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Abstract. The aim of this article is to study common fixed point theorems in generalized metric spaces
and obtain sufficient conditions for the existence of C-class function on Khan type common fixed points of
a pair of mappings satisfying generalized contraction involving rational expressions. Also, some examples
are obtained to support the obtained result. Also obtained results further generalize, extend and unify
already existing results in literature.
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1. Introduction and Preliminaries

The Banach contraction principle [12] is very popular tool in solving existence problems in many
branches of mathematical analysis. This famous theorem is stated as follows.

Theorem 1.1. [12]. Let (X, d) be a complete metric space and T be a mapping of X into itself satisfying:

d(Tx,Ty) ≤ λd(x, y), ∀ x, y ∈ X, (1)

where λ ∈ (0, 1). Then T has a unique fixed point x∗ ∈ X.

There are a large number of generalizations of the Banach contraction principle (see [15], [11], [10], [16]
and others) in literature. Some generalizations of the notion of a metric space have been proposed by some
authors, such as, rectangular metric spaces, semi metric spaces, pseudo metric spaces, probabilistic metric
spaces, fuzzy metric spaces, quasi metric spaces, quasi semi metric spaces, D−metric spaces, and cone
metric spaces (see [1, 2, 5–7, 13, 18–20]).

First of all, we introduce some notations and definitions that will be used later. While, fixed points
results dealing with general contractive conditions with rational expressions were appeared. One of the
well-known results in this direction were established by Khan in [4]. Fisher in [3] revised Khan’s result as
follows:
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Definition 1.2. [2] Let X be a nonempty set. Suppose that the mapping d : X × X → R+
∪ {0} be a mapping such

that for all x, y ∈ X and for all distinct points u, v ∈ X, which are different from x and y, satisfies

G1 d(x, y) = 0 if and only if x = y,

G2 d(x, y) = d(y, x) for all x, y ∈ X,

G3 d(x, z) ≤ d(x,u) + d(u, v) + d(v, z), for all x, y, z ∈ X.
Then d is called generalized metric and the pair (X, d) is called generalized metric space (or shortly
GMS).

The concepts of convergence, Cauchy sequence, completeness and continuity on a GMS are defined
below.

Definition 1.3. [2] Let {xn} be a sequence in a GMS, (X, d);

i) Sequence {xn} converges to some x, if d(xn, x)→ 0 as n→∞.

ii) sequence {xn} is Cauchy, if for every ε > 0 there exists positive integer N(ε) such that d(xn, xm) < ε for all
n > m > N(ε).

iii) A GMS (X, d) is called complete if every GMS Cauchy sequence in X is GMS convergent.

iv) A mapping T : X→ X is continuous if for any sequence {xn} in X such that

d(xn, x)→ 0 as n→∞,

we have

d(Txn,Tx)→ 0 as n→∞.

Lemma 1.4. ([9]) Let (X, d) be a generalized metric space and {xn} be a Cauchy sequence in X such that xm , xn
whenever m , n. Then {xn} can converge to at most one point.

Lemma 1.5. ([9]) Let (X, d) be a generalized metric space and {xn} be a sequence in X with distinct elements (xn , xm
for n , m). Suppose that d(xn, xn+1) and d(xn, xn+2) tends to 0 as n → ∞ and {xn} is not a Cauchy sequence. Then
there exist ε > 0 and two sequences {mk} and {nk} of positive integers such that nk > mk > k and the following four
sequences

d(xmk , xnk ), d(xmk , xnk+1 ), d(xmk−1 , xnk ), d(xmk−1 , xnk+1 ) (2)

tends to ε as k→∞.

Theorem 1.6. [17]Let (X, d) be a complete GMS and suppose that T : X→ X be a self-mapping such that

d(Tx,Ty) ≤
{
γmax{d(x, y), d(x,Tx)d(x,Ty)+d(y,Ty)d(y,Tx)

max{d(x,Ty),d(Tx,y)} } if max{d(x,Ty), d(Tx, y)} , 0,
0 otherwise max{d(x,Ty), d(Tx, y)} = 0,

for all x, y ∈ X and x , y, and for γ ∈ (0, 1) Then T has a unique fixed point x∗ ∈ X. Moreover, for all x ∈ X, the
sequence {Tnx} converges to x∗.

