Filomat 31:11 (2017), 3443–3452 https://doi.org/10.2298/FIL1711443O



Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# Behavior of Meromorphic Functions at the Boundary of the Unit Disc

## Bülent Nafi Örnek<sup>a</sup>

<sup>a</sup>Department of Computer Engineering, Amasya University, Merkez-Amasya 05100, Turkey

**Abstract.** In this paper, a boundary version of the Schwarz lemma for meromorphic functions is investigated. The modulus of the angular derivative of the meromorphic function  $I^n f(z) = \frac{1}{z} + 2^n c_0 + 3^n c_1 z + 4^n c_2 z^2 + ...$  that belongs to the class of  $\mathcal{M}$  on the boundary point of the unit disc has been estimated from below.

To the memory of Professor Lj. Ćirić (1935–2016)

### 1. Introduction

First, let us set the following standard notations:  $\mathbb{C}$  denotes the complex numbers,  $\mathbb{E} := \{z \in \mathbb{C} : |z| < 1\}$  is the unit disc and  $\mathbb{T} := \partial \mathbb{E} = \{z \in \mathbb{C} : |z| = 1\}$  is the unit circle. Now, let us start by recalling the classical form of the Schwarz lemma ([6], p.329).

**Lemma 1.1 (Schwarz lemma).** Let  $f : \mathbb{E} \to \mathbb{E}$  be holomorphic function and f(0) = 0. Then  $|f(z)| \le |z|$  for all z and  $|f'(0)| \le 1$ , with equality in either case if and only if is a rotation.

For historical background about the Schwarz lemma and its applications on the boundary of the unit disc, we refer to (see [2], [20]). The basic tool in proving our results is the following lemma due to Jack ([2]).

**Lemma 1.2 (Jack's lemma).** Let f(z) be holomorphic function in the unit disc  $\mathbb{E}$  with f(0) = 0. If |f(z)| attains its maximum value on the circle |z| = r at the point  $z_0$ , then

$$z_0 f'(z_0) = k f(z_0),$$

where  $k \ge 1$  is a real number.

Let  $\mathcal A$  denote the class of functions

$$f(z) = \frac{1}{z} + c_0 + c_1 z + c_2 z^2 + \dots$$

Received: 21 November 2016; Accepted: 21 February 2017

<sup>2010</sup> Mathematics Subject Classification. Primary 30C80; Secondary 32A10, 30D30

Keywords. Schwarz lemma on the boundary, Holomorphic function, Meromorphic function, Jack's lemma.

Communicated by Miodrag Mateljević

Email address: nafi.ornek@amasya.edu.tr (Bülent Nafi Örnek)

that are holomorphic in the punctured disc  $\mathbb{U} = \{z \in \mathbb{C} : 0 < |z| < 1\}$ . Define

$$I^{0}f(z) = f(z),$$

$$I^{1}f(z) = \frac{1}{z} + 2c_{0} + 3c_{1}z + 4c_{2}z^{2} + \dots = \frac{(z^{2}f(z))'}{z},$$

$$I^{2}f(z) = I^{1}(I^{1}f(z)),$$

$$I = 2^{2}$$

and for *n* = 1, 2, 3, ...

$$I^{n}f(z) = I^{1}\left(I^{n-1}f(z)\right) = \frac{1}{z} + 2^{n}c_{0} + 3^{n}c_{1}z + 4^{n}c_{2}z^{2} + \dots = \frac{1}{z} + \sum_{k=2}^{\infty} k^{n}c_{k-2}z^{k-2}$$

and

$$I^{n+1}f(z) = \frac{1}{z} + 2^{n+1}c_0 + 3^{n+1}c_1z + 4^{n+1}c_2z^2 + \dots = \frac{1}{z} + \sum_{k=2}^{\infty} k^{n+1}c_{k-2}z^{k-2}.$$
(1.1)

Also,  $\mathcal{M}$  be the subclass of  $\mathcal{A}$  consisting of all functions f(z) which satisfy

$$\Re\left(-z^{2}\left(I^{n+1}f(z)\right)'\right) > 0, \ |z| < 1,$$
(1.2)

where  $I^{n+1}f(z)$  is defined by (1.1). Let  $f(z) \in \mathcal{M}$  and consider the function

$$\phi(z) = \frac{1 + z^2 \left( I^n f(z) \right)'}{1 - z^2 \left( I^n f(z) \right)'}.$$
(1.3)

