Filomat 31:11 (2017), 3539–3552 https://doi.org/10.2298/FIL1711539R

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Estimates for Coefficients of Certain Analytic Functions

V. Ravichandran^a, Shelly Verma^a

^aDepartment of Mathematics, University of Delhi, Delhi-110 007, India

Abstract. For $-1 \le B \le 1$ and A > B, let $S^*[A, B]$ denote the class of generalized Janowski starlike functions consisting of all normalized analytic functions f defined by the subordination zf'(z)/f(z) < (1+Az)/(1+Bz) (|z| < 1). For $-1 \le B \le 1 < A$, we investigate the inverse coefficient problem for functions in the class $S^*[A, B]$ and its meromorphic counter part. Also, for $-1 \le B \le 1 < A$, the sharp bounds for first five coefficients for inverse functions of generalized Janowski convex functions are determined. A simple and precise proof for inverse coefficient estimations for generalized Janowski convex functions is provided for the case $A = 2\beta - 1$ ($\beta > 1$) and B = 1. As an application, for $F := f^{-1}$, $A = 2\beta - 1$ ($\beta > 1$) and B = 1, the sharp coefficient bounds of F/F' are obtained when f is a generalized Janowski starlike or generalized Janowski convex functions. Further, we provide the sharp coefficient estimates for inverse functions of normalized analytic functions f satisfying f'(z) < (1+z)/(1+Bz) ($|z| < 1, -1 \le B < 1$).

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction and Preliminaries

Let \mathbb{D} denote the unit disc. Let \mathcal{A} be the class of all normalized analytic functions $f: \mathbb{D} \to \mathbb{C}$ of the form $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$. The subclass of \mathcal{A} consisting of univalent functions is denoted by \mathcal{S} . An analytic function f is said to be subordinate to an analytic function g, written f < g, if $f = g \circ w$ for some analytic function $w: \mathbb{D} \to \mathbb{D}$ with w(0) = 0. If g is univalent, then f < g is equivalent to f(0) = g(0) and $f(\mathbb{D}) \subset g(\mathbb{D})$. Let φ be an analytic univalent function with positive real part mapping \mathbb{D} onto domains symmetric with respect to real axis and starlike with respect to $\varphi(0) = 1$ and $\varphi'(0) > 0$. Let $\mathcal{P}(\varphi)$ denote the class of all analytic functions $p: \mathbb{D} \to \mathbb{C}$ such that $p < \varphi$. For such φ , Ma and Minda [22] introduced the subclasses $\mathcal{S}^*(\varphi)$ ($\mathcal{K}(\varphi)$) of \mathcal{S} consisting of functions $f \in \mathcal{S}$ such that zf'(z)/f(z) $(1 + zf''(z)/f'(z)) \in \mathcal{P}(\varphi)$. For different choices of φ , several well-known classes can be easily obtained from these classes which were earlier considered and studied one by one for their geometric and analytic properties. For instance, $\mathcal{S}^*((1 + z)/(1 - z)) =: \mathcal{S}^*$ and $\mathcal{K}((1 + (1 - 2\alpha)z)/(1 - z)) =: \mathcal{K}^*(\alpha)$ and $\mathcal{K}((1 + (1 - 2\alpha)z)/(1 - z)) =: \mathcal{K}(\alpha)$, the well-known classes of starlike and convex functions of order α , respectively introduced in [31]; for $0 < \alpha < 1$, $\mathcal{S}^*(((1 + z)/(1 - z))^\alpha) =: \mathcal{S}^*(\alpha)$ is the well-known class of strongly starlike functions of order α introduced

²⁰¹⁰ Mathematics Subject Classification. Primary 30C45; Secondary 30C50, 30C80

Keywords. Univalent functions, starlike functions, convex functions, meromorphic functions, coefficient bounds, inverse coefficient bounds

Received: 28 September 2016; Accepted: 31 January 2017

Communicated by Vladimir Rakočević

The second author is supported by a Senior Research Fellowship from National Board for Higher Mathematics, Mumbai. Email addresses: vravi68@gmail.com; vravi@maths.du.ac.in (V. Ravichandran), jmdsv.maths@gmail.com (Shelly Verma)

in [6]. In [22], the authors gave a unified treatment to the geometric as well as analytic properties of these well-known classes.

