Radius of Convexity of Partial Sums of Odd Functions in the Close-to-Convex Family

Sarita Agrawal ${ }^{\text {a }}$, Swadesh Kumar Sahoo ${ }^{\text {a }}$
${ }^{a}$ Discipline of Mathematics, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India

Abstract

We consider the class of all analytic and locally univalent functions f of the form $f(z)=$ $z+\sum_{n=2}^{\infty} a_{2 n-1} z^{2 n-1},|z|<1$, satisfying the condition $$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>-\frac{1}{2}
$$

We show that every section $s_{2 n-1}(z)=z+\sum_{k=2}^{n} a_{2 k-1} z^{2 k-1}$, of f, is convex in the disk $|z|<\sqrt{2} / 3$. We also prove that the radius $\sqrt{2} / 3$ is best possible, i.e. the number $\sqrt{2} / 3$ cannot be replaced by a larger one.

To the memory of Professor Lj. Ćirić (1935-2016)

1. Introduction and Main Result

Let \mathcal{A} denote the class of all normalized analytic functions f in the open unit disk $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$, i.e. f has the Taylor series expansion

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

The Taylor polynomial $s_{n}(z)=s_{n}(f)(z)$ of f in \mathcal{A}, defined by,

$$
s_{n}(z)=z+\sum_{k=2}^{n} a_{k} z^{k}
$$

is called the n-th section/partial sum of f. Denote by \mathcal{S}, the class of u nivalent functions in \mathcal{A}. A function $f \in \mathcal{A}$ is said to be locally univalent at a point $z_{0} \in D \subset \mathbb{C}$ if it is univalent in some neighborhood of z_{0}; equivalently $f^{\prime}\left(z_{0}\right) \neq 0$. A function $f \in \mathcal{A}$ is called convex if $f(\mathbb{D})$ is a convex domain. The set of all convex functions are denoted by C. The functions $f \in C$ are characterized by the well-known fact

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, \quad|z|<1
$$

[^0]In this article, we mainly focus on a class, denoted by \mathcal{L}, of all locally univalent odd functions f satisfying

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>-\frac{1}{2}, \quad z \in \mathbb{D} \tag{2}
\end{equation*}
$$

Clearly, a function $f \in \mathcal{L}$ will have the Taylor series expansion $f(z)=z+\sum_{n=2}^{\infty} a_{2 n-1} z^{2 n-1}$. The function $f_{0}(z)=z / \sqrt{1-z^{2}}$ plays the role of an extremal function for \mathcal{L}; see for instance [16, p. 68, Theorem 2.6i]. This article is devoted to finding the largest disk $|z|<r$ in which every section $s_{2 n-1}(z)=z+\sum_{k=2}^{n} a_{2 k-1} z^{2 k-1}$, of $f \in \mathcal{L}$, is convex; that is, $s_{2 n-1}$ satisfies

$$
\operatorname{Re}\left(1+\frac{z s_{2 n-1}^{\prime \prime}(z)}{s_{2 n-1}^{\prime}(z)}\right)>0
$$

Our main objective in this article is to prove
Main Theorem. Every section of a function in \mathcal{L} is convex in the disk $|z|<\sqrt{2} / 3$. The radius $\sqrt{2} / 3$ cannot be replaced by a greater one.
This observation is also explained geometrically in Figure 1 by considering the third partial sum, $s_{3,0}$, of the extremal function f_{0}. We next discuss some motivational background of our problem.

Figure 1: The first figure shows convexity of the image domain $s_{3,0}(z)$ for $|z|<\sqrt{2} / 3$ and the second figure shows non-convexity of the image domain $s_{3,0}(z)$ for $|z|<2 / 3=: r_{0}\left(r_{0}>\sqrt{2} / 3\right)$.

Considering odd univalent functions and studying classical problems of univalent function theory such as (successive) coefficient bounds, inverse functions, etc. are quite interesting and found throughout the literature; see for instance [8, 12, 15, 35]. In fact, an application of the Cauchy-Schwarz inequality shows that the conjecture of Robertson: $1+\left|c_{3}\right|^{2}+\left|c_{5}\right|^{2}+\cdots+\left|c_{2 n-1}\right|^{2} \leq n, n \geq 2$, for each odd function $f(z)=z+c_{3} z^{3}+c_{5} z^{5}+\cdots$ of \mathcal{S}, stated in 1936 implies the well-known Bieberbach conjecture [25]; see also [3]. In our knowledge, studying radius properties for sections of odd univalent functions are new (as we do not find in the literature).

