let T be a mapping on a metric space (X, d). Then T is called a weak contraction if there exists
a function ϕ from [0,∞) to itself satisfying the following:

i) ϕ is nondecreasing,

ii) lim
n
ϕn(t) = 0 for all t > 0,

iii) d(Tx,Ty) ≤ ϕ(d(x, y)) for all x, y ∈ X.

In the same paper he proved the existence and uniqueness of a fixed point for such type of mappings.
This result is significant because the concept of weak contraction of Matkowski type is independent of
Meir-Keeler contraction [13], and it was generalized in different directions [1], [12], [11], [16], [17], [18], [20],
[23]. Matkowski generalized his own result proving a theorem of Sehgal-Guseman type [7].

Theorem 3.2. [11] Let (X, d) be a complete metric space, T : X→ X, andϕ : [0,∞)→ [0,∞). Ifϕ is nondecreasing,
lim
t→∞

(t − ϕ(t)) = ∞, lim
k→∞

ϕk(t)) = 0 for t > 0, and for each x ∈ X there is a positive integer n = n(x) such that for all

y ∈ X,
d(Tn(x)x,Tn(x)y) ≤ ϕ(d(x, y)),

then T has a unique fixed point a ∈ X. Moreover, for each x ∈ X, limk→∞ Tk(x) = a.



Lj. Gajić, M. Stojaković / Filomat 31:11 (2017), 3347–3356 3351

The aim of this paper is to show that this result is valid in a more general class of spaces and wide class
of functions ϕ.

Let (X,G) be a complete G-metric space and B ⊆ X. LetF be a commutative semigroup of self-mappings
(not necessarily continuous) of B. The semigroup F is pointwise contractive in B if for each x ∈ B, there is
an fx ∈ F such that

G
(

fx(y), fx(x), fx(x)
)
≤ ϕ

(
G

(
y, x, x

))
(3.1)

for all y ∈ B, and some mapping ϕ : [0,+∞)→ [0,+∞).

Remark 3.3. A generalization of the contraction principle can be obtained using different type of a nondecreasing
function ϕ : [0,∞)→ [0,∞). The most usual additional properties imposed on ϕ are:

(A1) ϕ(0) = 0,

(A2) ϕ is right continuous and ϕ(t) < t for all t > 0,

(A3) lim
i→∞

ϕi(t) = 0, for all t > 0,

(A4) {ti} ⊂ [0,∞) is a sequence such that ti+1 ≤ ϕ(ti), then lim
i→∞

ti = 0.

It is well know that
(A4)⇔ (A3)⇔ (A2)⇒ (A1).

Theorem 3.4. Let B be a closed subset of complete G-metric space (X,G) and F a commutative semigroup of self-
mapping of B, which is pointwise contractive in B for some ϕ : [0,∞)→ [0,∞), where ϕ is nondecreasing continuous
on the right and satisfies ϕ(t) < t for all t > 0. If for some x0 ∈ B

sup{G(x0, x0, f (x0))| f ∈ F } < ∞, (3.2)

then, there exists a unique u ∈ B such that f (u) = u for each f ∈ F . Moreover, there is a sequence {1n} ⊆ F with
1n(x)→ u, for each x ∈ B.

Proof. If d0 = sup{G(x0, x0, f (x0))| f ∈ F }, then ϕn(d0)→ 0, n→∞.
Let f0 = fx0 and inductively fn = fxn , where xn+1 = fn(xn). Then, for a fixed integer k ≥ 0,

sup
n≥k

G (xn+1, xk+1, xk+1) = sup
n≥k

G
(

fn ◦ fn−1 ◦ ... ◦ fk(xk), fk(xk), fk(xk)
)

Let hn = fn ◦ fn−1 ◦ fk+1. It follows that

sup
n≥k

G (xn+1, xk+1, xk+1) = sup
n≥k

G
(

fk (hn(xk)) , fk(xk), fk(xk)
)

≤ sup
n≥k

ϕ (G (hn(xk), xk, xk))

≤ sup
n≥k

ϕk+1 (G (hn(x0), x0, x0)) ≤ ϕk+1(d0)→ 0,

when k→∞. Thus, the sequence {xn} is Cauchy. Let lim
n

xn = u ∈ B. By hypotheses, there is an fu ∈ F such
that

G
(

fu(xn), fu(u), fu(u)
)
≤ ϕ (G (xn,u,u))→ 0, as n→∞

so
lim

n
fu(xn) = fu(u)
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and therefore lim
n

G
(

fu(xn), xn, xn
)

= G
(

fu(u),u,u
)
. On the other side

G
(

fu(xn), xn, xn
)
≤ ϕ

(
G

(
fu(xn−1), xn−1, xn−1

))
≤ ϕn (

G
(

fu(x0), x0, x0
))

≤ ϕn(d0)→ 0, n→∞.