The function  $\phi(z)$  is holomorphic in  $\mathbb{E}$  and  $\phi(0) = 0$ . That is,

$$\phi(z) = \frac{z^2}{2} \left( 3^n c_1 + 2.4^n c_2 z + ... \right).$$

Differentiating (1.3) we obtain

$$z^{2} (I^{n} f(z))'' + 2z (I^{n} f(z))' = \frac{2\phi'(z)}{\left(1 + \phi(z)\right)^{2}}.$$

We can easily confirm the identity

$$z(I^n f(z))' = I^{n+1} f(z) - 2I^n f(z).$$
(1.4)

Differentiating (1.4) we take

$$z^{2} (I^{n} f(z))'' = z (I^{n+1} f(z))' - 3z (I^{n} f(z))'.$$

Therefore, we have

$$-z^{2}\left(I^{n+1}f(z)\right)' = -z^{2}\left(I^{n}f(z)\right)' - \frac{2z\phi'(z)}{\left(1+\phi(z)\right)^{2}}.$$

Now, let us show that the function  $|\phi(z)| < 1$  in  $\mathbb{E}$ . If there exists a point  $z_0 \in \mathbb{E}$  such that

$$\max_{|z| \le |z_0|} |\phi(z)| = |\phi(z_0)| = 1,$$

then Jack's lemma gives us that  $\phi(z_0) = e^{i\theta}$  and  $z_0\phi'(z_0) = k\phi(z_0)$ . Thus, we have

$$\begin{aligned} -z_0^2 \left( I^{n+1} f(z_0) \right)' &= -z_0^2 \left( I^n f(z_0) \right)' - \frac{2z_0 \phi'(z_0)}{\left( 1 + \phi(z_0) \right)^2} \\ &= \frac{1 - \phi(z_0)}{1 + \phi(z_0)} - \frac{2k \phi(z_0)}{\left( 1 + \phi(z_0) \right)^2} \\ &= \frac{1 - e^{i\theta}}{1 + e^{i\theta}} - \frac{2k e^{i\theta}}{\left( 1 + e^{i\theta} \right)^2}. \end{aligned}$$

and

$$\Re\left(-z_0^2\left(I^{n+1}f(z_0)\right)'\right) = \Re\left(\frac{1-e^{i\theta}}{1+e^{i\theta}}-\frac{2ke^{i\theta}}{\left(1+e^{i\theta}\right)^2}\right).$$

Therefore, we obtain

$$\begin{aligned} \Re\left(-z_0^2\left(I^{n+1}f(z_0)\right)'\right) &= \Re\left(\frac{1-(\cos\theta+i\sin\theta)}{1+\cos\theta+i\sin\theta} - \frac{2ke^{i\theta}}{(1+e^{i\theta})^2}\right) \\ &= \Re\left(\frac{1-(\cos\theta+i\sin\theta)}{1+\cos\theta+i\sin\theta} - 2k\frac{1}{2+e^{i\theta}+e^{-i\theta}}\right) \\ &= \Re\left(\frac{1-(\cos\theta+i\sin\theta)}{1+\cos\theta+i\sin\theta} - \frac{2k}{2(1+\cos\theta)}\right) \\ &= -k\Re\left(\frac{1}{1+\cos\theta}\right) \le 0. \end{aligned}$$

This contradict (1.2). Thus, there is no point  $z_0 \in \mathbb{E}$  such that  $|\phi(z_0)| = 1$  for all  $z \in \mathbb{E}$ . Consequently, we conclude that  $|\phi(z)| < 1$  for |z| < 1. Thus, by the Schwarz lemma, we obtain

$$|c_1| \le \frac{2}{3^n}.\tag{1.5}$$

Moreover, the equality in (1.5) occurs for the solution of equation

$$(I^n f(z))' = \frac{z^2 - 1}{z^2(1 + z^2)},$$

with the condition at z = 0

$$\lim_{z \to 0} z^2 f(z) = 0.$$

In particular, for n = 1, we have

$$\left(I^{1}f(z)\right)' = \frac{z^{2} - 1}{z^{2}(1+z^{2})},$$
(1.6)

with the condition at z = 0

$$\lim_{z \to 0} z^2 f(z) = 0.$$

Thus, from (1.6), we obtain

$$f(z) = \frac{1}{z} + \frac{2}{3}z - \frac{2}{15}z^3 + \frac{2}{35}z^5 - \dots$$

