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Abstract. In this paper we prove the local uniqueness of the fixed point of the probabilistic q-contraction
in fuzzy metric space.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction

The first fixed point theorem in probabilistic metric spaces was proved by Sehgal and Bharucha-Reid
[21] for mappings f : S→ S, on Menger space (S,F ,TM), where TM = min . The real operation of triangular
norms was introduced in the theory of probabilistic metric spaces by K. Menger [15], see [7–9, 11, 20, 22]. It
turns out that t-norms are crucial operations in several fields, e.g., in statistics by copulas ([13, 14]), fuzzy
sets, fuzzy logics (see [11]) and their applications, but also, among other fields, in the theory of generalized
measures [11, 17, 23] and in nonlinear differential and difference equations [17]. Further investigations of
the fixed point theory in a more general Menger space (S,F ,T) was connected with investigations of the
structure of the t-norm T, see [1, 4, 7]. Further development of the fixed point theory was obtained in a
more general space - fuzzy metric spaces, see [2, 3, 6, 7, 16, 24].

We present in this paper a result on the local uniqueness of fixed point in fuzzy metric space. In Section
2 we give some results related t-norms. In Section 3 we give the definition of fuzzy metric space and Section
4 is devoted to the main result of the paper, the local uniqueness of the fixed point of the probabilistic
q-contraction in fuzzy metric space.

2. Triangular Norms

A triangular norm (t-norm for short) is a binary operation on the unit interval [0, 1], i.e., a function
T : [0, 1]2

→ [0, 1] which is commutative, associative, monotone and T(x, 1) = x for every x ∈ [0, 1] . A
method of construction a new t-norm from a system of given t-norms is given in the following theorem, see
[7, 11].
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Theorem 1 Let (Tk)k∈K be a family of t-norms and let (]αk, βk[)k∈K be a family of pairwise disjoint open subintervals of
the unit interval [0, 1] (i.e., K is an at most countable index set). Consider the linear transformations ϕk : [αk, βk]→
[0, 1], k ∈ K, given by

ϕk(u) =
u − αk

βk − αk
.

Then the function T : [0, 1]2
→ [0, 1] defined by

T(x, y) =


ϕ−1

k (Tk(ϕk(x), ϕk(y))) if (x, y) ∈
]
αk, βk

[2 ,

min(x, y) otherwise,

is a triangular norm, which is called the ordinal sum of (Tk)k∈K.

An arbitrary t-norm T can be extended (by associativity) in a unique way to an n-ary operation taking
for (x1, . . . , xn) ∈ [0, 1]n, n ∈N, the values T(x1, . . . , xn) which is defined by

0

T
i=1

xi = 1,
n

T
i=1

xi = T
( n−1

T
i=1

xi, xn

)
= T(x1, . . . , xn).

Specially, we have TL(x1, . . . , xn) = max
(

n∑
i=1

xi − (n − 1), 0
)

and TM(x1, . . . , xn) = min(x1, . . . , xn).

We can extend T to a countable infinitary operation taking for any sequence (xn)n∈N from [0, 1] the values
∞

T
i=1

xi = lim
n→∞

n

T
i=1

xi. (1)

The limit on the right side of (1) exists since the sequence
( n

T
i=1

xi

)
n∈N

is non-increasing and bounded from

below.
In the fixed point theory it is of interest to investigate the classes of t-norms T and sequences (xn)n∈N

from the interval [0, 1] such that lim
n→∞

xn = 1, and

lim
n→∞

∞

T
i=n

xi = lim
n→∞

∞

T
i=1

xn+i = 1.

In the classical case T = TP we have
(
TP

)n

i=1
=

n∏
i=1

xi and for every sequence (xn)n∈N from the interval [0, 1]

with
∞∑

i=1
(1 − xn) < ∞ it follows that

lim
n→∞

(
TP

)∞
i=n

= lim
n→∞

∞∏
i=n

xi = 1.

The equivalence
∞∑

i=1

(1 − xi) < ∞ ⇔ lim
n→∞

∞

T
i=n

xi = 1

holds also for T > TL.
In the paper [4] the condition

lim
n→∞

∞

T
i=n

xi = 1

is investigated for some classes of t-norms T and sequences (xi)i∈N from [0, 1].
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3. Fuzzy Metric Spaces

By [12] we have the following definition.

Definition 2 A fuzzy metric space in the sense of Kramosil and Michálek is a triple (X,M,T),where X is a nonempty
set, T is a t-norm and M is a fuzzy set on X2

× [0,∞[ satisfying the following conditions for all x, y, z ∈ X and s, t > 0

(FM-1) M(x, y, 0) = 0;

(FM-2) M(x, y, t) = 1, for all t > 0 if and only if x = y;

(FM-3) M(x, y, t) = M(y, x, t);

(FM-4) M(x, z, t + s) > T(M(x, y, t),M(y, z, s));

(FM-5) M(x, y, ·) : R+
→ [0, 1] is left continuous.

We additionally suppose that M(x, y, t) > 0 for t > 0.
A sequence (xn)n∈N in X is a Cauchy sequence if for every ε > 0 and λ ∈ ]0, 1[ there exists n0(ε, λ) ∈ N

such that M(xn, xm, ε) > 1 − λ, for every n,m > n0(ε, λ). A fuzzy metric space is complete if every Cauchy
sequence converges.