Hence fu(u) = u. Using (3.1) one can prove that u is a unique fixed point of fu on B. Furthermore, since F
is commutative, for any f ∈ F we have that

f (u) = f
(

fu(u)
)

= fu
(

f (u)
)

and therefore f (u) = u, for each f ∈ F .
For each nonnegative integer n, set 1n = fn ◦ fn−1 ◦ ... ◦ f0. Obviously 1n ∈ F . We are going to prove that

1n(x)→ u, n→∞, for each x ∈ B. For any fixed x ∈ B

G
(
1n(x),u,u

)
≤ G

(
1n(x), xn+1, xn+1

)
+ G (xn+1,u,u) .

Since xn → u, n→∞, it is suffices to prove that G
(
1n(x), xn+1, xn+1

)
→ 0, n→∞. However

G
(
1n(x), xn+1, xn+1

)
= G

(
fn

(
1n−1(x)

)
, fn(xn), fn(xn)

)
≤ ϕ

(
G

(
1n−1(x), xn, xn

))
≤ ϕn+1 (G (x, x0, x0))→ 0, n→∞.

Thus G
(
1n(x), xn+1, xn+1

)
→ 0, n→∞ and proof is completed.

If B is a bounded subset of X, condition (3.2) holds for each x0 ∈ B.

Corollary 3.5. Let B be a closed bounded subset of complete G-metric space (X,G), and F a commutative semigroup
of self-mappings of B which is pointwise contractive in B, for some ϕ : [0,∞) → [0,∞) where ϕ is nondecreasing
right continuous function and ϕ(t) < t, t > 0. Then there exists a unique u ∈ B and sequence {1n} ⊆ F such that
f (u) = u for any f ∈ F and 1n(x)→ u, n→∞, for each x ∈ B.

Corollary 3.6. Let B be a closed bounded subset of complete G-metric space (X,G) and f a self-mapping of B. If f
satisfies the condition: for each x ∈ B, there exists on integer n(x) ≥ 1 such that for all y ∈ B

G
(

f n(x)(y), f n(x)(x), f n(x)(x)
)
≤ ϕ

(
G

(
y, x, x

))
(3.3)

where ϕ : [0,+∞) → [0,+∞) is nondecreasing right continuous function and ϕ(t) < t for t > 0, then there exists a
unique u ∈ B such that f (u) = u and lim

k
f k(x) = u, for any x ∈ B.

Proof. Family F = { f k
| k ∈ N} is a commutative semigroup pointwise contractive in B, so by Corollary 3.5,

there exists an unique fixed point u of f and there is {1n} ⊆ { f k
| k ∈N} such that lim

n
1n(x) = u for any x ∈ B.

Let us prove that in fact lim
k

f k(x) = u, for any x ∈ B. For k sufficiently large we have k = r · n(u) + s, with

r > 0 and 0 ≤ s < n(u) and therefore

G
(

f k(x),u,u
)

= G
(

f r·n(u)+s(x), f n(u)(u), f n(u)(u)
)
≤ ϕr (G (

f s(x),u,u
))

≤ ϕr(d0),

for d0 = diam B. Since ϕr(d0)→ 0, r→∞, it follows that lim
k

f k(x) = u.

Remark 3.7. For a bounded G-metric spaces, Corollary 3.6. improves T.M.Sehgal [22] and L.F. Guseman [7] results.

Following Matkowski [11], we provide boundness of the orbit with some additional condition on
contractive function ϕ. In the next two theorems we shall use, among the other assumptions, properties
(A5) and (A6) of ϕ:
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(A5) for any y ≥ 0 there exists a t(y) ≥ 0, t(y) = supt≥0{t ≤ y + ϕ(t)},

(A6) limt→∞(t − ϕ(t)) = ∞.

It is easy to show that (A5)⇔ (A6).

