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Abstract. We consider the class of all analytic and locally univalent functions f of the form f (z) =
z +

∑
∞

n=2 a2n−1z2n−1, |z| < 1, satisfying the condition

Re
(
1 +

z f ′′(z)
f ′(z)

)
> −

1
2
.

We show that every section s2n−1(z) = z +
∑n

k=2 a2k−1z2k−1, of f , is convex in the disk |z| <
√

2/3. We also prove
that the radius

√
2/3 is best possible, i.e. the number

√
2/3 cannot be replaced by a larger one.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction and Main Result

LetA denote the class of all normalized analytic functions f in the open unit diskD := {z ∈ C : |z| < 1},
i.e. f has the Taylor series expansion

f (z) = z +

∞∑
n=2

anzn. (1)

The Taylor polynomial sn(z) = sn( f )(z) of f inA, defined by,

sn(z) = z +

n∑
k=2

akzk

is called the n-th section/partial sum of f . Denote byS, the class of univalent functions inA. A function f ∈ A
is said to be locally univalent at a point z0 ∈ D ⊂ C if it is univalent in some neighborhood of z0; equivalently
f ′(z0) , 0. A function f ∈ A is called convex if f (D) is a convex domain. The set of all convex functions are
denoted by C. The functions f ∈ C are characterized by the well-known fact

Re
(
1 +

z f ′′(z)
f ′(z)

)
> 0, |z| < 1.

2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C55
Keywords. Analytic, univalent, convex, and close-to-convex functions, odd functions, radius of convexity, partial sums or sections
Received: 30 September 2016; Accepted: 30 January 2017
Communicated by Miodrag Mateljević
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In this article, we mainly focus on a class, denoted by L, of all locally univalent odd functions f satisfying

Re
(
1 +

z f ′′(z)
f ′(z)

)
> −

1
2
, z ∈ D. (2)

Clearly, a function f ∈ L will have the Taylor series expansion f (z) = z +
∑
∞

n=2 a2n−1z2n−1. The function
f0(z) = z/

√

1 − z2 plays the role of an extremal function forL; see for instance [16, p. 68, Theorem 2.6i]. This
article is devoted to finding the largest disk |z| < r in which every section s2n−1(z) = z +

∑n
k=2 a2k−1z2k−1, of

f ∈ L, is convex; that is, s2n−1 satisfies

Re
(
1 +

zs′′2n−1(z)

s′2n−1(z)

)
> 0.

Our main objective in this article is to prove

Main Theorem. Every section of a function in L is convex in the disk |z| <
√

2/3. The radius
√

2/3 cannot be
replaced by a greater one.

This observation is also explained geometrically in Figure 1 by considering the third partial sum, s3,0, of the
extremal function f0. We next discuss some motivational background of our problem.
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Figure 1: The first figure shows convexity of the image domain s3,0(z) for |z| <
√

2/3 and the second figure shows non-convexity of the
image domain s3,0(z) for |z| < 2/3 =: r0 (r0 >

√
2/3).

Considering odd univalent functions and studying classical problems of univalent function theory
such as (successive) coefficient bounds, inverse functions, etc. are quite interesting and found throughout
the literature; see for instance [8, 12, 15, 35]. In fact, an application of the Cauchy-Schwarz inequality
shows that the conjecture of Robertson: 1 + |c3|

2 + |c5|
2 + · · · + |c2n−1|

2
≤ n, n ≥ 2, for each odd function

f (z) = z + c3z3 + c5z5 + · · · of S, stated in 1936 implies the well-known Bieberbach conjecture [25]; see also
[3]. In our knowledge, studying radius properties for sections of odd univalent functions are new (as we
do not find in the literature).

Note that a subclass denoted by F , of the class,K , of close-to-convex functions, consisting of all locally
univalent functions f ∈ A satisfying the condition (2) was considered in [22]. In this paper, we consider
functions from F that have odd Taylor coefficients. Note that the following inclusion relations hold:

L ( F ( K ( S.