4. A Fixed Point Theorem in Fuzzy Metric Spaces

It is well known that the uniqueness of a fixed point of probabilistic q-contraction does not follow
immediately, as in the case of a Menger space, since limt→∞M(x, y, t) = 1 does not hold generally. One of
the solution of this problem is to assume that on (X,M,T) the following condition holds

M(x, y, t) ≡ C, for every t > 0 implies C = 1. (2)

In this paper we shall prove that a kind of the local uniqueness can be obtained without condition (2).
Let Fix( f ) denote the set of fixed points of a function f : X→ X.

Definition 3 Let (X,M,T) be a fuzzy metric space. A mapping f : X→ X is a probabilistic q-contraction (q ∈ ]0, 1[)
if

M( f p1, f p2, x) >M
(
p1, p2,

x
q

)
for every p1, p2 ∈ X and every x ∈ R+.

Theorem 4 Let (X,M,T) be a complete fuzzy metric space, T acontinuous t-norm at the point (1, 1), f : X → X a
probabilistic q-contraction and there exists x0 ∈ X such that

lim
n→∞

∞

T
i=n

M
(
x0, f x0,

1
qi

)
= 1. (3)

If x = limn→∞ f nx0 and
A = {y | y ∈ X, lim

t→∞
M(x0, y, t) = 1},

then A ∩ Fix( f ) = {x}.
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Proof. Condition (3) implies the existence of limn→∞ f nx0, as in the case of Menger spaces, and the continuity
of f implies that x ∈ Fix( f ), see [7].

Firstly, we shall prove that x ∈ A, i.e., that

lim
t→∞

M(x0, x, t) = 1. (4)

In order to prove (4) we shall prove that for every λ ∈ ]0, 1[ there exists t′ > 0 such that M(x0, x, t′) > 1 − λ.
Let n,m ∈N. Then

M
(
x0, f x0,

1
qn

)
= T

(
1,M

(
x0, f x0,

1
qn

))
= T

(
T
(
· · ·

(
T︸      ︷︷      ︸

(m)−times

(
T
(
1,M

(
x0, f x0,

1
qn

))
. . .

)

>
∞

T
i=n

M
(
x0, f x0,

1
qi

)
.

Therefore by (3) we obtain

lim
n→∞

M(x0, f x0,
1
qn ) = 1.

Since M(x0, f x0, ·) is nondecreasing we obtain that

lim
t→∞

M(x0, f x0, t) = 1. (5)

Since for every m ∈N and t > 0 we have

M
(

f mx0, f m+1x0, t
)
> M

(
f m−1x0, f mx0,

t
q

)
> · · ·

> M
(
x0, f x0,

t
qm

)
,

(5) implies that for every fixed m ∈Nwe obtain

lim
t→∞

M( f mx0, f m+1x0, t) = 1. (6)

Let n be an arbitrary but fixed natural number. Then for every t > 0 we have

M(x0, f nx0, t) > T
(
M

(
x0, f n−1x0,

t
2

)
,M

(
f n−1x0, f nx0,

t
2

))
> · · ·

> T
(
T
(
· · ·

(
T︸      ︷︷      ︸

(n−1)−times

(
M(x0, f x0,

t
2n−1

)
,M( f x0, f 2x0,

t
2n−1

))
, . . . ,M

(
f n−1x0, f nx0,

t
2

))
.

Since the t-norm T is continuous at the point (1, 1) then (6) implies that

lim
t→∞

M(x0, f nx0, t) = 1 (7)
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for a fixed n ∈N. Let λ ∈ ]0, 1[ , t > 0, and δ(λ) ∈ ]0, 1[ such that

T(1 − δ, 1 − δ) > 1 − λ.

Since limn→∞ f nx0 = x there exists n0(t, δ) ∈N such that

M
(
x, f n0 x0,

t
2

)
> 1 − δ.

By (7) we obtain that there exists t(δ) > 0 such that

M
(
x0, f n0 x0,

t(δ)
2

)
> 1 − δ.

Let t′ = max{t, t(δ)}. Then we obtain

M(x, x0, t′) > T
(
M

(
x, f n0 x0,

t
2

)
,M

(
f n0 x0, x0,

t(δ)
2

))
> T(1 − δ, 1 − δ)

> 1 − λ.

Therefore x ∈ A ∩ Fix( f ).
If y ∈ A ∩ Fix f then y = f y and limt→∞M(x0, y, t) = 1. Then

M(x, y, t) = M( f x, f y, t)

> M
(
x, y,

t
q

)
. . .

> M
(
x, y,

t
qn

)
> T

(
M

(
x, y,

t
2qn

)
,M

(
x, y,

t
2qn

))
.

Therefore

M(x, y, t) > T
(

lim
n→∞

M
(
x, y,

t
2qn

)
, lim

n→∞
M

(
x, y,

t
2qn

))
= T(1, 1) = 1.

Hence x = y and so A ∩ Fix( f ) = {x}.

Remark 5 For a class of ϕ-probabilistic contraction and t-norm of H-type Fang [2] proved a similar result (Theorem
4.1) about the local uniqueness of the fixed point in fuzzy metric spaces.
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