We observe that the distortion theorem, upper bound of |f|, rotation theorem, upper bound of Feketo-Szegö coefficient functional $|a_3 - \mu a_2^2|$ ($\mu \in \mathbb{R}$) for $f \in \mathcal{K}(\varphi)$ given in [22] still hold for a normalized locally univalent function f satisfying $1 + zf''(z)/f'(z) < \varphi(z)$ if we drop the condition that φ has positive real part. Consequently, the growth theorem and upper bound of Feketo-Szegö coefficient functional $|a_3 - \mu a_2^2|$ ($\mu \in \mathbb{R}$) follow for a normalized analytic function f satisfying $zf'(z)/f(z) < \varphi(z)$ even if φ does not have positive real part. This motivates one to consider the following subclasses of \mathcal{A} , for $-1 \le B \le 1$, A > B,

$$\mathcal{K}[A,B] = \left\{ f \in \mathcal{A} : 1 + \frac{zf''(z)}{f'(z)} \in \mathcal{P}[A,B] \right\} \text{ and } \mathcal{S}^*[A,B] = \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \in \mathcal{P}[A,B] \right\}$$

where $\mathcal{P}[A, B] := \mathcal{P}((1 + Az)/(1 + Bz))$. For $-1 \leq B < A \leq 1$, $\mathcal{S}^*[A, B]$ is a subclass of \mathcal{S}^* introduced by Janowski [11] and for particular values of A and B, it reduces to several known subclasses of \mathcal{S}^* . Precisely, $\mathcal{S}^*[1 - 2\alpha, -1] :=: \mathcal{S}^*(\alpha) \ (0 \leq \alpha < 1)[31]; \ \mathcal{S}^*[1, 1/M - 1] :=: \mathcal{S}^*(M) \ (M > 1/2)[10]; \ \mathcal{S}^*[\beta, -\beta] :=: \mathcal{S}^{*(\beta)} \ (0 < \beta \leq 1)$ [26]; $\mathcal{S}^*[1 - \beta, 0] :=: \mathcal{S}^{*(\beta)} \ (0 \leq \beta < 1)$ [34]. Note that, for $-1 \leq B \leq 1 < A$, the functions in the classes $\mathcal{K}[A, B]$ and $\mathcal{S}^*[A, B]$ may not be univalent but must be locally univalent in \mathbb{D} and non-vanishing in $\mathbb{D} \setminus \{0\}$, respectively.

Recently, the classes $S^*[2\beta - 1, 1]$ and $\mathcal{K}[2\beta - 1, 1]$ ($\beta > 1$) have been studied by several authors, see [24, 25, 37]. Moreover, the upper bound of the Feketo-Szegö coefficient functional $|a_3 - \mu a_2^2|$ ($\mu \in \mathbb{C}$) for $f \in \mathcal{K}[2\beta - 1, 1]$ or $f \in S^*[2\beta - 1, 1]$; the distortion theorem, upper bound of |f|, rotation theorem for $f \in \mathcal{K}[2\beta - 1, 1]$; and the growth theorem for $f \in S^*[2\beta - 1, 1]$ are given in [1] which can actually be deduced, even for the functions in the generalized classes $S^*[A, B]$ and $\mathcal{K}[A, B]$ ($-1 \leq B \leq 1 < A$), from the results in [22] and the inequality (7) in [13, p. 10]. Also, for $-1 \leq B \leq 1$ and A > B, one can consider the meromorphic counter part of $S^*[A, B]$, namely, the class $\Sigma^*[A, B]$ consisting of analytic functions of the form

$$g(z) = z + b_0 + \frac{b_1}{z} + \frac{b_2}{z^2} + \cdots$$
(1)