Note that a subclass denoted by \mathcal{F}, of the class, \mathcal{K}, of close-to-convex functions, consisting of all locally univalent functions $f \in \mathcal{A}$ satisfying the condition (2) was considered in [22]. In this paper, we consider functions from \mathcal{F} that have odd Taylor coefficients. Note that the following inclusion relations hold:

$$
\mathcal{L} \subsetneq \mathcal{F} \subsetneq \mathcal{K} \subsetneq \mathcal{S}
$$

The fact that functions in \mathcal{F} are close-to-convex may be obtained as a consequence of the result due to Kaplan (see [4, p. 48, Theorem 2.18]). In [22], Ponnusamy et. al. have shown that every section of a function in the class \mathcal{F} is convex in the disk $|z|<1 / 6$ and the radius $1 / 6$ is the best possible. They conjectured that every section of functions in the family \mathcal{F} is univalent and close-to-convex in the disk $|z|<1 / 3$. This conjecture has been recently settled by Bharanedhar and Ponnusamy in [1, Theorem 1].

The problem of finding the radius of univalence of sections of f in \mathcal{S} was first initiated by Szegö in 1928. According to the Szegö theorem [4, Section 8.2, p. 243-246], every section $s_{n}(z)$ of a function $f \in \mathcal{S}$ is univalent in the disk $|z|<1 / 4$; see [34] for the original paper. The radius $1 / 4$ is best possible and can be verified from the second partial sum of the Koebe function $k(z)=z /(1-z)^{2}$. Determining the exact (largest) radius of univalence r_{n} of $s_{n}(z)(f \in \mathcal{S})$ remains an open problem. However, many other related problems on sections have been solved for various geometric subclasses of \mathcal{S}, eg. the classes $\mathcal{S}^{*}, \mathcal{C}$ and \mathcal{K} of starlike, convex and close-to-convex functions, respectively (see Duren [4, §8.2, p.241-246], [5, 26, 27, 32] and the survey articles [6, 24]). In [13], MacGregor considered the class

$$
\mathcal{R}=\left\{f \in \mathcal{A}: \operatorname{Re} f^{\prime}(z)>0, z \in \mathbb{D}\right\}
$$

and proved that the partial sums $s_{n}(z)$ of $f \in \mathcal{R}$ are univalent in $|z|<1 / 2$, where the radius $1 / 2$ is best possible. On the other hand, in [30], Ram Singh obtained the best radius, $r=1 / 4$, of convexity for sections of functions in the class \mathcal{R}. The reader can refer to [21] for related information. Radius of close-to-convexity of sections of close-to-convex functions is obtained in [14].

By the argument principle, it is clear that the n-th section $s_{n}(z)$ of an arbitrary function in \mathcal{S} is univalent in each fixed compact subdisk $\overline{\mathbb{D}_{r}}:=\{z \in \mathbb{D}:|z| \leq r\}(r<1)$ of \mathbb{D} provided that n is sufficiently large. In this way one can get univalent polynomials in \mathcal{S} by setting $p_{n}(z)=\frac{1}{r} s_{n}(r z)$. Consequently, the set of all univalent polynomials is dense in the topology of locally uniformly convergence in \mathcal{S}. The radius of starlikeness of the partial sums $s_{n}(z)$ of $f \in \mathcal{S}^{*}$ was obtained by Robertson in [26]; (see also [31, Theorem 2]) in the following form:

Theorem A. [26] If $f \in \mathcal{S}$ is either starlike, convex, typically-real, or convex in the direction of imaginary axis, then there is an N such that, for $n \geq N$, the partial sum $s_{n}(z)$ has the same property in $\mathbb{D}_{r}:=\{z \in \mathbb{D}:|z|<r\}$, where $r \geq 1-3(\log n) / n$.
However, Ruscheweyh in [29] proved a stronger result by showing that the partial sums $s_{n}(z)$ of f are indeed starlike in $\mathbb{D}_{1 / 4}$ for functions f belonging not only to \mathcal{S} but also to the closed convex hull of \mathcal{S}. Robertson [26] further showed that sections of the Koebe function $k(z)$ are univalent in the disk $|z|<1-3 n^{-1} \log n$ for $n \geq 5$, and that the constant 3 cannot be replaced by a smaller constant. However, Bshouty and Hengartner [2] pointed out that the Koebe function is not extremal for the radius of univalency of the partial sums of $f \in \mathcal{S}$. A well-known theorem by Ruscheweyh and Sheil-Small [28] on convolution allows us to conclude immediately that if f belongs to $\mathcal{C}, \mathcal{S}^{*}$, or \mathcal{K}, then its n-th section is respectively convex, starlike, or close-toconvex in the disk $|z|<1-3 n^{-1} \log n$, for $n \geq 5$. Silverman in [31] proved that the radius of starlikeness for sections of functions in the convex family C is $(1 / 2 n)^{1 / n}$ for all n. We suggest readers refer to [22,27,32,34] and recent articles [17-20] for further interest on this topic. It is worth recalling that radius properties of harmonic sections have recently been studied in [7,9-11, 23].