The following boundary version of the Schwarz lemma was proved in 1938 by Unkelbach in [21] and then rediscovered and partially improved by Osserman in 2000 [17].

**Lemma 1.3.** Let  $f(z) = c_p z^p + ...$  be a holomorphic function self-mapping of  $\mathbb{E}$ , that is |f(z)| < 1 for all  $z \in \mathbb{E}$ . Assume that there is a  $b \in \mathbb{T}$  so that f extend continuously to b, |f(b)| = 1 and f'(b) exists. Then

$$\left|f'(b)\right| \ge p + \frac{1 - \left|c_p\right|}{1 + \left|c_p\right|}.$$
(1.7)

The equality in (1.7) holds if and only if f is of the form

$$f(z) = -z^p \frac{\gamma - z}{1 - \gamma z}, \quad \forall z \in E,$$

*for some constant*  $\gamma \in (-1, 0]$ *.* 

Corollary 1.4. Under the hypotheses of Lemma 1.3, we have

$$|f'(b)| \ge p,$$

with equality only if f is of the form

$$f(z) = z^p e^{i\theta}$$

where  $\theta$  is a real number.

The following Lemma 1.5 and Corollary 1.6, known as the Julia-Wolff lemma, is needed in the sequel [19].

**Lemma 1.5 (Julia-Wolff lemma).** Let f be a holomorphic function in  $\mathbb{E}$ , f(0) = 0 and  $f(\mathbb{E}) \subset \mathbb{E}$ . If, in addition, the function f has an angular limit f(b) at  $b \in \mathbb{T}$ , |f(b)| = 1, then the angular derivative f'(b) exists and  $1 \le |f'(b)| \le \infty$ .

**Corollary 1.6.** *The holomorphic function f has a finite angular derivative f'(b) if and only if f' has the finite angular limit f'(b) at b*  $\in \mathbb{T}$ *.* 

Inequality (1.8) and its generalizations have important applications in geometric theory of functions (see, e.g., [6], [19]). Therefore, the interest to such type results is not vanished recently (see, e.g., [1], [2], [4], [5], [10], [11], [17], [18], [20] and references therein).

Vladimir N. Dubinin has continued this line and has made a refinement on the boundary Schwarz lemma under the assumption that  $f(z) = c_p z^p + c_{p+1} z^{p+1} + ...$ , with a zero set  $\{z_k\}$  (see [4]).

S. G. Krantz and D. M. Burns [9] and D. Chelst [3] studied the uniqueness part of the Schwarz lemma. In M. Mateljević's papers, for more general results and related estimates, see also ([12], [13], [14], [15] and [16]).

Also, M. Jeong [8] showed some inequalities at a boundary point for different form of holomorphic functions and found the condition for equality and in [7] a holomorphic self map defined on the closed unit disc with fixed points only on the boundary of the unit disc.

#### 2. Main Results

In this section, the modulus of the angular derivative of the meromorphic function  $I^n f(z) = \frac{1}{z} + 2^n c_0 + 3^n c_1 z + 4^n c_2 z^2 + ...$  that belongs to the class of  $\mathcal{M}$  on the boundary point of the unit disc has been estimated from below.