Proposition 1.7. ([10]) Suppose that {xn} is a Cauchy sequence in a GMS (X, d) with limn→∞ d(xn,u) = 0, where
u ∈ X. Then limn→∞ d(xn, z) = d(u, z) for all z ∈ X.

In 2014, A.H.Ansari [8] introduced the concept of a C-class functions which covers a large class of
contractive conditions.



A. H. Ansari et al. / Filomat 31:11 (2017), 3483–3494 3485

Definition 1.8. [8] A continuous function F : [0,∞)2
→ R is called C-class function if for any s, t ∈ [0,∞), the

following conditions hold:

c1 F(s, t) ≤ s;

c2 F(s, t) = s implies that either s = 0 or t = 0.

An extra condition on F that f (0, 0) = 0 could be imposed in some cases if required. The letter C will
denote the class of all C- functions.

Example 1.9. [8] The following examples shows that the class C is nonempty:

1. F(s, t) = s − t.
2. F(s, t) = ms, for some m ∈ (0, 1).
3. f (s, t) = s

(1+t)r for some r ∈ (0,∞).
4. f (s, t) = log(t + as)/(1 + t), for some a > 1.

Let Φu denote the class of the functions ϕ : [0,∞)→ [0,∞) which satisfy the following conditions:

a) ϕ is continuous ;

b) ϕ(t) > 0, t > 0 and ϕ(0) ≥ 0 .

Definition 1.10. ([11])A function ψ : [0,∞) → [0,∞) is called an altering distance function if the following
properties are satisfied:

i) ψ is non-decreasing and continuous,

ii) ψ (t) = 0 if and only if t = 0.

Let us suppose that Ψ denote the class of the altering distance functions.

Definition 1.11. A tripled (ψ,ϕ,F) whereψ ∈ Ψ, ϕ ∈ Φu and F ∈ C is said to be a monotone if for any x, y ∈ [0,∞) ,

x 6 y =⇒ F(ψ(x), ϕ(x)) 6 F(ψ(y), ϕ(y)).

An example is provided to show that the class of monotone triplet (ψ,ϕ,F) is nonempty.

Example 1.12. Let us consider a C − class function F(s, t) = s − t, φ(x) =
√

x and

ψ(x) =


√

x if 0 ≤ x ≤ 1,
x2, if x > 1,

then (ψ,φ,F) is monotone.

Now, we are going to show that the triplet (ψ,ϕ,F) is not monotone for every ψ,ϕ and F;

Example 1.13. Let us suppose that F(s, t) = s − t, φ(x) = x2 and

ψ(x) =


√

x if 0 ≤ x ≤ 1,
x2, if x > 1,

then it can be easily verify that (ψ,φ,F) is not monotone.



A. H. Ansari et al. / Filomat 31:11 (2017), 3483–3494 3486

2. Main Results

Theorem 2.1. Let (X, d) be a complete GMS and suppose that T : X→ X be a self-mapping such that

ψ(d(Tx,Ty)) ≤
{

F(ψ(m(x, y)), ϕ(m(x, y))) if max{d(x,Ty), d(Tx, y)} , 0,
0 otherwise max{d(x,Ty), d(Tx, y)} = 0, (3)

for all x, y ∈ X and x , y, where F ∈ C, ψ ∈ Ψ, ϕ ∈ Φu such that (ψ,φ,F) is monotone and

m(x, y) = max{d(x, y),
d(x,Tx)d(x,Ty) + d(y,Ty)d(y,Tx)

max{d(x,Ty), d(Tx, y)}
}.

Then T has a unique fixed point x∗ ∈ X. Moreover, for all x ∈ X, the sequence {Tnx} converges to x∗.