2. Preparatory Results

In this section we derive some useful results to prove our main theorem.
Lemma 2.1. If $f(z)=z+\sum_{n=2}^{\infty} a_{2 n-1} z^{2 n-1} \in \mathcal{L}$, then the following estimates are obtained:
(a) $\left|a_{2 n-1}\right| \leq \frac{(2 n-2)!}{2^{2 n-2}(n-1)!}$ for $n \geq 2$. The equality holds for

$$
f_{0}(z)=\frac{z}{\sqrt{1-z^{2}}}
$$

or its rotation.
(b) $\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq \frac{3 r^{2}}{1-r^{2}}$ for $|z|=r<1$. The inequality is sharp.
(c) $\frac{1}{\left(1+r^{2}\right)^{3 / 2}} \leq\left|f^{\prime}(z)\right| \leq \frac{1}{\left(1-r^{2}\right)^{3 / 2}}$ for $|z|=r<1$. The inequality is sharp.
(d) If $f(z)=s_{2 n-1}(z)+\sigma_{2 n-1}(z)$, with $\sigma_{2 n-1}(z)=\sum_{k=n+1}^{\infty} a_{2 k-1} z^{2 k-1}$, then for $|z|=r<1$ we have

$$
\left|\sigma_{2 n-1}^{\prime}(z)\right| \leq A(n, r) \text { and }\left|z \sigma_{2 n-1}^{\prime \prime}(z)\right| \leq B(n, r)
$$

where

$$
A(n, r)=\sum_{k=n+1}^{\infty} \frac{(2 k-1)!}{2^{2 k-2}(k-1)!^{2}} r^{2 k-2} \text { and } B(n, r)=\sum_{k=n+1}^{\infty} \frac{(2 k-2)(2 k-1)!}{2^{2 k-2}(k-1)!^{2}} r^{2 k-2}
$$

The ratio test guarantees that both the series are convergent.
Proof. (a) Set

$$
\begin{equation*}
p(z)=1+\frac{2}{3}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \tag{3}
\end{equation*}
$$

Clearly, $p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}$ is analytic in \mathbb{D} and $\operatorname{Re} p(z)>0$ there. So, by Carathéodory Lemma, we obtain that $\left|p_{n}\right| \leq 2$ for all $n \geq 1$. Putting the series expansions for $f^{\prime}(z), f^{\prime \prime}(z)$ and $p(z)$ in (3) we get

$$
\begin{gathered}
\sum_{n=2}^{\infty}(2 n-1)(2 n-2) a_{2 n-1} z^{2 n-1}=\frac{3}{2} \sum_{n=2}^{\infty}\left(\sum_{k=1}^{n-1} p_{2 k-1}(2 n-2 k-1) a_{2 n-2 k-1}\right) z^{2 n-2} \\
+\frac{3}{2} \sum_{n=2}^{\infty}\left(\sum_{k=1}^{n-1} p_{2 k}(2 n-2 k-1) a_{2 n-2 k-1}\right) z^{2 n-1}
\end{gathered}
$$

Equating the coefficients of $z^{2 n-1}$ and $z^{2 n-2}$ on both sides, we obtain

$$
\sum_{k=1}^{n-1} p_{2 k-1}(2 n-2 k-1) a_{2 n-2 k-1}=0
$$

and

$$
\begin{equation*}
(2 n-1)(2 n-2) a_{2 n-1}=\frac{3}{2} \sum_{k=1}^{n-1} p_{2 k}(2 n-2 k-1) a_{2 n-2 k-1}, \quad \text { for all } n \geq 2 \tag{4}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\left|a_{2 n-1}\right| \leq \frac{3}{(2 n-1)(2 n-2)} \sum_{k=1}^{n-1}(2 k-1)\left|a_{2 k-1}\right| \tag{5}
\end{equation*}
$$

For $n=2$, we can easily see that $\left|a_{3}\right| \leq 1 / 2$, and for $n=3$, we have

$$
\left|a_{5}\right| \leq \frac{3}{20}\left(1+3\left|a_{3}\right|\right) \leq \frac{3}{8}
$$

Now, we can complete the proof by method of induction. Therefore, if we assume $\left|a_{2 k-1}\right| \leq \frac{(2 k-2)!}{2^{2 k-2}(k-1)!^{2}}$ for $k=2,3, \ldots, n-1$, then we deduce from (5) that

$$
\left|a_{2 n-1}\right| \leq \frac{3}{(2 n-1)(2 n-2)} \sum_{k=1}^{n-1} \frac{(2 k-1)!}{2^{2 k-2}(k-1)!^{2}}
$$