The fact that functions in F are close-to-convex may be obtained as a consequence of the result due to
Kaplan (see [4, p. 48, Theorem 2.18]). In [22], Ponnusamy et. al. have shown that every section of a function
in the class F is convex in the disk |z| < 1/6 and the radius 1/6 is the best possible. They conjectured
that every section of functions in the family F is univalent and close-to-convex in the disk |z| < 1/3. This
conjecture has been recently settled by Bharanedhar and Ponnusamy in [1, Theorem 1].
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The problem of finding the radius of univalence of sections of f in S was first initiated by Szegö in
1928. According to the Szegö theorem [4, Section 8.2, p. 243-246], every section sn(z) of a function f ∈ S
is univalent in the disk |z| < 1/4; see [34] for the original paper. The radius 1/4 is best possible and can be
verified from the second partial sum of the Koebe function k(z) = z/(1− z)2. Determining the exact (largest)
radius of univalence rn of sn(z) ( f ∈ S) remains an open problem. However, many other related problems
on sections have been solved for various geometric subclasses of S, eg. the classes S∗, C and K of starlike,
convex and close-to-convex functions, respectively (see Duren [4, §8.2, p.241–246], [5, 26, 27, 32] and the
survey articles [6, 24]). In [13], MacGregor considered the class

R = { f ∈ A : Re f ′(z) > 0, z ∈ D}

and proved that the partial sums sn(z) of f ∈ R are univalent in |z| < 1/2, where the radius 1/2 is best
possible. On the other hand, in [30], Ram Singh obtained the best radius, r = 1/4, of convexity for sections
of functions in the class R. The reader can refer to [21] for related information. Radius of close-to-convexity
of sections of close-to-convex functions is obtained in [14].

By the argument principle, it is clear that the n-th section sn(z) of an arbitrary function in S is univalent
in each fixed compact subdiskDr := {z ∈ D : |z| ≤ r}(r < 1) ofD provided that n is sufficiently large. In this
way one can get univalent polynomials inS by setting pn(z) = 1

r sn(rz). Consequently, the set of all univalent
polynomials is dense in the topology of locally uniformly convergence in S. The radius of starlikeness of
the partial sums sn(z) of f ∈ S∗ was obtained by Robertson in [26]; (see also [31, Theorem 2]) in the following
form:

Theorem A. [26] If f ∈ S is either starlike, convex, typically-real, or convex in the direction of imaginary axis, then
there is an N such that, for n ≥ N, the partial sum sn(z) has the same property in Dr := {z ∈ D : |z| < r}, where
r ≥ 1 − 3(log n)/n.

However, Ruscheweyh in [29] proved a stronger result by showing that the partial sums sn(z) of f are indeed
starlike in D1/4 for functions f belonging not only to S but also to the closed convex hull of S. Robertson
[26] further showed that sections of the Koebe function k(z) are univalent in the disk |z| < 1 − 3n−1 log n for
n ≥ 5, and that the constant 3 cannot be replaced by a smaller constant. However, Bshouty and Hengartner
[2] pointed out that the Koebe function is not extremal for the radius of univalency of the partial sums of
f ∈ S. A well-known theorem by Ruscheweyh and Sheil-Small [28] on convolution allows us to conclude
immediately that if f belongs to C,S∗, orK , then its n-th section is respectively convex, starlike, or close-to-
convex in the disk |z| < 1 − 3n−1 log n, for n ≥ 5. Silverman in [31] proved that the radius of starlikeness for
sections of functions in the convex family C is (1/2n)1/n for all n. We suggest readers refer to [22, 27, 32, 34]
and recent articles [17–20] for further interest on this topic. It is worth recalling that radius properties of
harmonic sections have recently been studied in [7, 9–11, 23].

2. Preparatory Results

In this section we derive some useful results to prove our main theorem.

Lemma 2.1. If f (z) = z +
∑
∞

n=2 a2n−1z2n−1
∈ L, then the following estimates are obtained:

(a) |a2n−1| ≤
(2n−2)!

22n−2(n−1)!2 for n ≥ 2. The equality holds for

f0(z) =
z

√

1 − z2

or its rotation.

(b)
∣∣∣∣ z f ′′(z)

f ′(z)

∣∣∣∣ ≤ 3r2

1−r2 for |z| = r < 1. The inequality is sharp.
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(c) 1
(1+r2)3/2 ≤ | f ′(z)| ≤ 1

(1−r2)3/2 for |z| = r < 1. The inequality is sharp.

(d) If f (z) = s2n−1(z) + σ2n−1(z), with σ2n−1(z) =
∑
∞

k=n+1 a2k−1z2k−1, then for |z| = r < 1 we have

|σ′2n−1(z)| ≤ A(n, r) and |zσ′′2n−1(z)| ≤ B(n, r),

where

A(n, r) =

∞∑
k=n+1

(2k − 1)!
22k−2(k − 1)!2

r2k−2 and B(n, r) =

∞∑
k=n+1

(2k − 2)(2k − 1)!
22k−2(k − 1)!2

r2k−2.

The ratio test guarantees that both the series are convergent.