Proof. Let us suppose that x0 ∈ X, construct a sequence {xn} as xn+1 = Txn = Tnx0, for all n ∈ N. If xn = xn+1
for some n ∈ N0 = N ∪ {0}, then x∗ = xn is a fixed point of T and we are done. If not, then assume that
xn , xn+1 for each n ∈N ∪ {0}. We shall divide the proof into two cases:

Case 2.2. 1: Assume that, if

max{d(xn,Txm), d(Txn, xm)} , 0,

for all m ∈N and n ∈N0. Then from (3), we have

ψ(d(xn, xn+1)) = ψ(d(Txn−1,Txn))

≤ F(ψ(max{d(xn−1, xn),
d(xn−1,Txn−1)d(xn−1,Txn) + d(xn,Txn)d(xn,Txn−1)

max{d(xn−1,Txn), d(Txn−1, xn)}
}),

ϕ(max{d(xn−1, xn),
d(xn−1,Txn−1)d(xn−1,Txn) + d(xn,Txn)d(xn,Txn−1)

max{d(xn−1,Txn), d(Txn−1, xn)}
}))

= F(ψ(max{d(xn−1, xn),
d(xn−1, xn)d(xn−1, xn+1) + d(xn, xn+1)d(xn, xn)

max{d(xn−1, xn+1), d(xn, xn)}
}),

ϕ(max{d(xn−1, xn),
d(xn−1, xn)d(xn−1, xn+1) + d(xn, xn+1)d(xn, xn)

max{d(xn−1, xn+1), d(xn, xn)}
}))

= F(ψ(d(xn−1, xn)), ϕ(d(xn−1, xn))) ≤ ψ(d(xn−1, xn)),

implies

ψ(d(xn, xn+1)) ≤ ψ(d(xn−1, xn)). (4)

Since ψ is nondecreasing, so from (4), implies that

d(xn, xn+1) ≤ d(xn−1, xn),

for each n ∈ N. Thus, we conclude that the sequence {d(xn, xn+1)} is nonnegative and nonincreasing. As a
result, there exists r ≥ 0 such that limn→∞ d(xn, xn+1) = r. We claim that r = 0. On contrary, suppose that
r > 0. Then, from (4), we have

ψ(r) ≤ F(ψ(r), ϕ(r)),

which yields that either ψ(r) = 0 or ϕ(r) = 0. We have

r = lim
n→∞

d(xn, xn+1) = 0. (5)
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Analogously, we can prove that limn→∞ d(xn, xn+2) = 0, by substituting x = xn−1 and y = xn+1 in (3), also note
that ac+bd

max{a,b} ≤ c + d , hence

ψ(d(xn, xn+2)) = ψ(d(Txn−1,Txn+1))

≤ F(ψ(max{d(xn−1, xn+1),
d(xn−1,Txn−1)d(xn−1,Txn+1) + d(xn+1,Txn+1)d(xn+1,Txn−1)

max{d(xn−1,Txn+1), d(Txn−1, xn+1)}
}),

ϕ(max{d(xn−1, xn+1),
d(xn−1,Txn−1)d(xn−1,Txn+1) + d(xn+1,Txn+1)d(xn+1,Txn−1)

max{d(xn−1,Txn+1), d(Txn−1, xn+1)}
}))

= F(ψ(max{d(xn−1, xn+1),
d(xn−1, xn)d(xn−1, xn+2) + d(xn+1, xn+2)d(xn+1, xn)

max{d(xn−1, xn+2), d(xn, xn+1)}
}),

ϕ(max{d(xn−1, xn+1),
d(xn−1, xn)d(xn−1, xn+2) + d(xn+1, xn+2)d(xn+1, xn)

max{d(xn−1, xn+2), d(xn, xn+1)}
}))

≤ F(ψ(max{d(xn−1, xn+1), d(xn−1, xn) + d(xn+1, xn+2)),
ϕ(max{d(xn−1, xn+1), d(xn−1, xn) + d(xn+1, xn+2)))

= F(ψ(max{d(xn−1, xn) + d(xn, xn+2) + d(xn+1, xn+2), d(xn−1, xn) + d(xn+1, xn+2)}),
ϕ(max{d(xn−1, xn) + d(xn, xn+2) + d(xn+1, xn+2), d(xn−1, xn) + d(xn+1, xn+2)}))

= F(ψ(d(xn−1, xn) + d(xn, xn+1) + d(xn+1, xn+2)),
ϕ(d(xn−1, xn) + d(xn, xn+1) + d(xn+1, xn+2))).