Induction principle tells us to show that

$$
\left|a_{2 n-1}\right| \leq \frac{(2 n-2)!}{2^{2 n-2}(n-1)!^{2}}
$$

It suffices to show that

$$
\frac{3}{(2 n-1)(2 n-2)} \sum_{k=1}^{n-1} \frac{(2 k-1)!}{2^{2 k-2}(k-1)!^{2}}=\frac{(2 n-2)!}{2^{2 n-2}(n-1)!^{2}}
$$

or,

$$
\sum_{k=1}^{n-1} \frac{3(2 k-1)!}{2^{2 k-2}(k-1)!^{2}}=\frac{(2 n-2)(2 n-1)!}{2^{2 n-2}(n-1)!^{2}}
$$

Again, we prove this by method of induction. It can easily be seen that for $k=1$ it is true. Assume that it is true for $k=2,3, \ldots, n-1$, then we have to prove that

$$
\sum_{k=1}^{n} \frac{3(2 k-1)!}{2^{2 k-2}(k-1)!^{2}}=\frac{(2 n)(2 n+1)!}{2^{2 n}(n)!^{2}}
$$

which is easy to see, since

$$
\sum_{k=1}^{n} \frac{3(2 k-1)!}{2^{2 k-2}(k-1)!^{2}}=\frac{(2 n-2)(2 n-1)!}{2^{2 n-2}(n-1)!^{2}}+\frac{3(2 n-1)!}{2^{2 n-2}(n-1)!^{2}}=\frac{(2 n)(2 n+1)!}{2^{2 n}(n)!^{2}}
$$

Hence, the proof is complete. For equality, it can easily be seen that

$$
f_{0}(z)=\frac{z}{\sqrt{1-z^{2}}}=z+\sum_{n=2}^{\infty} \frac{(2 n-2)!}{2^{2 n-2}(n-1)!^{2}} z^{2 n-1}
$$

belongs to \mathcal{L}.
The image of the unit disk \mathbb{D} under f_{0} is shown in Figure 2 which indicates that $f_{0}(\mathbb{D})$ is not convex.

Figure 2: The image domain $f_{0}(\mathbb{D})$, where $f_{0}(z)=\frac{z}{\sqrt{1-z^{2}}}$.
(b) We see from the definition of \mathcal{L} that

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}<\frac{1+2 z^{2}}{1-z^{2}}, \quad \text { i.e., } \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}<\frac{3 z^{2}}{1-z^{2}}=: h(z)
$$

where < denotes the usual subordination. The poof of (b) now follows easily.
(c) Since

$$
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}<h(z)
$$

it follows by the well-known subordination result due to Suffridge [33] that

$$
f^{\prime}(z)<\exp \left(\int_{0}^{z} \frac{h(t)}{t} \mathrm{~d} t\right)=\exp \left(3 \int_{0}^{z} \frac{t}{1-t^{2}} \mathrm{~d} t\right)=\frac{1}{\left(1-z^{2}\right)^{3 / 2}}
$$

Hence, the proof of (c) follows.
(d) By (a), we see that

$$
\left|\sigma_{2 n-1}^{\prime}(z)\right| \leq \sum_{k=n+1}^{\infty}(2 k-1)\left|a_{2 k-1}\right| r^{2 k-2} \leq A(n, r)
$$

and

$$
\left|z \sigma_{2 n-1}^{\prime \prime}(z)\right| \leq \sum_{k=n+1}^{\infty}(2 k-1)(2 k-2)\left|a_{2 k-1}\right| r^{2 k-2} \leq B(n, r)
$$

The proof of our lemma is complete.

3. Proof of the Main Theorem

For an arbitrary $f(z)=z+\sum_{n=2}^{\infty} a_{2 n-1} z^{2 n-1} \in \mathcal{L}$, we first consider its third section $s_{3}(z)=z+a_{3} z^{3}$ of f. Simple computation shows

$$
1+\frac{z s_{3}^{\prime \prime}(z)}{s_{3}^{\prime}(z)}=1+\frac{6 a_{3} z^{2}}{1+3 a_{3} z^{2}}
$$