Proof. (a) Set

p(z) = 1 +
2
3

(
z f ′′(z)
f ′(z)

)
. (3)

Clearly, p(z) = 1 +
∑
∞

n=1 pnzn is analytic inD and Re p(z) > 0 there. So, by Carathéodory Lemma, we obtain
that |pn| ≤ 2 for all n ≥ 1. Putting the series expansions for f ′(z), f ′′(z) and p(z) in (3) we get

∞∑
n=2

(2n − 1)(2n − 2)a2n−1z2n−1 =
3
2

∞∑
n=2

n−1∑
k=1

p2k−1(2n − 2k − 1)a2n−2k−1

 z2n−2

+
3
2

∞∑
n=2

n−1∑
k=1

p2k(2n − 2k − 1)a2n−2k−1

 z2n−1.

Equating the coefficients of z2n−1 and z2n−2 on both sides, we obtain

n−1∑
k=1

p2k−1(2n − 2k − 1)a2n−2k−1 = 0

and

(2n − 1)(2n − 2)a2n−1 =
3
2

n−1∑
k=1

p2k(2n − 2k − 1)a2n−2k−1, for all n ≥ 2. (4)

Hence,

|a2n−1| ≤
3

(2n − 1)(2n − 2)

n−1∑
k=1

(2k − 1)|a2k−1|. (5)

For n = 2, we can easily see that |a3| ≤ 1/2, and for n = 3, we have

|a5| ≤
3
20

(1 + 3|a3|) ≤
3
8
.

Now, we can complete the proof by method of induction. Therefore, if we assume |a2k−1| ≤
(2k−2)!

22k−2(k−1)!2 for
k = 2, 3, . . . ,n − 1, then we deduce from (5) that

|a2n−1| ≤
3

(2n − 1)(2n − 2)

n−1∑
k=1

(2k − 1)!
22k−2(k − 1)!2

.
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Induction principle tells us to show that

|a2n−1| ≤
(2n − 2)!

22n−2(n − 1)!2
.

It suffices to show that
3

(2n − 1)(2n − 2)

n−1∑
k=1

(2k − 1)!
22k−2(k − 1)!2

=
(2n − 2)!

22n−2(n − 1)!2

or,
n−1∑
k=1

3(2k − 1)!
22k−2(k − 1)!2

=
(2n − 2)(2n − 1)!

22n−2(n − 1)!2
.

Again, we prove this by method of induction. It can easily be seen that for k = 1 it is true. Assume that it is
true for k = 2, 3, . . . ,n − 1, then we have to prove that

n∑
k=1

3(2k − 1)!
22k−2(k − 1)!2

=
(2n)(2n + 1)!

22n(n)!2
,

which is easy to see, since

n∑
k=1

3(2k − 1)!
22k−2(k − 1)!2

=
(2n − 2)(2n − 1)!

22n−2(n − 1)!2
+

3(2n − 1)!
22n−2(n − 1)!2

=
(2n)(2n + 1)!

22n(n)!2
.

Hence, the proof is complete. For equality, it can easily be seen that

f0(z) =
z

√

1 − z2
= z +

∞∑
n=2

(2n − 2)!
22n−2(n − 1)!2

z2n−1

belongs to L.
The image of the unit diskD under f0 is shown in Figure 2 which indicates that f0(D) is not convex.

- 2 -1 0 1 2

- 2

-1

0

1

2

Figure 2: The image domain f0(D), where f0(z) = z
√

1−z2
.
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(b) We see from the definition of L that

1 +
z f ′′(z)
f ′(z)

≺
1 + 2z2

1 − z2 , i.e.,
z f ′′(z)
f ′(z)

≺
3z2

1 − z2 =: h(z),

where ≺ denotes the usual subordination. The poof of (b) now follows easily.
(c) Since

z f ′′(z)
f ′(z)

≺ h(z),

it follows by the well-known subordination result due to Suffridge [33] that

f ′(z) ≺ exp
(∫ z

0

h(t)
t

dt
)

= exp
(
3
∫ z

0

t
1 − t2 dt

)
=

1
(1 − z2)3/2

.

Hence, the proof of (c) follows.
(d) By (a), we see that

|σ′2n−1(z)| ≤
∞∑

k=n+1

(2k − 1)|a2k−1|r2k−2
≤ A(n, r).

and

|zσ′′2n−1(z)| ≤
∞∑

k=n+1

(2k − 1)(2k − 2)|a2k−1|r2k−2
≤ B(n, r).

The proof of our lemma is complete.

3. Proof of the Main Theorem

For an arbitrary f (z) = z +
∑
∞

n=2 a2n−1z2n−1
∈ L, we first consider its third section s3(z) = z + a3z3 of f .