Theorem 3.8. Let (X,G) be a complete G-metric space, f : X→ X, where nondecreasing right continuous function
ϕ satisfies (A5) or (A6) together with (A2) or (A3) and for each x ∈ X there exists a positive integer n = n(x) such that

G
(

f n(x)(x), f n(x)(x), f n(x)(y)
)
≤ ϕ

(
G(x, x, y)

)
, (3.4)

for all y ∈ X. Then f has a unique fixed point u ∈ X. Moreover, for each x ∈ X, lim
k

f k(x) = u.

Proof. Boundness of the orbit { f k(x)}k, for every x ∈ X, will be proved by mathematical induction.
Let conditions (A3) and (A6) be satisfied (weak contraction in the sense of Matkowski). Fix x ∈ X, fix

integer s, 0 ≤ s < n = n(x) and put

uk = G
(
x, x, f kn(x)+s(x)

)
, k = 0, 1, 2, ...,

h = max
{
G(x, x, f n(x)(x)), G(x, x, f s(x))

}
.

By (A6) there exists c, c > h, such that

t − ϕ(t) > h, t > c.

The last inequalities imply that u0 < c. Suppose that there exists a positive integer j such that u j ≥ c, but
ui < c for i < j.

Using (3.4), we get

u j = G
(
x, x, f jn(x)+s(x)

)
≤ G

(
x, x, f n(x)(x)

)
+ G

(
f n(x)(x), f n(x)(x), f jn(x)+s(x)

)
≤ h + ϕ(u j−1) ≤ h + ϕ(u j),

i.e. u j − ϕ(u j) ≤ h which contradicts the choice of c. Therefore u j < c for j = 0, 1, ..., and consequently the
orbit { f k(x)}k is bounded, so supk G

(
x, x, f k(x)

)
= M < ∞.

Now, we can apply Corollary 2.2, which finishes the proof.

Remark 3.9. If (X,G) is symmetric G-metric space, (3.4) becomes

ρ( f n(x)(x), f n(x)(y)) ≤ ϕ(ρ(x, y))

and the proof follows immediately from Matkowski fixed point theorem [11].

Theorem 3.10. Let f be a self-mapping of a complete G-metric space (X,G). If there exists a subset B of X such that
f (B) ⊆ B , f satisfies (3.4) over B, where nondecreasing right continuous function ϕ satisfies (A5) or (A6) together
with (A2) or (A3) and for some x0 ∈ X, { f n(x0) : n ≥ 1} ⊆ B, then there exists a unique u ∈ B such that f (u) = u
and limk→∞ f k(y) = u for each y ∈ B. Furthermore, if f satisfies (3.4) over X, then u is unique fixed point in X and
limk→∞ f k(y) = u for each y ∈ X.

Remark 3.11. Taking ϕ(t) = q · t, 0 < q < 1, by Theorem 3.10 we obtain the fixed point result from [5], so Theorem
3.10 is also a generalization of Guseman fixed point result from [7].

The next theorem is also a Guseman type of fixed point theorem in G- metric space. The assumptions
about contractor ϕ is different with respect to Theorem 3.10 Similarly as in previous analysis, the next
theorem can be applied in metric space and also in cases where some special form of function ϕ is used.
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Theorem 3.12. Let f : X→ X, where (X,G) is G-metric space and let ϕ : [0,∞)→ [0,∞) be a subadditive mapping
satisfying

∑
∞

i=1 ϕ
i(t) < ∞ for all t > 0. If for some x0 ∈ X the closure of orbit O( f ; x0) is complete and for each

x ∈ O( f ; x0) there exists an n(x) ∈N such that

G
(

f n(x)(y), f n(x)(x), f n(x)(x)
)
≤ ϕ

(
G(y, x, x)

)
, (3.5)

for all y ∈ O( f ; x0), then the sequence xi+1 = f n(xi)(xi), i ∈N0, converges to some x∗ ∈ X.
If inequality (3.5) holds for all x ∈ O( f ; x0), then f n(x∗)(x∗) = x∗ and limi f i(x) = x∗ for every x ∈ O( f ; x0). If

f (O( f ; x0)) ⊆ O( f ; x0), then x∗ is the fixed point of f .