Apply limit n→∞ on both sides of above inequality and use (5), we deduce that

ψ( lim
n→∞

d(xn, xn+2)) ≤ F(ψ( lim
n→∞

d(xn, xn+2)), ϕ( lim
n→∞

d(xn, xn+2))),

which yields either ψ(limn→∞ d(xn, xn+2)) = 0 or ϕ(limn→∞ d(xn, xn+2)) = 0. Which further implies that

lim
n→∞

d(xn−1, xn+1) = 0 = lim
n→∞

d(xn, xn+2). (6)

Now to prove that {xn} is a Cauchy sequence in (X, d). On contrary, suppose that {xn} is not a Cauchy
sequence. Then, by Lemma 1.5 there exists an ε > 0 and two subsequences

{
xm(k)

}
and

{
xn(k)

}
of {xn} with

m(k) > n(k) > k, such that d(xm(k), xn(k)) ≥ ε, d(xm(k), x2n(k)−2) < ε and

lim
k→∞

d
(
xn(k), xm(k)

)
= lim

k→∞
d
(
xn(k)+1, xm(k)

)
= (7)

lim
k→∞

d
(
xn(k), xm(k)−1

)
= lim

k→∞
d
(
xn(k)+1, xm(k)+1

)
= ε.

By substituting x = xn(k) and y = xm(k) in (3)

ψ(d(xn(k)+1, xm(k)+1)) = ψ(d(Txn(k),Txm(k)))

≤ F(ψ(max{d(xn(k), xm(k)),
d(xn(k),Txn(k))d(xn(k),Txm(k)) + d(xm(k),Txm(k))d(xm(k),Txn(k))

max{d(xn(k),Txm(k)), d(Txn(k), xm(k))}
}),

ϕ(max{d(xn(k), xm(k)),
d(xn(k),Txn(k))d(xn(k),Txm(k)) + d(xm(k),Txm(k))d(xm(k),Txn(k))

max{d(xn(k),Txm(k)), d(Txn(k), xm(k))}
}))

= F(ψ(max{d(xn(k), xm(k)),
d(xn(k), xn(k)+1)d(xn(k), xm(k)+1) + d(xm(k), xm(k)+1)d(xm(k), xn(k)+1)

max{d(xn(k), xm(k)+1), d(xn(k)+1, xm(k))}
}),

ϕ(max{d(xn(k), xm(k)),
d(xn(k), xn(k)+1)d(xn(k), xm(k)+1) + d(xm(k), xm(k)+1)d(xm(k), xn(k)+1)

max{d(xn(k), xm(k)+1), d(xn(k)+1, xm(k))}
}))

≤ F(ψ(max{d(xn(k), xm(k)), d(xn(k), xn(k)+1) + d(xm(k), xm(k)+1)),
ϕ(max{d(xn(k), xm(k)), d(xn(k), xn(k)+1) + d(xm(k), xm(k)+1))
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By applying limit k→∞ and use (5), (7) we have

ψ(ε) ≤ F(ψ(ε), ϕ(ε)),

which implies that either ψ(ε) = 0 or ϕ (ε) = 0, a contradiction. So, we conclude that {xn} is a Cauchy
sequence. Since (X, d) is a complete generalized metric space, so there exist x∗ ∈ X such that

lim
n→∞

d(xn, x∗) = 0. (8)

Also

d(x∗,Tx∗) ≤ d(x∗, xn+1) + d(xn+1, xn) + d(xn,Tx∗)
≤ d(x∗, xn+1) + d(xn+1, xn) + d(xn+1, xn) + d(x∗, xn+1) + d(x∗,Tx∗)
= 2d(x∗, xn+1) + 2d(xn+1, xn) + d(x∗,Tx∗).