By using Lemma 2.1(a), we have $\left|a_{3}\right| \leq 1 / 2$ and hence

$$
\operatorname{Re}\left(1+\frac{z s_{3}^{\prime \prime}(z)}{s_{3}^{\prime}(z)}\right) \geq 1-\frac{6\left|a_{3} \| z\right|^{2}}{1-3\left|a_{3}\right||z|^{2}} \geq 1-\frac{3|z|^{2}}{1-\frac{3}{2}|z|^{2}}
$$

which is positive for $|z|<\sqrt{2} / 3$. Thus, $s_{3}(z)$ is convex in the disk $|z|<\sqrt{2} / 3$. To show that the constant $\sqrt{2} / 3$ is best possible, we consider the function $f_{0}(z)$ defined by

$$
f_{0}(z)=\frac{z}{\sqrt{1-z^{2}}}
$$

We denote by $s_{3,0}(z)$, the third partial sum $s_{3}\left(f_{0}\right)(z)$ of $f_{0}(z)$ so that $s_{3,0}(z)=z+(1 / 2) z^{3}$ and hence, we find

$$
1+\frac{z s_{3,0}^{\prime \prime}(z)}{s_{3,0}^{\prime}(z)}=\frac{2+9 z^{2}}{2+3 z^{2}}
$$

This shows that

$$
\operatorname{Re}\left(1+\frac{z s_{3,0}^{\prime \prime}(z)}{s_{3,0}^{\prime}(z)}\right)=0
$$

when $z^{2}=(-2 / 9)$ or $(-2 / 3) \quad$ i.e., when $|z|^{2}=(2 / 9)$ or $(2 / 3)$. Hence, the equality occurs.

Next, let us consider the case $n=3$. Our aim in this case is to show that

$$
\operatorname{Re}\left(1+\frac{z s_{5}^{\prime \prime}(z)}{s_{5}^{\prime}(z)}\right)=\operatorname{Re}\left(\frac{1+9 a_{3} z^{2}+25 a_{5} z^{4}}{1+3 a_{3} z^{2}+5 a_{5} z^{4}}\right)>0
$$

for $|z|<\sqrt{2} / 3$. Since the real part $\operatorname{Re}\left[\left(1+9 a_{3} z^{2}+25 a_{5} z^{4}\right) /\left(1+3 a_{3} z^{2}+5 a_{5} z^{4}\right)\right]$ is harmonic in $|z| \leq \sqrt{2} / 3$, it suffices to check that

$$
\operatorname{Re}\left(\frac{1+9 a_{3} z^{2}+25 a_{5} z^{4}}{1+3 a_{3} z^{2}+5 a_{5} z^{4}}\right)>0
$$

for $|z|=\sqrt{2} / 3$. Also we see that

$$
\operatorname{Re}\left(\frac{1+9 a_{3} z^{2}+25 a_{5} z^{4}}{1+3 a_{3} z^{2}+5 a_{5} z^{4}}\right)=3-\operatorname{Re}\left(\frac{2-10 a_{5} z^{4}}{1+3 a_{3} z^{2}+5 a_{5} z^{4}}\right) \geq 3-\left|\frac{2-10 a_{5} z^{4}}{1+3 a_{3} z^{2}+5 a_{5} z^{4}}\right|
$$

and, so by considering a suitable rotation of $f(z)$, the proof reduces to $z=\sqrt{2} / 3$; this means that it is enough to prove

$$
\frac{3}{2}>\left|\frac{81-20 a_{5}}{81+54 a_{3}+20 a_{5}}\right| .
$$

From (4), we have

$$
a_{3}=\frac{p_{2}}{4} \quad \text { and } \quad a_{5}=\left(\frac{3}{40}\right)\left(\frac{3}{4} p_{2}^{2}+p_{4}\right)
$$

Since $\left|p_{2}\right| \leq 2$ and $\left|p_{4}\right| \leq 2$, it is convenient to rewrite the last two relations as

$$
a_{3}=\frac{\alpha}{2} \quad \text { and } \quad a_{5}=\frac{3}{40}\left(3 \alpha^{2}+2 \beta\right)
$$

for some $|\alpha| \leq 1$ and $|\beta| \leq 1$.
Substituting the values for a_{3} and a_{5}, and applying the maximum principle in the last inequality, it suffices to show the inequality

$$
\frac{3}{2}\left|81+27 \alpha+\frac{9 \alpha^{2}}{2}+3 \beta\right|>\left|81-\frac{9 \alpha^{2}}{2}-3 \beta\right|
$$

for $|\alpha|=1=|\beta|$. Finally, by the triangle inequality, the last inequality follows if we can show that

$$
9\left|9+3 \alpha+\frac{\alpha^{2}}{2}\right|-6\left|9-\frac{\alpha^{2}}{2}\right|>5
$$

which is easily seen to be equivalent to

$$
9\left|9 \bar{\alpha}+3+\frac{\alpha}{2}\right|-6\left|9 \bar{\alpha}-\frac{\alpha}{2}\right|>5
$$

as $|\alpha|=1$. Write $\operatorname{Re}(\alpha)=x$. It remains to show that

$$
T(x):=9 \sqrt{18 x^{2}+57 x+\frac{325}{4}}-6 \sqrt{\frac{361}{4}-18 x^{2}}>5
$$

for $-1 \leq x \leq 1$.