**Theorem 2.1.** Let  $f(z) \in \mathcal{M}$ . Assume that, for some  $b \in \mathbb{T}$ ,  $(I^n f(z))'$  has angular limit  $(I^n f(z))'_{z=b}$  at b and  $(I^n f(z))'_{z=b} = 0$ . Then we have the inequality

$$\left| (I^n f(z))_{z=b}^{''} \right| \ge 1.$$
(2.1)

(1.8)

The equality in (2.1) occurs for the solution of equation

$$(I^n f(z))' = \frac{z^2 - 1}{z^2(1 + z^2)},$$

with the condition at z = 0

$$\lim_{z \to 0} z^2 f(z) = 0.$$

Proof. Consider the function

$$\phi(z) = \frac{1 + z^2 \left( I^n f(z) \right)'}{1 - z^2 \left( I^n f(z) \right)'}.$$

 $\phi(z)$  is a holomorphic function in the unit disc *E* and  $\phi(0) = 0$ . From the Jack's lemma and since  $f(z) \in \mathcal{M}$ , we have  $|\phi(z)| < 1$  for |z| < 1. Also, we have  $|\phi(b)| = 1$  for  $b \in \mathbb{T}$ .

For p = 2, from (1.8), we obtain

. .

$$2 \leq |\phi'(b)| = \left| \frac{\left(2b\left(I^{n}f(z)\right)'_{z=b} + b^{2}\left(I^{n}f(z)\right)'_{z=b}\right)\left(1 - b^{2}\left(I^{n}f(z)\right)'_{z=b}\right)}{\left(1 - b^{2}\left(I^{n}f(z)\right)'_{z=b}\right)^{2}} + \frac{\left(2b\left(I^{n}f(z)\right)'_{z=b} + b^{2}\left(I^{n}f(z)\right)'_{z=b}\right)\left(1 + b^{2}\left(I^{n}f(z)\right)'_{z=b}\right)}{\left(1 - b^{2}\left(I^{n}f(z)\right)'_{z=b}\right)^{2}}\right|,$$
  
$$2 \leq \left|b^{2}\left(I^{n}f(z)\right)''_{z=b} + b^{2}\left(I^{n}f(z)\right)''_{z=b}\right| = 2\left|\left(I^{n}f(z)\right)''_{z=b}\right|$$

and

 $|(I^n f(z))_{z=b}^{''}| \ge 1.$ 

Now, we shall show that the inequality (2.1) is sharp. Let

$$(I^n f(z))' = \frac{z^2 - 1}{z^2(1 + z^2)}.$$

Then, we have

$$(I^n f(z))'' = \frac{2z(z^4 + z^2) - (4z^3 + 2z)(z^2 - 1)}{(z^4 + z^2)^2},$$

and

$$|(I^n f(z))''_{z=1}| = 1$$

**Theorem 2.2.** Under the same assumptions as in Theorem 2.1, we have

$$\left| \left( I^n f(z) \right)_{z=b}^{''} \right| \ge \frac{1}{2} \left( \frac{6+3^n |c_1|}{2+3^n |c_1|} \right).$$
(2.2)

The inequality (2.2) is sharp with equality for the solution of equation

$$(I^n f(z))' = \frac{z^3 + az^2 - az - 1}{z^5 + az^4 + az^3 + z^2},$$

with the condition at z = 0

 $\lim_{z \to 0} z^2 f(z) = 0,$ 

where  $a = \frac{3^n}{2} |c_1|$  is an arbitrary number from [0, 1] (see (1.5)).

3447

*Proof.* Let  $\phi(z)$  be as in the proof of Theorem 2.1. For p = 2, using the inequality (1.7) for the function  $\phi(z)$ , we obtain

$$2 + \frac{1 - |a_2|}{1 + |a_2|} \le \left|\phi'(b)\right| = 2\left|(I^n f(z))_{z=b}''\right|$$

Since

$$|a_2| = \frac{|\phi''(0)|}{2} = \frac{3^n}{2} |c_1|,$$

then we have

$$2 + \frac{1 - \frac{3^{n}}{2}|c_{1}|}{1 + \frac{3^{n}}{2}|c_{1}|} \le 2\left| (I^{n}f(z))_{z=b}^{"} \right|,$$
  
$$2 + \frac{2 - 3^{n}|c_{1}|}{2 + 3^{n}|c_{1}|} \le 2\left| (I^{n}f(z))_{z=b}^{"} \right|$$
  
$$\left| (I^{n}f(z))_{z=b}^{"} \right| \ge \frac{1}{2} \left( 2 + \frac{2 - 3^{n}|c_{1}|}{2 + 3^{n}|c_{1}|} \right)$$

and

$$|(I^n f(z))''_{z=b}| \ge \frac{1}{2} \left( \frac{6+3^n |c_1|}{2+3^n |c_1|} \right).$$

