Filomat 31:11 (2017), 3495–3499 https://doi.org/10.2298/FIL1711495P

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Orbital Continuity and Fixed Points

Abhijit Pant^a, R. P. Pant^a

^aDepartment of Mathematics, D. S. B. Campus, Kumaun University, Nainital-263002 (INDIA)

Abstract. The aim of the present paper is to show the significance of the concept of orbital continuity introduced by Ciric. We prove that orbital continuity of a pair of *R*-weak commuting self-mappings of type A_f or of type A_g of a complete metric space is equivalent to fixed point property under Jungck type contraction. We also establish a situation in which orbital continuity is a necessary and sufficient condition for the existence of a common fixed point of a pair of mappings yet the mappings are necessarily discontinuous at the fixed point.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction

In 1971 Ciric [1] introduced the notion of orbital continuity. If *f* is a self-mapping of a metric space (*X*, *d*) then the set $O(x, f) = \{f^n x : n = 0, 1, 2, ...\}$ is called the orbit of *f* at *x* and *f* is called orbitally continuous if $u = \lim_i f^{m_i} x$ implies $fu = \lim_i ff^{m_i} x$. Every continuous self-mapping is orbitally continuous but not conversely [1]. Shastri et al [11] defined the notion of orbital continuity for a pair of mappings. If *f* and *g* are self-mappings of a metric space (*X*, *d*) and if $\{x_n\}$ is a sequence in *X* such that $fx_n = gx_{n+1}, n = 0, 1, 2, ...$, then the set $O(x_0, f, g) = \{fx_n : n = 0, 1, 2, ...\}$ is called the (f, g)-orbit at x_0 and g (or *f*) is called (f, g)-orbitally continuous if $\lim_n fx_n = u$ implies $\lim_n gfx_n = gu$ (or $\lim_n fx_n = u$ implies $\lim_n ffx_n = fu$). We now give some relevant definitions.

Definition 1.1 ([4]). Two self-mappings f and g of a metric space (X, d) are called R- weakly commuting if there exists some real number R > 0 such that $d(fgx, gfx) \le Rd(fx, gx)$ for all x in X. The mappings f and g are called point-wise R-weakly commuting on X if given x in X there exists R > 0 such that $d(fgx, gfx) \le Rd(fx, gx)$ (see [5]). The notion of point-wise R-weak commuting implies commutativity at coincidence points and is, therefore, equivalent to the notion of weak compatibility.

Definition 1.2 ([3]). Two self-mappings f and g of a metric space (X, d) are called compatible if $\lim_n d(fgx_n, gfx_n) = 0$ whenever $\{x_n\}$ is a sequence in X such that $\lim_n fx_n = \lim_n gx_n = t$ for some t in X.

Definition 1.3 ([9]). Two self-mappings f and g of a metric space (X, d) are called R- weakly commuting of type A_g if there exists some real number R > 0 such that $d(ffx, gfx) \le Rd(fx, gx)$ for all x in X. Similarly, the self-mappings f and g are called R- weakly commuting of type A_f if there exists some real number R > 0 such that $d(fgx, qgx) \le Rd(fx, qx)$ for all x in X.

²⁰¹⁰ Mathematics Subject Classification. Primary 47H10, Secondary 54H25

Keywords. Coincidence point, fixed point, orbital continuity, quasi R-commuting, semi R-commuting

Received: 31 December 2016; Accepted: 29 January 2017

Communicated by Vladimir Rakočević

Email addresses: abhijitntl92@gmail.com (Abhijit Pant), pant_rp@rediffmail.com, rppant@kunainital.ac.in (R. P. Pant)

Definition 1.4 ([10]). Two self-mappings f and g of a metric space (X, d) are called g-compatible or f-compatible according as $\lim_{n} d(fx_n, gfx_n) = 0$ or $\lim_{n} d(fgx_n, ggx_n) = 0$ whenever $\{x_n\}$ is a sequence in X such that $\lim_{n} fx_n = \lim_{n} gx_n = t$ for some t in X.

Definition 1.5 ([8]). Two self-mappings f and g of a metric space (X, d) are called compatible of type (P) if $\lim_n d(f fx_n, ggx_n) = 0$ whenever $\{x_n\}$ is a sequence in X such that $\lim_n fx_n = \lim_n gx_n = t$ for some t in X.