It suffices to show

$$
9 \sqrt{18 x^{2}+57 x+\frac{325}{4}}>5+6 \sqrt{\frac{361}{4}-18 x^{2}}
$$

Squaring both sides we have

$$
2106 x^{2}+4617 x+\frac{13229}{4}>60\left(\sqrt{\frac{361}{4}-18 x^{2}}\right)
$$

Again by squaring both sides we have

$$
\left(2106 x^{2}+4617 x+\frac{13229}{4}\right)^{2}>3600\left(\frac{361}{4}-18 x^{2}\right)
$$

After computing, it remains to show that $\phi(x)>0$, where

$$
\phi(x)=a x^{4}+b x^{3}+c x^{2}+d x+e
$$

and the coefficients are

$$
a=4435236, b=19446804, c=35311626, d=30539146.5, e=10613002.5625 .
$$

Here we see that $\phi^{i v}(x)=24 a>0$. Thus the function $\phi^{\prime \prime \prime}(x)$ is increasing in $-1 \leq x \leq 1$ and hence $\phi^{\prime \prime \prime}(x) \geq \phi^{\prime \prime \prime}(-1)=10235160>0$. This implies $\phi^{\prime \prime}(x)$ is increasing. Hence $\phi^{\prime \prime}(x) \geq \phi^{\prime \prime}(-1)=7165260>0$. Consequently, $\phi^{\prime}(x)$ is increasing and we have $\phi^{\prime}(x) \geq \phi^{\prime}(-1)=515362.5>0$. Finally we get, $\phi(x)$ is increasing and hence we have $\phi(x)>\phi(-1)=373914.0625>0$. This completes the proof for $n=3$.

We next consider the general case $n \geq 4$. It suffices to show that

$$
\operatorname{Re}\left(1+\frac{z s_{2 n-1}^{\prime \prime}}{s_{2 n-1}^{\prime}}\right)>0 \quad \text { for } \quad|z|=r
$$

with $r=\sqrt{2} / 3$ for all $n \geq 4$. From the maximum modulus principle, we shall then conclude that the last inequality holds for all $n \geq 4$

$$
\operatorname{Re}\left(1+\frac{z s_{2 n-1}^{\prime \prime}}{s_{2 n-1}^{\prime}}\right)>0
$$

for $|z|<\sqrt{2} / 3$. In other words, it remains to find the largest r so that the last inequality holds for all $n \geq 4$. By the same setting of $f(z)$ as in Lemma 2.1(d), it follows easily that

$$
1+\frac{z s_{2 n-1}^{\prime \prime}}{s_{2 n-1}^{\prime}}=1+\frac{z\left(f^{\prime \prime}(z)-\sigma_{2 n-1}^{\prime \prime}(z)\right)}{f^{\prime}(z)-\sigma_{2 n-1}^{\prime}(z)}=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \sigma_{2 n-1}^{\prime}(z)-z \sigma_{2 n-1}^{\prime \prime}(z)}{f^{\prime}(z)-\sigma_{2 n-1}^{\prime}(z)}
$$

or,

$$
\operatorname{Re}\left(1+\frac{z s_{2 n-1}^{\prime \prime}}{s_{2 n-1}^{\prime}}\right) \geq 1-\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|-\frac{\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|\left|\sigma_{2 n-1}^{\prime}(z)\right|+\left|z \sigma_{2 n-1}^{\prime \prime}(z)\right|}{\left|f^{\prime}(z)\right|-\left|\sigma_{2 n-1}^{\prime}(z)\right|}
$$

Then by using Lemma 2.1, we obtain

$$
\operatorname{Re}\left(1+\frac{z s_{2 n-1}^{\prime \prime}}{s_{2 n-1}^{\prime}}\right) \geq 1-\frac{3 r^{2}}{1-r^{2}}-\frac{\left(\frac{3 r^{2}}{1-r^{2}}\right) A(n, r)+B(n, r)}{\frac{1}{\left(1+r^{2}\right)^{(3 / 2)}}-A(n, r)}
$$