To show that the inequality (2.2) is sharp, take the holomorphic function

$$\phi(z) = \frac{1 + z^2 \left( I^n f(z) \right)'}{1 - z^2 \left( I^n f(z) \right)'} = z^2 \frac{z + a}{1 + az}$$

Then

$$\begin{split} \phi'(z) &= 2 \frac{2z \left( I^n f(z) \right)' + z^2 \left( I^n f(z) \right)''}{\left( 1 - z^2 \left( I^n f(z) \right)' \right)^2} = \frac{\left( 3z^2 + 2az \right) (1 + az) - a \left( z^3 + az^2 \right)}{\left( 1 + az \right)^2}, \\ \phi'(1) &= 2 \frac{2 \left( I^n f(z) \right)'_{z=1} + \left( I^n f(z) \right)''_{z=1}}{\left( 1 - \left( I^n f(z) \right)'_{z=1} \right)^2} = \frac{3 + a}{1 + a} \end{split}$$

and

$$|(I^n f(z))''_{z=1}| = \frac{1}{2} \left(\frac{3+a}{1+a}\right).$$

Since  $a = \frac{3^n}{2} |c_1|$  is satisfied with equality.  $\Box$ 

**Theorem 2.3.** Let  $f(z) \in \mathcal{M}$ . Assume that, for some  $b \in \mathbb{T}$ ,  $(I^n f(z))'$  has angular limit  $(I^n f(z))'_{z=b}$  at b and  $(I^n f(z))'_{z=b} = 0$ . Then we have the inequality

$$\left| (I^n f(z))_{z=b}'' \right| \ge 1 + \frac{(2 - 3^n |c_1|)^2}{4 - 3^{2n} |c_1|^2 + 4^{n+1} |c_2|}.$$
(2.3)

The inequality (2.3) is sharp with equality for the solution of equation

$$(I^n f(z))' = \frac{z^2 - 1}{z^2(1 + z^2)},$$

with the condition at z = 0

$$\lim_{z \to 0} z^2 f(z) = 0.$$

*Proof.* Let  $\phi(z)$  be as in the proof of Theorem 2.1. By the maximum principle for each  $z \in E$ , we have  $|\phi(z)| \leq |z^2|$ . So,

$$\psi(z) = \frac{\phi(z)}{z^2}$$

is a holomorphic function in *E* and  $|\psi(z)| < 1$  for |z| < 1.

In particular, we have

$$\left|\psi(0)\right| = \frac{3^n}{2} |c_1| \le 1 \tag{2.4}$$

and

$$\left|\psi'(0)\right|=4^n\left|c_2\right|.$$

Moreover, it can be seen that

$$\frac{b\phi'(b)}{\phi(b)} = \left|\phi'(b)\right| \ge \left|\left(b^2\right)'\right| = \frac{b\left(b^2\right)'}{b^2}.$$

The function

$$\begin{split} \Upsilon(z) &= \frac{\psi(z) - \psi(0)}{1 - \overline{\psi(0)}\psi(z)} = \frac{\frac{3^n}{2}c_1 + 4^nc_2z + \dots - \frac{3^n}{2}c_1}{1 - \frac{3^n}{2}c_1\left(\frac{3^n}{2}c_1 + 4^nc_2z + \dots\right)} \\ &= \frac{4^nc_2z + \dots}{1 - \frac{3^n}{2}c_1\left(\frac{3^n}{2}c_1 + 4^nc_2z + \dots\right)} = \frac{4^nc_2z}{1 - \frac{3^{2n}}{4}|c_1|^2} + \dots \end{split}$$

is a holomorphic in the unit disc *E*,  $|\Upsilon(z)| < 1$  for |z| < 1,  $\Upsilon(0) = 0$  and  $|\Upsilon(b)| = 1$  for  $b \in \mathbb{T}$ .