In a recent work [7], the authors introduced the following definitions:

Definition 1.6. Two self-mappings f and g of a metric space (X, d) are called quasi R-commuting provided there exists a positive real number R such that given x in X we have $d(ffx, gfx) \leq Rd(fx, gx)$ or $d(fgx, gfx) \leq Rd(fx, gx)$ or $d(fgx, ggx) \leq Rd(fx, ggx) \leq Rd(fx, ggx) \leq Rd(fx, ggx)$.

Definition 1.7. Two self-mappings f and g of a metric space (X, d) are called quasi α - compatible provided every sequence $\{x_n\}$ in X satisfying $\lim_n fx_n = \lim_n gx_n = t$ for some t in X splits up in at most four sub-sequences such that any of these sub-sequences, say $\{x_{n_i}\}$, satisfies at least one of the four conditions $\lim_{n_i} d(fx_{n_i}, gfx_{n_i}) = 0, \lim_{n_i} d(fgx_{n_i}, gfx_{n_i}) = 0, \lim_{n_i} d(fgx_{n_i}, ggx_{n_i}) = 0, and \lim_{n_i} d(ffx_{n_i}, ggx_{n_i}) = 0.$

We now introduce the following notions:

Definition 1.8. Two self-mappings f and g of a metric space (X, d) will be called semi R-commuting provided there exists R > 0 such that $d(ffx, gfx) \le Rd(fx, gx)$ or $d(fgx, gfx) \le Rd(fx, gx)$ or $d(fgx, ggx) \le Rd(fx, gx) \le Rd(fx, gx)$ or $d(ffx, ggx) \le Rd(fx, gx)$ is true for the set $\{x \in X : fx, gx \in f(X) \cap g(X)\}$.

Definition 1.9. Two self-mappings f and g of a metric space (X, d) will be called semi α -compatible provided every sequence $\{x_n\}$ in X satisfying $fx_n, gx_n \in f(X) \cap g(X)$ and $\lim_n fx_n = \lim_n gx_n = t$ for some t in X satisfies $\lim_n d(fgx_n, gfx_n) = 0$ or $\lim_n d(fgx_n, gfx_n) = 0$ or $\lim_n d(fgx_n, ggx_n) = 0$.

It is easy to see that semi *R*-commuting implies semi α -compatible. It is also obvious that mappings which are compatible or *f*-compatible or *g*-compatible or compatible of type (*P*) are semi α -compatible.

Example 1.10. Let $X = [0, \infty)$ and d be the usual metric. Define $f, g : X \to X$ by

$$fx = x/2$$
 for each x in X, $gx = x$ for each x in X.

Then f and g are commuting, R-weakly commuting, R-weakly commuting of type A_f , R-weakly commuting of type A_q as well as semi R-commuting. It can also be verified that f and g are semi α -compatible.

Example 1.11. Let X = [2, 20] equipped with the Euclidean metric. Define $f, g : X \to X$ by

 $\begin{array}{rcl} f2 &=& 2, \\ g2 &=& 2, \\ qx &=& 12 \ if \ 2 < x \le 5, \\ gx &=& (x+1)/2 \ if \ x > 5. \end{array}$

Then $d(fgx, gfx) \le d(fx, gx)$ for all x satisfying $fx, gx \in f(X) \cap g(X)$, that is, f and g are semi R-commuting with R = 1. However, f and g are not quasi R-commuting. For example if we take $x_n = 5+1/n$ then $\lim_n fx_n = \lim_n gx_n = 3$, $\lim_n d(fx_n, gx_n) = 0$, $d(ffx_n, gfx_n) = 9$, $d(fgx_n, gfx_n) = 9$, $d(fgx_n, ggx_n) = 9$. Thus f and g fail to be quasi R-commuting. These computations also show that f and g are neither compatible, nor f-compatible, nor compatible of type (P). The notion of semi R-commuting is thus a proper generalization of these four conditions.

Example 1.12. Let X = [2, 11] equipped with the Euclidean metric. Define $f, g: X \to X$ by

$$fx = (6-x)/2 \text{ if } x \le 2, \qquad fx = 3 \text{ if } 2 < x \le 5, \qquad fx = (11-x)/3 \text{ if } x > 5,$$

$$qx = x \text{ if } x \le 2, \qquad qx = 10 \text{ if } 2 < x \le 5, \qquad qx = (x+1)/3 \text{ if } x > 5.$$

Then for each $x \le 2$ satisfying $fx, gx \in f(X) \cap g(X)$ we have $d(fgx, ggx) \le d(fx, gx)$. On the other hand, for each x satisfying $5 < x \le 8$ and $fx, gx \in f(X) \cap g(X)$ we have $d(ffx, gfx) \le d(fx, gx)$. This shows that f and g are not semi R-commuting. However, f and g can be shown to be quasi R-commuting.