It follows from (5) and (8), that is

lim
n→∞

d(xn,Tx∗) = d(x∗,Tx∗). (9)

On the other hand, from (3), we have

ψ(d(xn+1,Tx∗)) = ψ(d(Txn,Tx∗))

≤ F(ψ(max{d(xn, x∗),
d(xn,Txn)d(xn,Tx∗) + d(x∗,Tx∗)d(x∗,Txn)

max{d(xn,Tx∗), d(Txn, x∗)}
}),

ϕ(max{d(xn, x∗),
d(xn,Txn)d(xn,Tx∗) + d(x∗,Tx∗)d(x∗,Txn)

max{d(xn,Tx∗), d(Txn, x∗)}
}))

= F(ψ(max{d(xn, x∗),
d(xn, xn+1)d(xn,Tx∗) + d(x∗,Tx∗)d(x∗, xn+1)

max{d(xn,Tx∗), d(xn+1, x∗)}
}),

ϕ(max{d(xn, x∗),
d(xn, xn+1)d(xn,Tx∗) + d(x∗,Tx∗)d(x∗, xn+1)

max{d(xn,Tx∗), d(xn+1, x∗)}
})). (10)

So from (5), (8), (9) and taking limits as n→ ∞ on both side of (10), we have d(x∗,Tx∗) = 0. Now, we have
to show that T has a unique fixed point. For this, assume that y∗ is another fixed point of T in X such that
x∗ , y∗.

So from (3), we get

ψ(d(y∗, x∗)) = ψ(d(Ty∗,Tx∗))

≤ F(ψ(max{d(y∗, x∗),
d(y∗,Ty∗)d(y∗,Tx∗) + d(x∗,Tx∗)d(x∗,Ty∗)

max{d(y∗,Tx∗), d(Ty∗, x∗)}
}),

ϕ(max{d(y∗, x∗),
d(y∗,Ty∗)d(y∗,Tx∗) + d(x∗,Tx∗)d(x∗,Ty∗)

max{d(y∗,Tx∗), d(Ty∗, x∗)}
}))

= F(ψ(max{d(y∗, x∗),
d(y∗, y∗)d(y∗, x∗) + d(x∗, x∗)d(x∗, y∗)

max{d(y∗, x∗), d(y∗, x∗)}
}),

ϕ(max{d(y∗, x∗),
d(y∗, y∗)d(y∗, x∗) + d(x∗, x∗)d(x∗, y∗)

max{d(y∗, x∗), d(y∗, x∗)}
}))

= F(ψ(d(y∗, x∗), ϕ(d(y∗, x∗))),

which further implies that either ψ(d(y∗, x∗)) = 0 or ϕ
(
d(y∗, x∗)

)
= 0, therefore d(y∗, x∗) = 0 implies

y∗ = x∗, a contradiction, hence fixed point of T is unique.

To support the result we have the following example as:
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Example 2.3. Let X = {α, β, γ, δ} and define d : X × X→ [0,∞) as follows:

d(α, α) = d(β, β) = d(γ, γ) = d(δ, δ) = 0,
d(α, δ) = d(δ, α) = d(γ, δ) = d(δ, γ) = d(β, γ) = d(γ, β) = 2,
d(α, γ) = d(γ, α) = d(β, δ) = d(β, δ) = 4.1,
d(α, β) = d(β, α) = 2.1.

Then it can be easily checked that (X, d) is a generalized metric space. Note that

4.1 = d(α, γ) ≤ d(α, β) + d(β, γ) = 4

is not true. Hence (X, d) defined above is generalized metric space but is not a metric space. Also, define T : X → X
such that

T(x) =

β if x , γ,
α if x = γ,

and

F(s, t) = s − t, for all s, t ≥ 0.

Case 2.4. Also, we define ψ ∈ Ψ and ϕ ∈ Φ by

ψ(t) =
t
4

and ϕ(t) =
t

10
for all t ∈ [0,∞).