From (1.4), we obtain

$$\begin{aligned} \frac{2}{1+|\Upsilon'(0)|} &\leq |\Upsilon'(b)| = \frac{1-|\psi(0)|^2}{\left|1-\overline{\psi(0)}\psi(b)\right|^2} \left|\psi'(b)\right| \leq \frac{1+|\psi(0)|}{1-|\psi(0)|} \left|\psi'(b)\right| \\ &= \frac{1+|\psi(0)|}{1-|\psi(0)|} \left\{ \left|\phi'(b)\right|-2 \right\}. \end{aligned}$$

Since

$$\begin{split} \Upsilon'(z) &= \frac{1 - \left|\psi(0)\right|^2}{\left(1 - \overline{\psi(0)}\psi(z)\right)^2}\psi'(z),\\ |\Upsilon'(0)| &= \frac{\left|\psi'(0)\right|}{1 - \left|\psi(0)\right|^2} = \frac{4^n \left|c_2\right|}{1 - \frac{3^{2n}}{4} \left|c_1\right|^2} = \frac{4^{n+1} \left|c_2\right|}{4 - 3^{2n} \left|c_1\right|^2}, \end{split}$$

we take

$$\frac{2}{1 + \frac{4^{n+1}|c_2|}{4 - 3^{2n}|c_1|^2}} \leq \frac{1 + \frac{3^n}{2}|c_1|}{1 - \frac{3^n}{2}|c_1|} \left\{ 2\left| (I^n f(z))_{z=b}'' \right| - 2 \right\} \\
= \frac{2 + 3^n |c_1|}{2 - 3^n |c_1|} \left\{ 2\left| (I^n f(z))_{z=b}'' \right| - 2 \right\},$$

$$\frac{2\left(4-3^{2n}|c_1|^2\right)}{4-3^{2n}|c_1|^2+4^{n+1}|c_2|}\frac{2-3^n|c_1|}{2+3^n|c_1|} \le 2\left|\left(I^nf(z)\right)_{z=b}^{\prime\prime}\right|-2$$

and

$$\frac{2\left(2-3^{n}\left|c_{1}\right|\right)^{2}}{4-3^{2n}\left|c_{1}\right|^{2}+4^{n+1}\left|c_{2}\right|}+2\leq2\left|\left(I^{n}f(z)\right)_{z=b}^{\prime\prime}\right|$$

Therefore, we obtain

$$\left| (I^n f(z))_{z=b}'' \right| \ge 1 + \frac{(2 - 3^n |c_1|)^2}{4 - 3^{2n} |c_1|^2 + 4^{n+1} |c_2|}$$

To show that the inequality (2.3) is sharp, take the holomorphic function

$$(I^n f(z))' = \frac{z^2 - 1}{z^2(1 + z^2)}.$$

Then

$$(I^n f(z))'' = \frac{2z(z^4 + z^2) - (4z^3 + 2z)(z^2 - 1)}{(z^4 + z^2)^2}$$

and

$$|(I^n f(z))''_{z=1}| = 1.$$

Since  $|c_1| = \frac{2}{3^n}$ , (2.3) is satisfied with equality.  $\Box$ 

If  $z^2 (I^n f(z))'$  has no zeros different from z = 0 in Theorem 2.3, the inequality (2.3) can be further strengthened. This is given by the following Theorem.

**Theorem 2.4.** Let  $f(z) \in \mathcal{M}$  and  $z^2 (I^n f(z))'$  has no zeros in E except z = 0 and  $c_1 > 0$ . Assume that, for some  $b \in \mathbb{T}$ ,  $(I^n f(z))'$  has angular limit  $(I^n f(z))'_{z=b}$  at b and  $(I^n f(z))'_{z=b} = 0$ . Then we have the inequality

$$\left| (I^{n} f(z))_{z=b}^{\prime \prime} \right| \ge 1 - \frac{1}{2} \frac{3^{n} |c_{1}| \ln^{2} \left( \frac{3^{n}}{2} c_{1} \right)}{3^{n} |c_{1}| \ln \left( \frac{3^{n}}{2} c_{1} \right) - 4^{n} |c_{2}|}.$$
(2.5)