defined on $\mathbb{C} \setminus \overline{\mathbb{D}}$ such that $zg'(z)/g(z) \in p_0(\mathbb{D})$ where $p_0 : \mathbb{D} \to \mathbb{C}$ is defined by $p_0(z) = (1 + Az)/(1 + Bz)$. For $-1 \leq B < A \leq 1$, the class $\Sigma^*[A, B]$ has been considered in [3] and the particular choices of A and B give the meromorphic counter parts of the classes corresponding to those of $S^*[A, B]$ such as $\Sigma^*[1 - 2\alpha, -1] =: \Sigma^*(\alpha)$ $(0 \leq \alpha < 1)$ [27]; $\Sigma^*[1, 1/M - 1] =: \Sigma^*(M)$ (M > 1/2)[38]; $\Sigma^*[\beta, -\beta] =: \Sigma^{*(\beta)}$ $(0 < \beta \leq 1)$ [26]; $\Sigma^*[1 - \beta, 0] =: \Sigma^*_{1-\beta}$ $(0 \leq \beta < 1)$. Hallenbeck [8] considered the class \Im consisting of functions $f \in S$ such that $f' \in \mathcal{P}$, where $\mathcal{P} := \mathcal{P}((1 + z)/(1 - z))$. Further, Libera and Złotkiewicz [16, 18] investigated the inverse coefficient problem of functions in the class \Im . For $-1 \leq B < A \leq 1$, let $\Im[A, B]$ denote the subclass of S consisting of functions $f \in S$ such that $f' \in \mathcal{P}[A, B]$.

The problem of estimating the coefficients of inverse functions lay its origin in 1923 when Löwner [21] gave the sharp coefficient estimates for inverse function of $f \in S$ along with the sharp coefficient estimation for the third coefficient of $f \in S$. Later, several authors [5, 7, 28, 33] gave alternate proofs for the inverse coefficient problem for functions in the class S but the inverse coefficient problem is still an open problem even for the well-known classes \mathcal{K} and $\mathcal{S}^*(\alpha)$ ($0 \le \alpha < 1$), although the sharp estimates for initial inverse coefficients are known for these classes, for details see [12, 14, 15]. This leads to several works related to the inverse coefficient problem for functions in certain subclasses of S, see [2, 17, 19, 20, 23, 29, 35, 36]. Recently, the inverse coefficient problem is completely settled in [1] for functions in the classes $\mathcal{S}^*[2\beta - 1, 1]$ or $\mathcal{K}[2\beta - 1, 1]$, $\beta > 1$.

In this paper, we are mainly concerned about the determination of the sharp inverse coefficient bounds for functions in the classes $S^*[A, B]$ or $\Sigma^*[A, B]$ ($-1 \le B \le 1 < A$). Also, we are giving the sharp coefficient bounds for the inverse functions of functions in the class $\Im[1, B]$ ($-1 \le B < 1$) and the sharp first five coefficient bounds for the inverse functions of functions in the class $\mathcal{K}[A, B]$ for $-1 \le B \le 1 < A$. Apart from this, we present a slightly simpler proof than the proof given in [1] for the sharp inverse coefficient estimation for functions in the class $\mathcal{K}[2\beta - 1, 1]$ ($\beta > 1$). As an application, for $F := f^{-1}$ and $\beta > 1$, the sharp coefficient bounds of F/F' are obtained when $f \in S^*[2\beta - 1, 1]$ or $f \in \mathcal{K}[2\beta - 1, 1]$. Further, under some conditions, the sharp coefficient estimates are determined for functions in the class $\Sigma^*[A, B]$ $(-1 \le B \le 1 < A)$.

We need the following lemmas to prove our results.

Lemma 1.1. [9, Theorem II, p. 547] Let Ω be the family of functions f such that for $|z| < \rho$ with $\rho > 0$, $f(z) = \sum_{n=1}^{\infty} a_n z^n (a_1 \neq 0)$. If $f \in \Omega$ and ϕ is the inverse function of f, then $\phi \in \Omega$. For any integer t, let $f(z)^t = \sum_{n=-\infty}^{\infty} a_n^{(t)} z^n$ and $\phi(w)^t = \sum_{n=-\infty}^{\infty} b_n^{(t)} w^n$ in some neighbourhoods of the origin, where $a_n^{(t)}$ and $b_n^{(t)}$ are zero for n < t. Then