Simple computation shows

1 +
zs′′3 (z)
s′3(z)

= 1 +
6a3z2

1 + 3a3z2 .

By using Lemma 2.1(a), we have |a3| ≤ 1/2 and hence

Re
(
1 +

zs′′3 (z)
s′3(z)

)
≥ 1 −

6|a3||z|2

1 − 3|a3||z|2
≥ 1 −

3|z|2

1 − 3
2 |z|

2

which is positive for |z| <
√

2/3. Thus, s3(z) is convex in the disk |z| <
√

2/3. To show that the constant
√

2/3
is best possible, we consider the function f0(z) defined by

f0(z) =
z

√

1 − z2
.

We denote by s3,0(z), the third partial sum s3( f0)(z) of f0(z) so that s3,0(z) = z + (1/2)z3 and hence, we find

1 +
zs′′3,0(z)

s′3,0(z)
=

2 + 9z2

2 + 3z2 .

This shows that

Re

1 +
zs′′3,0(z)

s′3,0(z)

 = 0

when z2 = (−2/9) or (−2/3) i.e., when |z|2 = (2/9) or (2/3). Hence, the equality occurs.
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Next, let us consider the case n = 3. Our aim in this case is to show that

Re
(
1 +

zs′′5 (z)
s′5(z)

)
= Re

(
1 + 9a3z2 + 25a5z4

1 + 3a3z2 + 5a5z4

)
> 0

for |z| <
√

2/3. Since the real part Re [(1 + 9a3z2 + 25a5z4)/(1 + 3a3z2 + 5a5z4)] is harmonic in |z| ≤
√

2/3, it
suffices to check that

Re
(

1 + 9a3z2 + 25a5z4

1 + 3a3z2 + 5a5z4

)
> 0

for |z| =
√

2/3. Also we see that

Re
(

1 + 9a3z2 + 25a5z4

1 + 3a3z2 + 5a5z4

)
= 3 − Re

(
2 − 10a5z4

1 + 3a3z2 + 5a5z4

)
≥ 3 −

∣∣∣∣∣∣ 2 − 10a5z4

1 + 3a3z2 + 5a5z4

∣∣∣∣∣∣
and, so by considering a suitable rotation of f (z), the proof reduces to z =

√
2/3; this means that it is enough

to prove
3
2
>

∣∣∣∣∣ 81 − 20a5

81 + 54a3 + 20a5

∣∣∣∣∣ .
From (4), we have

a3 =
p2

4
and a5 =

( 3
40

) (3
4

p2
2 + p4

)
.

Since |p2| ≤ 2 and |p4| ≤ 2, it is convenient to rewrite the last two relations as

a3 =
α
2

and a5 =
3

40
(3α2 + 2β)

for some |α| ≤ 1 and |β| ≤ 1.
Substituting the values for a3 and a5, and applying the maximum principle in the last inequality, it

suffices to show the inequality

3
2

∣∣∣∣∣∣81 + 27α +
9α2

2
+ 3β

∣∣∣∣∣∣ >
∣∣∣∣∣∣81 −

9α2

2
− 3β

∣∣∣∣∣∣
for |α| = 1 = |β|. Finally, by the triangle inequality, the last inequality follows if we can show that

9

∣∣∣∣∣∣9 + 3α +
α2

2

∣∣∣∣∣∣ − 6

∣∣∣∣∣∣9 − α2

2

∣∣∣∣∣∣ > 5

which is easily seen to be equivalent to

9
∣∣∣∣9α + 3 +

α
2

∣∣∣∣ − 6
∣∣∣∣9α − α2 ∣∣∣∣ > 5

as |α| = 1. Write Re (α) = x. It remains to show that

T(x) := 9

√
18x2 + 57x +

325
4
− 6

√
361

4
− 18x2 > 5

for −1 ≤ x ≤ 1.
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Figure 3: Graph of T(x).

It suffices to show

9

√
18x2 + 57x +

325
4

> 5 + 6

√
361
4
− 18x2.

Squaring both sides we have

2106x2 + 4617x +
13229

4
> 60


√

361
4
− 18x2

 .
Again by squaring both sides we have(

2106x2 + 4617x +
13229

4

)2

> 3600
(361

4
− 18x2

)
.

After computing, it remains to show that φ(x) > 0, where

φ(x) = ax4 + bx3 + cx2 + dx + e

and the coefficients are

a = 4435236, b = 19446804, c = 35311626, d = 30539146.5, e = 10613002.5625.