In addition, the equality in (2.5) occurs for the solution of equation

$$(I^n f(z))' = \frac{z^2 - 1}{z^2(1 + z^2)}$$

with the condition at z = 0

$$\lim_{z \to 0} z^2 f(z) = 0.$$

*Proof.* Let  $c_1 > 0$  in the expression of the function f(z). Having in mind the inequality (2.4) and the function  $z^2 (I^n f(z))'$  has no zeros in E except  $E - \{0\}$ , we denote by  $\ln \psi(z)$  the holomorphic branch of the logarithm normed by the condition

$$\ln\psi(0) = \ln\left(\frac{3^n}{2}c_1\right) < 0.$$

3450

The auxiliary function

$$\Phi(z) = \frac{\ln \psi(z) - \ln \psi(0)}{\ln \psi(z) + \ln \psi(0)}$$

is a holomorphic in the unit disc E,  $|\Phi(z)| < 1$ ,  $\Phi(0) = 0$  and  $|\Phi(b)| = 1$  for  $b \in \mathbb{T}$ . For p = 1, from (1.7), we obtain

$$\begin{aligned} \frac{2}{1+|\Phi'(0)|} &\leq |\Phi'(b)| = \frac{\left|2\ln\psi(0)\right|}{\left|\ln\psi(b) + \ln\psi(0)\right|^2} \left|\frac{\psi'(b)}{\psi(b)}\right| \\ &= \frac{-2\ln\psi(0)}{\ln^2\psi(0) + \arg^2\psi(b)} \left\{\left|\phi'(b)\right| - 2\right\}. \end{aligned}$$

Replacing  $\arg^2 \omega(b)$  by zero, then we take

$$\begin{aligned} &\frac{1}{1 - \frac{4^{n}|c_{2}|}{\frac{3^{n}}{2}|c_{1}|2\ln\left(\frac{3^{n}}{2}c_{1}\right)}} \leq \frac{-1}{\ln\left(\frac{3^{n}}{2}c_{1}\right)} \left\{ 2\left| \left(I^{n}f(z)\right)_{z=b}^{\prime\prime}\right| - 2 \right\}, \\ &- \frac{3^{n}|c_{1}|\ln^{2}\left(\frac{3^{n}}{2}c_{1}\right)}{3^{n}|c_{1}|\ln\left(\frac{3^{n}}{2}c_{1}\right) - 4^{n}|c_{2}|} \leq 2\left| \left(I^{n}f(z)\right)_{z=b}^{\prime\prime}\right| - 2, \\ &- \frac{1}{2} \frac{3^{n}|c_{1}|\ln^{2}\left(\frac{3^{n}}{2}c_{1}\right) - 4^{n}|c_{2}|}{3^{n}|c_{1}|\ln\left(\frac{3^{n}}{2}c_{1}\right) - 4^{n}|c_{2}|} \leq \left| \left(I^{n}f(z)\right)_{z=b}^{\prime\prime}\right| - 1\end{aligned}$$

and

$$\left| (I^{n} f(z))_{z=b}^{\prime \prime} \right| \geq \left( 1 - \frac{1}{2} \frac{3^{n} |c_{1}| \ln^{2} \left( \frac{3^{n}}{2} c_{1} \right)}{3^{n} |c_{1}| \ln \left( \frac{3^{n}}{2} c_{1} \right) - 4^{n} |c_{2}|} \right)$$

Thus, we obtain the inequality (2.5) with an obvious equality case.  $\Box$ 

The following inequality (2.6) is weaker, but is simpler than (2.5) and does not contain the coefficient  $c_2$ .

**Theorem 2.5.** Under the same assumptions as in Theorem 2.4, we have

$$\left| (I^n f(z))_{z=b}'' \right| \ge 1 - \frac{1}{4} \ln\left(\frac{3^n}{2}c_1\right).$$
(2.6)

In addition, the equality in (2.6) occurs for the solution of equation

$$(I^n f(z))' = \frac{z^2 - 1}{z^2(1 + z^2)}$$

with the condition at z = 0

$$\lim_{z \to 0} z^2 f(z) = 0.$$

*Proof.* Let  $c_1 > 0$ . Using the inequality (1.8) for the function  $\Phi(z)$ , we obtain

$$1 \le |\Phi'(b)| = \frac{\left|2\ln\psi(0)\right|}{\left|\ln\psi(b) + \ln\psi(0)\right|^2} \left|\frac{\psi'(b)}{\psi(b)}\right| = \frac{-2\ln\psi(0)}{\ln^2\psi(0) + \arg^2\psi(b)} \left\{\left|\phi'(b)\right| - 2\right\}.$$