$$b_n^{(t)} = \frac{t}{n} a_{-t}^{(-n)}, \quad n \neq 0.$$

For n = 0, $b_0^{(t)}$ is defined by

$$\sum_{t=-\infty}^{\infty} b_0^{(t)} z^{-t-1} = \frac{f'(z)}{f(z)}.$$

Lemma 1.2. [32, Theorem X, p. 70] Let $f(z) = 1 + \sum_{n=1}^{\infty} a_n z^n$ and $g(z) = 1 + \sum_{n=1}^{\infty} b_n z^n$ ($z \in \mathbb{D}$) be such that f < g. If g is univalent in \mathbb{D} and $g(\mathbb{D})$ is convex, then $|a_n| \le |b_1|$.

By using the above lemma, the following result is proved. This has been proved in [4] for the case $-1 \le B < A \le 1$.

Lemma 1.3. If $p(z) = 1 + \sum_{k=1}^{\infty} c_k z^k$ is in $\mathcal{P}[A, B]$ $(-1 \le B \le 1, A > B)$ then $|c_n| \le A - B$. The bounds are sharp.

Proof. Since $p \in \mathcal{P}[A, B]$, p(z) < (1 + Az)/(1 + Bz). Let g(z) := (1 + Az)/(1 + Bz). Clearly, g is univalent in \mathbb{D} . For -1 < B < 1, $g(\mathbb{D})$ is the disc $|w - (1 - AB)/(1 - B^2)| < (A - B)/(1 - B^2)$. For B = 1 and B = -1, $g(\mathbb{D})$ is the left half plane $\operatorname{Re}(w) < (1 + A)/2$ and the right half plane $\operatorname{Re}(w) > (1 - A)/2$ respectively. Therefore, $g(\mathbb{D})$ is convex and hence by Lemma 1.2, $|c_n| \le A - B$ for each n. Define a function $p_n : \mathbb{D} \to \mathbb{C}$ as

$$p_n(z) = \frac{1 + Az^n}{1 + Bz^n} = 1 + (A - B)z^n - B(A - B)z^{2n} + \cdots$$

Clearly, the result is sharp for the function p_n . \Box

The following lemma follows easily by induction on *m* and for $-1 \le B < A \le 1$, it is given in [4, Lemma 2, p. 737].

Lemma 1.4. Let A > B, $-1 \le B \le 1$. Then for any integer t and $m \in \mathbb{N}$, we have

$$m^{2} \prod_{j=0}^{m-1} \left(\frac{(A-B)t+Bj}{j+1} \right)^{2} = (A-B)^{2}t^{2} + \sum_{k=1}^{m-1} \left(\left((A-B)t+Bk \right)^{2} - k^{2} \right) \prod_{j=0}^{k-1} \left(\frac{(A-B)t+Bj}{j+1} \right)^{2} + \frac{(A-B)t+Bj}{j+1} = (A-B)^{2}t^{2} + \frac{(A-B)t+Bj}{j+1} = (A-B)^{2}t^{2}$$

2. Main Results

The following theorem gives estimates for inverse coefficients of functions in the class $S^*[A, B]$ (-1 $\leq B \leq 1 < A$).

Theorem 2.1. Let $f \in S^*[A, B]$ $(-1 \le B \le 1 < A)$ and $f^{-1}(w) =: F(w) = w + \sum_{n=2}^{\infty} \gamma_n w^n$ in some neighbourhood of the origin. Then for each $n \ge 2$,

$$|\gamma_n| \le \frac{1}{n} \prod_{m=0}^{n-2} \left(\frac{n(A-B) + mB}{m+1} \right).$$
(2)

The result is sharp.