First have to show that (ψ,ϕ,F) is monotone, let x, y ∈ X and x ≤ y (suppose) then

F(ψ(x), ϕ(x)) ≤ F(ψ(y), ϕ(y))

must hold true. Since

F(ψ(x), ϕ(x)) = ψ(x) − ϕ(x)

=
x
4
−

x
10

=
3x
20

Since x ≤ y implies 3x
20 ≤

3y
20 , so above equation further implies that

F(ψ(x), ϕ(x)) =
3x
20
≤

3y
20

=
y
4
−

y
10

= ψ(y) − ϕ(y)
= F(ψ(y), ϕ(y))

Hence F(ψ(x), ϕ(x)) ≤ F(ψ(y), ϕ(y)), and the triplet (ψ,ϕ,F) is monotone. Next we have some auxaliry calcuations
for all x , y:

m(β, α) = m(α, β) = max{d(α, β),
d(α,Tα)d(α,Tβ) + d(β,Tβ)d(β,Tα)

max{d(α,Tβ), d(β,Tα)}

= max{d(α, β),
d(α, β)d(α, β) + d(β, β)d(β, β)

max{d(α, β), d(β, β)}
}

= max{2.1,
(2.1)(2.1) + 0
max{2.1, 0}

} = max{2.1, 2.1}

= 2.1
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m(γ, α) = m(α, γ) = max{d(α, γ),
d(α,Tα)d(α,Tγ) + d(γ,Tγ)d(γ,Tα)

max{d(α,Tγ), d(γ,Tα)}

= max{d(α, γ),
d(α, β)d(α, α) + d(γ, α)d(γ, β)

max{d(α, α), d(γ, β)}
}

= max{4.1,
0 + (4.1)(2)
max{0, 2}

} = max{4.1, 4.1}

= 4.1

m(δ, α) = m(α, δ) = max{d(α, δ),
d(α,Tα)d(α,Tδ) + d(δ,Tδ)d(δ,Tα)

max{d(α,Tδ), d(δ,Tα)}

= max{d(α, δ),
d(α, β)d(α, β) + d(δ, β)d(δ, β)

max{d(α, β), d(δ, β)}
}

= max{2,
(2.1)(2.1) + (4.1)(4.1)

max{2.1, 4.1}
} = max{2,

1061
205
}

=
1061
205

m(β, γ) = m(γ, β) = max{d(γ, β),
d(γ,Tγ)d(γ,Tβ) + d(β,Tβ)d(β,Tγ)

max{d(γ,Tβ), d(β,Tγ)}

= max{d(γ, β),
d(γ, α)d(γ, β) + d(β, β)d(β, α)

max{d(γ, β), d(β, α)}
}

= max{2,
(4.1)(2) + 0
max{2, 2.1}

} = max{2,
82
21
}

=
82
21

m(β, δ) = m(δ, β) = max{d(δ, β),
d(δ,Tδ)d(δ,Tβ) + d(β,Tβ)d(β,Tδ)

max{d(δ,Tβ), d(β,Tδ)}

= max{d(δ, β),
d(δ, β)d(δ, β) + d(β, β)d(β, β)

max{d(δ, β), d(β, β)}
}

= max{4.1,
(4.1)(4.1) + 0
max{4.1, 0}

} = max{4.1, 4.1}

= 4.1

m(δ, γ) = m(γ, δ) = max{d(γ, δ),
d(γ,Tγ)d(γ,Tδ) + d(δ,Tδ)d(δ,Tγ)

max{d(γ,Tδ), d(δ,Tγ)}

= max{d(γ, δ),
d(γ, α)d(γ, β) + d(δ, β)d(δ, α)

max{d(γ, β), d(δ, α)}
}

= max{2,
(4.1)(2) + (4.1)(2)

max{2, 2}
} = max{2, 8.2}

= 8.2

Let x, y ∈ X with x , y and consider the following possible cases:
Case 1. If x, y ∈ {α, β, δ}. Then d(Tx,Ty) = d(β, β) = 0 and hence 3 trivially holds.