Examples 1.11 and 1.12 demonstrate that quasi *R*-commuting and semi *R*-commuting are independent notions. However, the notion of semi *R*-commuting is much easier to employ when both the conditions hold.

2. Main Results

Theorem 2.1. Let f and g be R-weakly commuting self-mappings of type A_f or of type A_g of a complete metric space (X, d) such that $f(X) \subseteq g(X)$ and

(*i*)
$$d(fx, fy) \le hd(gx, gy), 0 \le h < 1$$
.

Then f and g have a common fixed point if and only if f and g are (f, g)-orbitally continuous.

Proof. Let x_0 be any point in *X*. Define sequences $\{y_n\}$ and $\{x_n\}$ in *X* such that

$$y_n = fx_n = gx_{n+1}, \ n = 0, 1, 2, \dots$$
(1)

This can be done since $f(X) \subseteq g(X)$. Now using a standard argument and by virtue of (i) it follows easily that $\{y_n\}$ is a Cauchy sequence. Since *X* is complete, there exists a point *t* in *X* such that $y_n \to t$ as $n \to \infty$. Also, $\lim_{x \to t} f(x_n) = t$ and $\lim_{x \to t} g(x_n) = t$. Let us assume that *f* and *g* are orbitally continuous. Then

$$\lim_{n} fgx_n = \lim_{n} ffx_n = ft, and$$
(2)

$$\lim_{n} ggx_n = \lim_{n} gfx_n = gt.$$
(3)

Suppose *f* and *g* are *R*-weakly commuting of type A_g . Then $d(ffx_n, gfx_n) \le Rd(fx_n, gx_n)$. This, in view of (2) and (3) implies that ft = gt. Now if $t \ne ft$, using (i) we get

$$d(fx_n, ft) \le hd(gx_n, gt).$$

On letting $n \to \infty$ this yields, $d(t, ft) \le hd(t, gt) = hd(t, ft)$, that is, t = ft = gt. Hence *t* is a common fixed point of *f* and *g*. The proof is similar if *f* and *g* are *R*-weakly commuting of type A_f . Moreover, condition (i) implies uniqueness of the common fixed point.

Conversely let us assume that the mappings f and g satisfy (i) and possess a common fixed point, say z. Then z = fz = gz. Also, the (f, g)-orbit of any point x_0 defined by (1) converges to z, that is, $\lim_n fx_n = \lim_n gx_n = z$. Suppose that f and g are R-weakly commuting of type A_g . Then we have $d(ffx_n, gfx_n) \le Rd(fx_n, gx_n)$. This implies

$$\lim_{n} d(ffx_n, gfx_n) = 0. \tag{4}$$

Now by virtue of (i) we have

$$\begin{aligned} d(ffx_n, fz) &\leq hd(gfx_n, gz) \\ &\leq h\{d(gfx_n, ffx_n) + d(ffx_n, gz)\} = h\{d(gfx_n, ffx_n) + d(ffx_n, fz)\} \end{aligned}$$

This yields $(1 - h)d(ffx_n, fz) \le hd(ffx_n, gfx_n)$ which, in view of (4), yields $\lim_n ffx_n = fz = z$. Hence *f* is (f, g)-orbitally continuous. Also $\lim_n d(ffx_n, gfx_n) = 0$ implies $\lim_n gfx_n = fz = gz$, that is, g is (f, g)-orbitally continuous. Similarly, *f* and *g* are orbitally continuous if *f* and *g* are assumed *R*- weakly commuting of type A_f . This establishes the theorem. \Box

The following examples illustrate the above theorem.

Example 2.2. Let $X = [0, \infty)$ and d be the usual metric. Define $f, g : X \to X$ by

$$fx = x/2$$
 for each x in X, $gx = x$ for each x in X.

Then it is easily seen that f and g satisfy all the conditions of the above theorem and have a unique common fixed point x = 0.