Thus, we conclude that

$$
\operatorname{Re}\left(1+\frac{z s_{2 n-1}^{\prime \prime}}{s_{2 n-1}^{\prime}}\right)>0
$$

provided

$$
\frac{1-4 r^{2}}{1-r^{2}}-\frac{\left(1+r^{2}\right)^{3 / 2}}{1-r^{2}}\left(\frac{3 r^{2} A(n, r)+\left(1-r^{2}\right) B(n, r)}{1-\left(1+r^{2}\right)^{3 / 2} A(n, r)}\right)>0
$$

or, equivalently

$$
\left(1+r^{2}\right)^{3 / 2}\left(\frac{3 r^{2} A(n, r)+\left(1-r^{2}\right) B(n, r)}{1-\left(1+r^{2}\right)^{3 / 2} A(n, r)}\right)<1-4 r^{2}
$$

We show that the above relation holds for all $n \geq 4$ with $r=\sqrt{2} / 3$. The choice $r=\sqrt{2} / 3$ brings the last inequality to the form

$$
\left(\frac{11}{9}\right)^{3 / 2}\left(\frac{\frac{2}{3} A\left(n, \frac{\sqrt{2}}{3}\right)+\frac{7}{9} B\left(n, \frac{\sqrt{2}}{3}\right)}{1-\left(\frac{11}{9}\right)^{3 / 2} A\left(n, \frac{\sqrt{2}}{3}\right)}\right)<\frac{1}{9} .
$$

Set

$$
C\left(n, \frac{\sqrt{2}}{3}\right):=1-\left(\frac{11}{9}\right)^{3 / 2} A\left(n, \frac{\sqrt{2}}{3}\right)
$$

We shall prove that $C\left(n, \frac{\sqrt{2}}{3}\right)>0$ for $n \geq 4$ i.e.,

$$
A\left(n, \frac{\sqrt{2}}{3}\right)<\frac{27}{(11)^{3 / 2}}
$$

and

$$
A\left(n, \frac{\sqrt{2}}{3}\right)+B\left(n, \frac{\sqrt{2}}{3}\right)<\frac{27}{7 \times(11)^{3 / 2}} \quad \text { for } n \geq 4
$$

If the last inequality is proved, then automatically the previous one follows. Hence, it is enough to prove
the last inequality. Now,

$$
\begin{aligned}
A(n, r)+B(n, r) & =\sum_{k=n+1}^{\infty} \frac{(2 k-1)(2 k-1)!}{2^{2 k-2}(k-1)!^{2}}\left(r^{2}\right)^{k-1} \\
& \leq \sum_{k=5}^{\infty} \frac{(2 k-1)(2 k-1)!}{2^{2 k-2}(k-1)!^{2}}\left(r^{2}\right)^{k-1} \\
& =\sum_{k=1}^{\infty} \frac{(2 k-1)(2 k-1)!}{2^{2 k-2}(k-1)!^{2}}\left(r^{2}\right)^{k-1}-\sum_{k=1}^{4} \frac{(2 k-1)(2 k-1)!}{2^{2 k-2}(k-1)!^{2}}\left(r^{2}\right)^{k-1} \\
& =\frac{1+2 r^{2}}{\left(1-r^{2}\right)^{5 / 2}}-\left(1+\frac{9}{2} r^{2}+\frac{75}{8} r^{4}+\frac{245}{16} r^{6}\right) .
\end{aligned}
$$

Substituting the value $r=\sqrt{2} / 3$, we obtain

$$
A\left(n, \frac{\sqrt{2}}{3}\right)+B\left(n, \frac{\sqrt{2}}{3}\right) \leq 0.076 \cdots<0.105 \cdots=\frac{27}{7 \times(11)^{3 / 2}}
$$

This completes the proof of our main theorem.