Proof. For any integer t > 0, let

 $g(z) := \left(\frac{f(z)}{z}\right)^{-t} = 1 + \sum_{j=1}^{\infty} a_j^{(-t)} z^j \quad (|z| < 1).$

Then

$$-\frac{z}{t}\frac{g'(z)}{g(z)} = \frac{zf'(z)}{f(z)} - 1.$$
(3)

Since $f \in S^*[A, B]$, we have

$$\frac{zf'(z)}{f(z)} = \frac{1 + Aw(z)}{1 + Bw(z)}$$
(4)

for some analytic function $w : \mathbb{D} \to \mathbb{D}$ with w(0) = 0. The equations (3) and (4) give

$$\sum_{j=1}^{\infty} j a_j^{(-t)} z^j = -w(z) \left((A - B)t + \sum_{j=1}^{\infty} \left(B(j-t) + At \right) a_j^{(-t)} z^j \right)$$

which can be rewritten as

$$\sum_{j=1}^{s} j a_{j}^{(-t)} z^{j} + \sum_{j=s+1}^{\infty} b_{j}^{(-t)} z^{j} = -w(z) \left((A-B)t + \sum_{j=1}^{s-1} \left(B(j-t) + At \right) a_{j}^{(-t)} z^{j} \right)$$

where

$$\sum_{j=s+1}^{\infty} b_j^{(-t)} z^j := \sum_{j=s+1}^{\infty} j a_j^{(-t)} z^j + w(z) \left(\sum_{j=s}^{\infty} \left(B(j-t) + At \right) a_j^{(-t)} z^j \right).$$

Since |w(z)| < 1 (|z| < 1), squaring the moduli of both sides, we have

$$\left|\sum_{j=1}^{s} ja_{j}^{(-t)}z^{j} + \sum_{j=s+1}^{\infty} b_{j}^{(-t)}z^{j}\right|^{2} < \left|(A-B)t + \sum_{j=1}^{s-1} \left(B(j-t) + At\right)a_{j}^{(-t)}z^{j}\right|^{2}.$$

Integrating along |z| = r, 0 < r < 1 with respect to θ ($0 \le \theta \le 2\pi$) and applying Parseval's identity that for an analytic function $g : \mathbb{D} \to \mathbb{C}$ of the form $g(z) = \sum_{n=0}^{\infty} A_n z^n$,

$$\frac{1}{2\pi} \int_0^{2\pi} |g(re^{i\theta})|^2 d\theta = \sum_{n=0}^\infty |A_n|^2 r^{2n} \quad (0 < r < 1)$$

we have

$$\sum_{j=1}^{s} |ja_{j}^{(-t)}|^{2} r^{2j} + \sum_{j=s+1}^{\infty} |b_{j}^{(-t)}|^{2} r^{2j} \le (A-B)^{2} t^{2} + \sum_{j=1}^{s-1} |B(j-t) + At|^{2} |a_{j}^{(-t)}|^{2} r^{2j}.$$

Letting $r \rightarrow 1$ yields

$$\sum_{j=1}^{s} |ja_{j}^{(-t)}|^{2} \le (A-B)^{2}t^{2} + \sum_{j=1}^{s-1} |B(j-t) + At|^{2} |a_{j}^{(-t)}|^{2}$$

and therefore,

$$|sa_{s}^{(-t)}|^{2} \leq (A-B)^{2}t^{2} + \sum_{j=1}^{s-1} \left(\left((A-B)t + Bj \right)^{2} - j^{2} \right) |a_{j}^{(-t)}|^{2}.$$
(5)

3542

We shall show that, for $-1 \le B \le 1$, A > 1, $t \ge (s - 1)(1 - B)/(A - B)$ and $s \ge 1$,

$$|a_{s}^{(-t)}| \leq \prod_{m=0}^{s-1} \left(\frac{(A-B)t + mB}{m+1} \right).$$
(6)

We proceed by induction on *s*. For s = 1, equation (5) gives

$$|a_1^{(-t)}| \le (A - B)t.$$

Since $-1 \le B \le 1$ and A > B, for fixed $j \ge 1$, $((A - B)t + Bj)^2 - j^2 = ((A - B)t - j(1 - B))((A - B)t + j(1 + B)) \ge 0$ if $t \ge j(1 - B)/(A - B)$. Assume that (6) holds for $s \le q - 1$ and $t \ge (q - 1)(1 - B)/(A - B)$. Then by using induction hypothesis and the equation (5) for s = q, we have