Case 2. If x = γ, y ∈ {α, β, δ}. Then d(Tx,Ty) = d(α, β) = 2.1.
For fixed x = γ and y = α,β and δ, then

F(ψ(m(x, y)), ϕ(m(x, y))) − ψ(d(Tx,Ty)) > 0,
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then inequality 3 holds true for each y ∈ {α, β, δ} and for x = γ.
Case 3. If x ∈ {α, β, δ}, y = γ. Since d is symmetric, therefore 3 holds by case 2.
So, T is contraction type map. Hence all the condition of Theorem 2.1 are satisfied and consequently β is the

unique fixed point of mapping T.

If we assume F(s, t) = ks in theorem 2.1, then the results follows:

Corollary 2.5. Let (X, d) be a complete GMS and let T : X→ X be a self-mapping such that

ψ(d(Tx,Ty)) ≤
{

kψ(m(x, y)) if max{d(x,Ty), d(Tx, y)} , 0;
0 otherwise max{d(x,Ty), d(Tx, y)} = 0;

for all x, y ∈ X, and x , y , where ψ ∈ Ψ, k ∈ (0, 1) and

m(x, y) = max{d(x, y),
d(x,Tx)d(x,Ty) + d(y,Ty)d(y,Tx)

max{d(x,Ty), d(Tx, y)}
}

Then T has a unique fixed point x∗ ∈ X. Moreover, for all x ∈ X, the sequence {Tnx} converges to x∗

If we have F(s, t) = ks , ψ(t) = t in theorem 2.1 or ψ(t) = t in Corollary2.5, then we have the following
corollary:

Corollary 2.6. Let (X, d) be a complete GMS and let T : X→ X be a self-mapping such that

d(Tx,Ty) ≤
{

km(x, y) if max{d(x,Ty), d(Tx, y)} , 0;
0 otherwise max{d(x,Ty), d(Tx, y)} = 0;

for all x, y ∈ X, and x , y , where k ∈ (0, 1),

m(x, y) = max{d(x, y),
d(x,Tx)d(x,Ty) + d(y,Ty)d(y,Tx)

max{d(x,Ty), d(Tx, y)}
}

Then T has a unique fixed point x∗ ∈ X. Moreover, for all x ∈ X, the sequence {Tnx} converges to x∗

Theorem 2.7. Let (X, d) be a complete GMS and suppose that T : X→ X be a self-mapping such that

ψ(d(Tx,Ty)) ≤
{

F(ψ(M(x, y)), ϕ(M(x, y))) if max{d(x,Ty), d(Tx, y)} , 0;
0 otherwise max{d(x,Ty), d(Tx, y)} = 0;

for all x, y ∈ X and x , y , where F ∈ C, ψ ∈ Ψ, ϕ ∈ Φu such that (ψ,φ,F) is monotone and

M(x, y) =
1

δ + ζ
[δd(x, y) + ζ

d(x,Tx)d(x,Ty) + d(y,Ty)d(y,Tx)
max{d(x,Ty), d(Tx, y)}

]

for some δ, ζ ∈ [0,∞) such that δ + ζ > 0. Then T has a unique fixed point x∗ ∈ X. Moreover, for all x ∈ X, the
sequence {Tnx} converges to x∗.

Proof. Since

1
δ + ζ

[δd(x, y) + ζ
d(x,Tx)d(x,Ty) + d(y,Ty)d(y,Tx)

max{d(x,Ty), d(Tx, y)}
]

≤ max{d(x, y),
d(x,Tx)d(x,Ty) + d(y,Ty)d(y,Tx)

max{d(x,Ty), d(Tx, y)}
}.

So from theorem 2.1, the proof is complete.
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By taking F(s, t) = ks in theorem 2.7, we can obtained the following result.