References

[1] V. Bharanedhar and S. Ponnusamy, Uniform close-to-convexity radius of sections of functions in the close-to-convex family, J. Ramanujan Math. Soc., 29 (3) (2014), 243-251.
[2] D. Bshouty and W. Hengartner, Criteria for the extremality of the Koebe mapping, Proc. Amer. Math. Soc., 111 (1991), $403-411$.
[3] P. L. Duren, Coefficients of univalent functions, Bull. Amer. Math. Soc., 83 (5) (1977), 891-911.
[4] P. L. Duren, Univalent Functions, Springer-Verlag, New York, 1983.
[5] A. W. Goodman, Univalent Functions, Vol-I, Mariner Publishing Company, 1983.
[6] L. Iliev, Classical extremal problems for univalent functions, In: Complex Analysis (Warsaw 1979), Banach Center Publ., 11 PWN, Warsaw, 89-110.
[7] D. Kalaj, S. Ponnusamy, and M. Vuorinen, Radius of close-to-convexity of harmonic functions, Complex Var. Elliptic Equ., 59 (4) (2014), 539-552.
[8] Hu Ke , Coefficients of odd univalent functions, Proc. Amer. Math. Soc., 96 (1) (1986), 183-186.
[9] L. Li and S. Ponnusamy, Injectivity of sections of univalent harmonic mappings, Nonlinear Analysis, 89 (2013), 276-283.
[10] L. Li and S. Ponnusamy, Disk of convexity of sections of univalent harmonic functions, J. Math. Anal. and Appl., 408 (2) (2013), 589-596.
[11] L. Li and S. Ponnusamy, Injectivity of sections of convex harmonic mappings, Czechoslovak Math. J., 66 (2) (2016), 331-350.
[12] R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for inverses of odd univalent functions, Complex Variables, 3 (1984), 185-189.
[13] T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532-537.
[14] Y. Miki, A note on close-to-convex functions, J. Math. Soc. Japan, 8 (3) (1956), 256-268.
[15] V. I. Milin, Adjacent coefficients of odd univalent functions, Sib. Math. J., 22 (2) (1981), 283-290.
[16] S. S. Miller and P. T. Mocanu, Differential Subordinations, Theory and Applications, Marcel Dekker, USA, 2000.
[17] M. Obradović and S. Ponnusamy, Partial sums and radius problem for some class of conformal mappings, Sib. Math. J., 52 (2) (2011), 291-302.
[18] M. Obradović and S. Ponnusamy, Injectivity and starlikeness of sections of a class of univalent functions, In: Complex analysis and dynamical systems V, Contemp. Math., 591 (2013), Amer. Math. Soc., Providence, RI, 195-203.
[19] M. Obradović and S. Ponnusamy, Starlikeness of sections of univalent functions, Rocky Mountain J. Math., 44 (3) (2014), 10031014.
[20] M. Obradović, S. Ponnusamy, and K.-J. Wirths, Coefficient characterizations and sections for some univalent functions, Sib. Math. J., 54 (1) (2013), 679-696.
[21] K. S. Padmanabhan and R. Parvatham, On the univalence and convexity of partial sums of a certain class of analytic functions whose derivatives have positive real part, Indian J. Math., 16 (1974), 67-77.
[22] S. Ponnusamy, S. K. Sahoo, and H. Yanagihara, Radius of convexity of partial sums of functions in the close-to-convex family, Nonlinear Analysis, 95 (2014), 219-228.
[23] S. Ponnusamy and A. Sairam Kaliraj, Constants and characterization for certain classes of univalent harmonic mappings, Mediterr. J. Math., 12 (3) (2015), 647-665.
[24] V. Ravichandran, Geometric properties of partial sums of univalent functions, Mathematics Newsletter, 22 (3) (2012), $208-221$.
[25] M. S. Robertson, A remark on the odd schlicht functions, Bull. Amer. Math. Soc., 42 (1936), 366-370.
[26] M. S. Robertson, The partial sums of multivalently star-like functions, Ann. of Math., 42 (1941), 829-838.
[27] St. Ruscheweyh, On the radius of univalence of the partial sums of convex functions, Bull. Lond. Math. Soc., 4 (1972), 367-369.
[28] St. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv., 48 (1973), 119-135.
[29] St. Ruscheweyh, Extension of Szegö's theorem on the sections of univalent functions, SIAM J. Math. Anal., 19 (6) (1988), $1442-1449$.
[30] R. Singh, Radius of convexity of partial sums of a certain power series, J. Aust. Math. Soc., 11 (4) (1970), 407-410.
[31] H. Silverman, Radii problems for sections of convex functions, Proc. Amer. Math. Soc., 104 (4) (1988), 1191-1196.
[32] T. Sheil-Small, A note on the partial sums of convex schlicht functions, Bull. Lond. Math. Soc., 2 (1970), 165-168.
[33] T. J. Suffridge, Some remarks on convex maps of the unit disk, Duke Math. J., 37 (1970), 775-777.
[34] G. Szegö, Zur Theorie der schlichten Abbildungen, Math. Ann., 100 (1) (1928), 188-211.
[35] Z. Ye, On successive coefficients of odd univalent functions, Proc. Amer. Math. Soc., 133 (11) (2005), 3355-3360.

[^0]: 2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C55
 Keywords. Analytic, univalent, convex, and close-to-convex functions, odd functions, radius of convexity, partial sums or sections Received: 30 September 2016; Accepted: 30 January 2017
 Communicated by Miodrag Mateljević
 The work of the first author was supported by University Grants Commission, New Delhi (grant no. F.2-39/2011 (SA-I))
 Email addresses: saritamath44@gmail.com (Sarita Agrawal), swadesh@iiti.ac.in (Swadesh Kumar Sahoo)