Here we see that φiv(x) = 24a > 0. Thus the function φ′′′(x) is increasing in −1 ≤ x ≤ 1 and hence
φ′′′(x) ≥ φ′′′(−1) = 10235160 > 0. This implies φ′′(x) is increasing. Hence φ′′(x) ≥ φ′′(−1) = 7165260 > 0.
Consequently, φ′(x) is increasing and we have φ′(x) ≥ φ′(−1) = 515362.5 > 0. Finally we get, φ(x) is
increasing and hence we have φ(x) > φ(−1) = 373914.0625 > 0. This completes the proof for n = 3.

We next consider the general case n ≥ 4. It suffices to show that

Re
(
1 +

zs′′2n−1

s′2n−1

)
> 0 for |z| = r

with r =
√

2/3 for all n ≥ 4. From the maximum modulus principle, we shall then conclude that the last
inequality holds for all n ≥ 4

Re
(
1 +

zs′′2n−1

s′2n−1

)
> 0
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for |z| <
√

2/3. In other words, it remains to find the largest r so that the last inequality holds for all n ≥ 4.
By the same setting of f (z) as in Lemma 2.1(d), it follows easily that

1 +
zs′′2n−1

s′2n−1
= 1 +

z( f ′′(z) − σ′′2n−1(z))

f ′(z) − σ′2n−1(z)
= 1 +

z f ′′(z)
f ′(z)

+

z f ′′(z)
f ′(z) σ

′

2n−1(z) − zσ′′2n−1(z)

f ′(z) − σ′2n−1(z)

or,

Re
(
1 +

zs′′2n−1

s′2n−1

)
≥ 1 −

∣∣∣∣∣z f ′′(z)
f ′(z)

∣∣∣∣∣ −
∣∣∣∣ z f ′′(z)

f ′(z)

∣∣∣∣ |σ′2n−1(z)| + |zσ′′2n−1(z)|

| f ′(z)| − |σ′2n−1(z)|
.

Then by using Lemma 2.1, we obtain

Re
(
1 +

zs′′2n−1

s′2n−1

)
≥ 1 −

3r2

1 − r2 −

(
3r2

1−r2

)
A(n, r) + B(n, r)
1

(1+r2)(3/2) − A(n, r)
.

Thus, we conclude that

Re
(
1 +

zs′′2n−1

s′2n−1

)
> 0

provided

1 − 4r2

1 − r2 −
(1 + r2)3/2

1 − r2

(
3r2A(n, r) + (1 − r2)B(n, r)

1 − (1 + r2)3/2A(n, r)

)
> 0,

or, equivalently

(1 + r2)3/2

(
3r2A(n, r) + (1 − r2)B(n, r)

1 − (1 + r2)3/2A(n, r)

)
< 1 − 4r2.

We show that the above relation holds for all n ≥ 4 with r =
√

2/3. The choice r =
√

2/3 brings the last
inequality to the form (11

9

)3/2
 2

3 A(n,
√

2
3 ) + 7

9 B(n,
√

2
3 )

1 − ( 11
9 )3/2A(n,

√
2

3 )

 < 1
9
.

Set

C
(
n,
√

2
3

)
:= 1 −

(11
9

)3/2

A
(
n,
√

2
3

)
.

We shall prove that C
(
n,
√

2
3

)
> 0 for n ≥ 4 i.e.,

A
(
n,
√

2
3

)
<

27
(11)3/2

and

A
(
n,
√

2
3

)
+ B

(
n,
√

2
3

)
<

27
7 × (11)3/2

for n ≥ 4.

If the last inequality is proved, then automatically the previous one follows. Hence, it is enough to prove
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the last inequality. Now,

A(n, r) + B(n, r) =

∞∑
k=n+1

(2k − 1)(2k − 1)!
22k−2(k − 1)!2

(r2)k−1

≤

∞∑
k=5

(2k − 1)(2k − 1)!
22k−2(k − 1)!2

(r2)k−1

=

∞∑
k=1

(2k − 1)(2k − 1)!
22k−2(k − 1)!2

(r2)k−1
−

4∑
k=1

(2k − 1)(2k − 1)!
22k−2(k − 1)!2

(r2)k−1

=
1 + 2r2

(1 − r2)5/2
−

(
1 +

9
2

r2 +
75
8

r4 +
245
16

r6
)
.

Substituting the value r =
√

2/3, we obtain

A
(
n,
√

2
3

)
+ B

(
n,
√

2
3

)
≤ 0.076 · · · < 0.105 · · · =

27
7 × (11)3/2

.

This completes the proof of our main theorem. �
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