$$|qa_q^{(-t)}|^2 \le (A-B)^2 t^2 + \sum_{j=1}^{q-1} \left(\left((A-B)t + Bj \right)^2 - j^2 \right) \prod_{m=0}^{j-1} \left(\frac{(A-B)t + mB}{m+1} \right)^2$$

which by using Lemma 1.4 gives

$$|a_q^{(-t)}| \le \prod_{m=0}^{q-1} \left(\frac{(A-B)t + mB}{m+1} \right).$$

Thus, (6) holds for s = q and hence by induction (6) holds for all $s \ge 1$. By applying Cauchy's integral formula for F', it can be easily seen that

$$\gamma_n = \frac{1}{n} a_{n-1}^{(-n)} \quad (n \ge 2).$$
(7)

Since A > 1, therefore $(n-2)(1-B)/(A-B) \le n-2$ $(n \ge 2)$. So, for t = n and s = n-1, the equation (6) gives

$$|\gamma_n| = \frac{1}{n} |a_{n-1}^{(-n)}| \le \frac{1}{n} \prod_{m=0}^{n-2} \left(\frac{(A-B)n + mB}{m+1} \right).$$

Define a function $f_1 : \mathbb{D} \to \mathbb{C}$ by

$$f_1(z) = \begin{cases} z(1+Bz)^{(A-B)/B}, & B \neq 0\\ ze^{Az}, & B = 0. \end{cases}$$
(8)

The result is sharp for the function f_1 . \Box

For $A = 2\beta - 1$, B = 1 ($\beta > 1$), the above theorem reduces to [1, Theorem 4.3, p. 14].

Corollary 2.2. Let $f \in S^*[2\beta - 1, 1]$ $(\beta > 1)$ and $f^{-1}(w) =: F(w) = w + \sum_{n=2}^{\infty} \gamma_n w^n$ in some neighbourhood of the origin. If $F(w)/F'(w) = w + \sum_{n=2}^{\infty} \delta_n w^n$, then $|\delta_2| \le 2(\beta - 1)$ and for n > 2,

$$|\delta_n| \le 2(\beta - 1) \prod_{j=2}^{n-1} \left(\frac{2(n-1)(\beta - 1) + j}{j} \right).$$

The result is sharp.

Proof. Since $f \in S^*[2\beta - 1, 1]$ $(\beta > 1), zf'(z)/f(z) \in \mathcal{P}[2\beta - 1, 1]$. This gives

$$\frac{zf'(z)}{f(z)} = p(z)$$

a. . .

where $p(z) = 1 + c_1 z + c_2 z^2 + \cdots \in \mathcal{P}[2\beta - 1, 1]$. In terms of $F := f^{-1}$, the above equation becomes

$$\frac{F(w)}{F'(w)} = wp(F(w))$$

Using power series expansions of F/F', p and F, we obtain

$$\sum_{n=2}^{\infty} \delta_n w^n = \sum_{n=2}^{\infty} \left(\sum_{j=1}^{n-1} c_j \gamma_{n-1,j} \right) w^n \tag{9}$$

where $\gamma_{n-1,j}$ denotes the coefficient of w^{n-1} in the expansion of $F(w)^j$. In fact, $\gamma_{n-1,j} = S_j(\gamma_2, \gamma_3, ..., \gamma_{n-2})$ is a polynomial in $\gamma_2, \gamma_3, ..., \gamma_{n-2}$ with non-negative coefficients and $\gamma_{n-1,n-1} = 1$. On comparing the coefficients of w^n , we have

$$\delta_n = \sum_{j=1}^{n-1} c_j \gamma_{n-1,j}.$$

An application of Lemma 1.3 gives

$$|\delta_n| \le 2(\beta - 1) \sum_{j=1}^{n-1} S_j(|\gamma_2|, |\gamma_3|, \dots, |\gamma_{n-2}|).$$
(10)