Corollary 2.8. Let (X, d) be a complete GMS and let T : X→ X be a self-mapping such that

ψ(d(Tx,Ty)) ≤
{

kψ(M(x, y)) if max{d(x,Ty), d(Tx, y)} , 0;
0 otherwise max{d(x,Ty), d(Tx, y)} = 0;

for all x, y ∈ X, and x , y , where ψ ∈ Ψ, and

M(x, y) =
1

δ + ζ
[δd(x, y) + ζ

d(x,Tx)d(x,Ty) + d(y,Ty)d(y,Tx)
max{d(x,Ty), d(Tx, y)}

]

for some δ, ζ ∈ [0,∞) such tha δ + ζ > 0 .Then T has a unique fixed point x∗ ∈ X. Moreover, for all x ∈ X, the
sequence {Tnx} converges to x∗

Let us consider F(s, t) = ks, k = δ + ζ < 1, δ, ζ ∈ [0, 1), ψ(t) = t in theorem 2.7, then the result follows:

Corollary 2.9. Let (X, d) be a complete GMS and let T : X→ X be a self-mapping such that

d(Tx,Ty)) ≤
{

N(x, y) if max{d(x,Ty), d(Tx, y)} , 0;
0 otherwise max{d(x,Ty), d(Tx, y)} = 0;

for all x, y ∈ X, and x , y , where ψ ∈ Ψ, and

N(x, y) = δd(x, y) + ζ
d(x,Tx)d(x,Ty) + d(y,Ty)d(y,Tx)

max{d(x,Ty), d(Tx, y)}

for some δ, ζ ∈ [0, 1) such tha δ + ζ < 1 .Then T has a unique fixed point x∗ ∈ X. Moreover, for all x ∈ X, the
sequence {Tnx} converges to x∗,

Example 2.10. Let X = A∪B, where A = { 12 ,
1
3 ,

1
4 ,

1
5 } and B = [ 3

4 , 1]. Define the function d : X×X→ R as follows:

d
(1

2
,

1
3

)
=

1
2
,

d
(1

2
,

1
4

)
= d

(1
3
,

1
4

)
=

1
5
,

d
(1

4
,

1
5

)
= d

(1
2
,

1
5

)
= d

(1
3
,

1
5

)
=

1
6
,

d(x, x) = 0 for all x ∈ A,
d(x, y) = d(y, x) for all x, y ∈ A,

d(x, y) =
∣∣∣x − y

∣∣∣ (x ∈ A, y ∈ B) or (x ∈ B, y ∈ A) or (x, y ∈ B).

It is easy to check that (X, d) is generalized metric space. Let T : X→ X be a mapping defined by

T(x) =

 4x+1
x+4 if x ∈ B,
3
4 otherwise.

Put ψ(t) = t, ϕ(t) = 1
1000 and F(s, t) = s

1+t . So
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M(x, y) = max{d(x, y), d(x,Tx), d(y,Ty)} =
9

11
x, y ∈ X

d(x,Tx) ≤ max{
1
4
,

5
12
,

1
2
,

11
20
} =

11
20

x ∈ A

d(y,Ty) =

∣∣∣∣∣∣ y2
− 1

y + 4

∣∣∣∣∣∣ ≤ 1
4

y ∈ B

d(x, y) ≤
1
2

x, y ∈ A

d(x, y) ≤
1
4

x, y ∈ B

d(Tx,Ty) =

∣∣∣∣∣34 − 4y + 1
y + 4

∣∣∣∣∣ ≤ 4
5

(x ∈ A, y ∈ B) and similar (x ∈ B, y ∈ A)

d(Tx,Ty) =

∣∣∣∣∣4x + 1
x + 4

−
4y + 1
y + 4

∣∣∣∣∣ ≤ 3
19

x, y ∈ B

Note that

max{
4x + 1
x + 4

: x ∈ B} = {4 −
15

x + 4
: x ∈ B} = 1,

and

min{
4x + 1
x + 4

: x ∈ B} = {4 −
15

x + 4
: x ∈ B} =

16
19
.

The condition (3) is clear, for example, when x, y ∈ B we have

ψ(d(Tx,Ty)) =
3
19
≤ F(ψ(

16
19

), ϕ(
16
19

)) =
16
19

1 + 1
100

.

Now theorem 2.7 guarantees that 1 ∈ B is unique fixed point of T.
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