Replacing  $\arg^2 \varphi(b)$  by zero, then

$$\begin{split} &1 \le |\Phi'(b)| \le \frac{-2}{\ln\left(\frac{3^n}{2}c_1\right)} \left\{ 2\left| (I^n f(z))_{z=b}'' \right| - 2 \right\}, \\ &1 \le \frac{-2}{\ln\left(\frac{3^n}{2}c_1\right)} \left\{ 2\left| (I^n f(z))_{z=b}'' \right| - 2 \right\} \end{split}$$

and

$$|(I^n f(z))''_{z=b}| \ge 1 - \frac{1}{4} \ln\left(\frac{3^n}{2}c_1\right).$$

Therefore, we obtain the inequality (2.6) with an obvious equality case.  $\Box$ 

#### References

- [1] T. Aliyev Azeroğlu and B. N. Örnek, A refined Schwarz inequality on the boundary, Complex Variables and Elliptic Equations 58 (2013), 571-577.
- H. P. Boas, Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), 770-785.
- [3] D. Chelst, A generalized Schwarz lemma at the boundary, Proc. Amer. Math. Soc. 129 (2001), 3275-3278.
- [4] V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. 122 (2004), 3623-3629.
- [5] V. N. Dubinin, Bounded holomorphic functions covering no concentric circles, J. Math. Sci. 207 (2015), 825-831.
- G. M. Golusin, Geometric Theory of Functions of Complex Variable [in Russian], 2nd edn., Moscow 1966.
- [7] M. Jeong, The Schwarz lemma and its applications at a boundary point, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 21 (2014), 275-284.
- [8] M. Jeong, The Schwarz lemma and boundary fixed points, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 18 (2011), 219-227.
- [9] S. G. Krantz and D. M. Burns, Rigidity of holomorphic mappings and a new Schwarz Lemma at the boundary, J. Amer. Math. Soc. 7 (1994), 661-676.
- [10] T. Liu and X. Tang, The Schwarz Lemma at the Boundary of the Egg Domain  $B_{p_1,p_2}$  in  $\mathbb{C}^n$ , Canad. Math. Bull. **58** (2015), 381-392. [11] J. Lu, X. Tang and T. Liu, Schwarz lemma at the boundary of the unit polydisk in  $\mathbb{C}^n$ , Sci. China Math. **58** (2015), 1-14.
- [12] M. Mateljević, The Lower Bound for the Modulus of the Derivatives and Jacobian of Harmonic Injective Mappings, Filomat 29:2 (2015), 221-244.
- [13] M. Mateljević, Distortion of harmonic functions and harmonic quasiconformal quasi-isometry, Revue Roum. Math. Pures Appl. Vol. 51 (2006) 56, 711-722.
- [14] M. Mateljević, Ahlfors-Schwarz lemma and curvature, Kragujevac J. Math. 25 (2003), 155-164.
- [15] M. Mateljević, Note on Rigidity of Holomorphic Mappings & Schwarz and Jack Lemma (in preparation), ResearchGate.
- [16] M. Mateljević, Schwarz lemma, the Carathéodory and Kobayashi Metrics and Applications in Complex Analysis, XIX GEOMETRICAL SEMINAR, At Zlatibor, Sunday, August 28, 2016 Sunday, September 4, 2016
- [17] R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), 3513-3517.
- [18] B. N. Örnek, Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math. Soc. 50 (2013), 2053–2059.
- [19] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.
- [20] D. Shoikhet, M. Elin, F. Jacobzon, M. Levenshtein, The Schwarz lemma: Rigidity and Dynamics, Harmonic and Complex Analysis and its Applications. Springer International Publishing, (2014), 135-230.
- [21] H. Unkelbach, Uber die Randverzerrung bei konformer Abbildung, Math. Z., 43 (1938), 739-742.