Example 2.3. Let X = [2, 20] and d be the usual metric. Define $f, g : X \to X$ by

$$\begin{array}{rcl} fx &=& 2 \ if \ x = 2 \ or \ > 5, & fx = 6 \ if \ 2 < x \le 5, \\ g2 &=& 2, & gx = 12 \ if \ 2 < x \le 5, & gx = (x+1)/3 \ if \ x > 5. \end{array}$$

Then the mappings f and g are R-weakly commuting mappings of type A_g , $f(X) \subseteq g(X)$, $d(fx, fy) \leq (4/5)d(gx, gy)$, and x = 2 is the unique common fixed point of f and g. It is also easy to see that f and g are (f, g)-orbitally continuous.

Remark 2.4. The mappings f and g in Example 2.3 are non-compatible. If we consider the sequence $\{x_n = 5 + 1/n : n \ge 1\}$ then $\lim_n fx_n = 2$, $\lim_n gx_n = 2$, $\lim_n fgx_n = 6$ and $\lim_n gfx_n = 2$. Hence f and g are non-compatible. In view of non-compatibility of f and g and following the proof of Theorem 2 in Pant [6] it follows that both f and g are discontinuous at the common fixed point x = 2, though both the mappings are orbitally continuous. The contraction condition (i) pertaining to a pair of mappings employed in the above theorem was introduced by Jungck [2] and is often referred to as Jungck contraction condition.

Theorem 2.5. Let *f* and *g* be orbitally continuous self-mappings of a complete metric space (X, d) such that $f(X) \subseteq q(X)$ and

(*ii*) $d(fx, fy) \le hd(gx, gy), 0 \le h < 1$.

If f and g are semi R-commuting then f and g have a coincidence point which is their unique common fixed point.

Proof. Let x_0 be any point in X. Define sequences $\{y_n\}$ and $\{x_n\}$ in X as in (1) above. Then $\{y_n\}$ is a Cauchy sequence and there exists a point t in X such that $y_n \to t$ as $n \to \infty$ and $\lim_n fx_n = \lim_n gx_n = t$. Orbital continuity of f and g implies that (2) and (3) hold. Since the sequence $\{x_n\}$ satisfies $fx_n, gx_n \in f(X) \cap g(X)$ and $\lim_n fx_n = \lim_n gx_n = t$, semi *R*-commutativity of f and g implies that $d(ffx_n, gfx_n) \leq Rd(fx_n, gx_n)$ or $d(fgx_n, gfx_n) \leq Rd(fx_n, gx_n)$, or $d(fgx_n, ggx_n) \leq Rd(fx_n, gx_n)$ or $d(ffx_n, gfx_n) \leq Rd(fx_n, gx_n)$. Suppose $d(ffx_n, gfx_n) \leq Rd(fx_n, gx_n)$ is satisfied. This implies (4), that is, $\lim_n d(ffx_n, gfx_n) = 0$. This, in view of (2) and (3) implies that ft = gt. Thus, semi *R*-commutativity in combination with orbital continuity implies that t is a coincidence point of f and g. It may be observed here that weak compatibility will not imply ft = gt since weak compatibility does not imply (4). Now if $t \neq ft$, using (ii) we get

$$d(fx_n, ft) \le hd(gx_n, gt).$$

This yields t = ft = gt. Hence t is a common fixed point of f and g. The proof follows on similar lines when $d(fgx_n, gfx_n) \le Rd(fx_n, gx_n)$ or $d(fgx_n, ggx_n) \le Rd(fx_n, gx_n)$ or $d(ffx_n, gx_n) \le Rd(fx_n, gx_n)$. Uniqueness of the coincidence point or the common fixed point is a consequence of (ii). \Box

We now give an example to illustrate the above theorem:

Example 2.6. Let X = [0, 11] and d be the Euclidean metric. Define $f, g : X \to X$ by

$$fx = (6-x)/2 \text{ if } x \le 2, \qquad fx = 3 \text{ if } 2 < x \le 5, \qquad fx = 2 \text{ if } x > 5,$$

$$gx = x \text{ if } x \le 2, \qquad gx = 10 \text{ if } 2 < x \le 5, \qquad gx = (x+1)/3 \text{ if } x > 5.$$

Then f and g satisfy all the conditions of Theorem 2.5 and have a unique common fixed point x = 2. It can be seen in this example that $d(ffx, gfx) \le d(fx, gx)$ whenever $fx, gx \in f(X) \cap g(X)$. Therefore the mappings f and g are semi R-commuting with R = 1. It can also be verified that f and g satisfy the contractive condition $d(fx, fy) \le \frac{1}{2}d(gx, gy)$ for all x, y in X. Moreover, it is also easy to see that f and g are orbitally continuous mappings. It may be seen in this example that f and g are neither compatible, nor f-compatible, nor g-compatible nor compatible of type (P).