Proof. First, we show that {xi}i∈N0 ⊂ X is a Cauchy sequence. For sufficiently large m ∈ N, there exist
k, r ∈N, 1 ≤ r < n(x0) such that m = k · n(x0) + r. Using (3.5), we get

G
(

f m(x0), x0, x0
)
≤ G

(
f kn(x0)+r(x0), f n(x0)(x0), f n(x0)(x0)

)
+ G

(
f n(x0)(x0), x0, x0

)
≤ ϕ

(
G

(
f (k−1)n(x0)+r(x0), x0, x0

))
+ G

(
f n(x0)(x0), x0, x0

)
≤ ϕ

(
G

(
f (k−1)n(x0)+r(x0), f n(x0)(x0), f n(x0)(x0)

)
+ G

(
f n(x0)(x0), x0, x0

))
+ G

(
f n(x0)(x0), x0, x0

)
≤ ϕ2

(
G

(
f (k−2)n(x0)+r(x0), x0, x0

))
+ ϕ

(
G

(
f n(x0)(x0), x0, x0

))
+ G

(
f n(x0)(x0), x0, x0

)
≤ · · ·

≤ ϕk (G (
f r(x0), x0, x0

))
+

k−1∑
i=1

ϕi
(
G

(
f n(x0)(x0), x0, x0)

))
.

Putting A = max{G
(

f p(x0), x0, x0
)

: 1 ≤ p ≤ n(x0)}, for all m ∈N the next inequality holds

G
(

f m(x0), x0, x0
)
≤

k∑
s=1

ϕs(A) ≤
∞∑

s=1

ϕs(A) = B < ∞, (3.6)

and consequently,

G (xm, xm, xm+1) = G
(

f n(xm−1)(xm−1), f n(xm−1)(xm−1), f n(xm) f n(xm−1)(xm−1)
)

≤ ϕ
(
G

(
xm−1, xm−1, f n(xm)(xm−1)

))
≤ · · · ≤ ϕm

(
G

(
x0, x0, f n(xm)(x0)

))
≤ ϕm(B)

for all m ∈N. Using the last inequality, for every i, j ∈N, i < j, we have

G
(
xi, xi, x j

)
≤ G (xi, xi, xi+1) + · · · + G (xk−1, xk−1, xk) ≤

j∑
s=i

ϕs(B)

implying that {xi}i∈N is a Cauchy sequence. Since O( f ; x0) is a complete, there exists an x∗ ∈ O( f ; x0) such
that limi→∞ xi = x∗.

If the inequality (3.5) holds for all x ∈ O( f ; x0), then the elements xi of the sequence {xi}i∈N from the
previous part of the proof, satisfy next two relations

G
(

f n(x∗)(x∗), f n(x∗)(x∗), f n(x∗)(xi)
)
≤ ϕ (G (x∗, x∗, xi)) < G (x∗, x∗, xi) , (3.7)

and
G

(
f n(x∗)(xi), xi, xi

)
= G

(
f n(x∗) f n(xi−1)(xi−1), f n(xi−1)(xi−1), f n(xi−1)(xi−1)

)
≤

ϕ
(
G

(
f n(x∗)(xi−1), xi−1, xi−1

))
≤ ϕi

(
G

(
f n(x∗)(x0), x0, x0

))
. (3.8)
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By (3.7)
lim
i→∞

f n(x∗)(xi) = f n(x∗)(x∗)

and by (3.8)
lim
i→∞

G
(

f n(x∗)(xi), xi, xi

)
= G

(
f n(x∗)(x∗), x∗, x∗

)
= 0.

Hence, f n(x∗)(x∗) = x∗.
Next, we claim that lim

i
f i(x) = x∗, for each x ∈ O( f ; x0). Putting i = kn(x∗) + s, s ∈N, 0 ≤ s < n(x∗), we get

G
(

f kn(mz)+s(x), x∗, x∗
)
≤ ϕ(G

(
f (k−1)n(mz)+s(x), x∗, x∗

)
≤ · · ·

≤ ϕk(G
(

f s(x), x∗, x∗
)

= ϕk(M),

where M = max{G
(

f s(x), x∗, x∗
)

: 0 ≤ s < n(x∗)}. Since
∑

i ϕ
i(t) < ∞⇒ lim

i
ϕi(t) = 0, lim

i
f i(x) = x∗.

To show that x∗ is a unique fixed point of f n(x∗) in O( f ; x0), we assume that there exists another point
x∗∗ ∈ O( f ; x0) with the same property. Then

G (x∗∗, x∗, x∗) = G
(

f n(x∗)(x∗∗), f n(x∗)(x∗), f n(x∗)(x∗)
)
≤ ϕ(G (x∗∗, x∗, x∗)),

that is x∗∗ = x∗. Further, if f (O( f ; x0)) ⊆ O( f ; x0), then

f (x∗) = f ( f n(x∗)(x∗)) = f n(x∗)( f (x∗))

implying f (x∗) = x∗.
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