Remark 2.7. It is worth noting that in Theorem 2.5 we cannot replace semi R-commuting by pointwise R-weak commuting (equivalently weak compatibility). This can be seen from the following example.

Example 2.8. Let X = [2, 20] and d be the Euclidean metric. Define $f, g : X \to X$ by

$$fx = 6 if 2 \le x \le 5, \qquad fx = (x+7)/6 if x > 5, qx = 15 if 2 \le x \le 5, \qquad qx = (x+1)/3 if x > 5$$

Then f and q satisfy the following conditions but do not have a common fixed point or a coincidence point:

- a. $f(X) = (2, 9/2] \cup \{6\}, g(X) = (2, 7] \cup \{15\}, f(X) \subseteq g(X),$
- b. f and q satisfy the contraction condition $d(fx, fy) \leq \frac{1}{2}d(qx, qy)$,
- c. f and g are pointwise R-weakly commuting and vacuously weak compatible,
- *d. f* and *g* are orbitally continuous. To see this, let $\{fx_n = gx_{n+1}, n = 0, 1, 2, ...\}$ be the (f, g)-orbit of some point x_0 in *X*. Then $x_n \to 5$ with $x_n > 5$, $\lim_n fx_n = \lim_n gx_n = 2$, $\lim_n ffx_n = \lim_n fgx_n = 6 = f2$, $\lim_n gfx_n = \lim_n ggx_n = 15 = g2$. Therefore *f* and *g* are orbitally continuous mappings.

It may be observed that the mappings f and g in the above example are not semi R-commuting. This example and Theorem 2.5 very well demonstrate that while semi R-commuting condition is useful in establishing the existence of coincidence points and also implies commutativity at coincidence points, weak compatibility or pointwise R-weak commutativity may not ensure the existence of coincidence points. Proceeding on similar lines as in Theorem 2.5 we can prove the following:

Theorem 2.9. Let f and g be (f, g)-orbitally continuous self-mappings of a complete metric space (X, d) such that $f(X) \subseteq g(X)$ and

(iii) $d(fx, fy) \le hd(gx, gy), 0 \le h < 1$.

If f and g are semi α -compatible then f and g have a coincidence point which is their unique common fixed point.

Acknowledgement: The first author is thankful to Professor M. C. Joshi, Kumaun University, Nainital, for his valuable suggestions and encouragement during the course of these investigations.

References

- [1] Lj. B. Ciric, On contraction type mappings, Math. Balkanica 1(1971) 52-57.
- [2] G. Jungck, Commuting mappings and common fixed points, Amer. Math. Monthly 83(1976) 261-263.
- [3] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9(1986) 771-779.
- [4] R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188(1994) 436-440.
- [5] R. P. Pant, Common fixed points of contractive maps, J. Math. Anal. Appl. 226(1998) 251-258.
- [6] R. P. Pant, Discontinuity and fixed points, J. Math. Anal. Appl. 240 (1999) 284-289.
- [7] R.P. Pant and Abhijit Pant, Fixed point theorems under new commuting conditions, J. International Acad. Phys. Sci. 17-1(2013) 1-6.
- [8] H.K. Pathak, Y.J. Cho, S.M. Kang and B.S. Lee, Fixed point theorems for compatible mappings of type (P) and applications to dynamic programming, Le Matematiche Vol. L(1995) Fasc. I, 15-33.
- [9] H.K. Pathak, Y.J. Cho and S.M. Kang, Remarks on R-weakly commuting mappings and common fixed point theorems, Bull. Korean Math. Soc. 34 (1997) 247-257.
- [10] H.K. Pathak and M.S. Khan, A comparison of various types of compatible maps and common fixed points, Indian J. Pure Appl. Math. 28- 4(1997) 477-485.
- [11] K.P.R. Shastri, S.V.R. Naidu, I.H.N. Rao and K.P.R. Rao, Common fixed points for asymptotically regular mappings, Indian J. Pure Appl. Math. 15-8(1984) 849-854.