Define $g_1(z) := e^{-i\pi} f_1(e^{i\pi}z)$ where f_1 is given by (8) for $A = 2\beta - 1$ and B = 1. Clearly, $g_1 \in S^*[2\beta - 1, 1]$. Then $G_1(w) := g_1^{-1}(w) = w + \sum_{n=2}^{\infty} A_n w^n$ and $G_1(w)/G'_1(w) = w - \sum_{n=2}^{\infty} B_n w^n$ where w lies in some neighbourhood of the origin,

$$B_2 := 2(\beta - 1), \quad B_n := 2(\beta - 1) \prod_{j=2}^{n-1} \left(\frac{2(n-1)(\beta - 1) + j}{j} \right) \quad (n > 2)$$

and

$$A_n := \frac{1}{n} \prod_{m=0}^{n-2} \left(\frac{2n(\beta - 1) + m}{m+1} \right) \ (n \ge 2).$$

Proceeding as in (9) for g_1 and then comparing the coefficients of w^n give

$$B_n = 2(\beta - 1) \sum_{j=1}^{n-1} S_j(A_2, A_3, \dots, A_{n-2}) \ (n \ge 2).$$
(11)

Since $f \in S^*[2\beta - 1, 1]$, applying Theorem 2.1 in (10) and using (11) give $|\delta_n| \le B_n$. Clearly, the sharpness follows for the function g_1 . \Box

Corollary 2.3. *Let g*, given by (1), be in $\Sigma^*[A, B]$ ($-1 \le B \le 1 < A$) and $n(1 - B) - (A - B) \le 0$. Then for each $n \ge 0$,

$$|b_n| \le \prod_{m=0}^n \left(\frac{(A-B)+mB}{m+1} \right).$$

The result is sharp.

3544

Proof. It is easy to observe that for any $g \in \Sigma^*[A, B]$, there exists $f \in S^*[A, B]$ such that for $z \in \mathbb{C} \setminus \overline{\mathbb{D}}$, g(z) = 1/f(1/z). Also, we note that the expansions of $f(z)^{-1}$ about the origin and $f(1/z)^{-1}$ about the infinity have same coefficients. Thus, if $z/f(z) = 1 + \sum_{n=1}^{\infty} a_n^{(-1)} z^n$ ($z \in \mathbb{D}$), then for $z \in \mathbb{C} \setminus \overline{\mathbb{D}}$, we have

$$\frac{g(z)}{z} = \frac{1}{zf(1/z)} = 1 + \sum_{n=1}^{\infty} a_n^{(-1)} z^{-n}$$

On comparing the coefficients, we obtain

$$b_n = a_{n+1}^{(-1)} \quad (n \ge 0).$$
(12)

An application of (6) for t = 1 and s = n + 1 in the equation (12) gives the desired estimate. Define a function $g_1: \mathbb{C} \setminus \overline{\mathbb{D}} \to \mathbb{C}$ by

$$g_1(z) = \frac{1}{f_1(1/z)}$$
(13)

where f_1 is given by (8). The result is sharp for the function g_1 given by (13).

For $A = 2\beta - 1$, B = 1 ($\beta > 1$), the above result is mentioned in [1, Theorem 4.5, p. 17]. Next, we prove the meromorphic counter part of the Theorem 2.1.

Theorem 2.4. Let the function $g \in \Sigma^*[A, B]$ $(-1 \le B \le 1 < A)$ and $g^{-1}(w) = w + \sum_{n=0}^{\infty} \tilde{\gamma}_n w^{-n}$ in some neighbourhood of the infinity. Then $|\tilde{\gamma}_0| \leq A - B$ and

$$|\tilde{\gamma}_n| \le \frac{1}{n} \prod_{m=0}^n \left(\frac{(A-B)n + mB}{m+1} \right) \quad (n \ge 1).$$

The result is sharp.

Proof. Since $g \in \Sigma^*[A, B]$, there exists $f \in \mathcal{S}^*[A, B]$ such that for $z \in \mathbb{C} \setminus \overline{\mathbb{D}}$, g(z) = 1/f(1/z) and $g^{-1}(w) = 1/f(1/z)$ $1/f^{-1}(1/w)$, see [28, Theorem 2.4, p. 459]. Therefore, for each $n \ge 0$,

$$|\tilde{\gamma}_n| = |\gamma_{n+1}^{(-1)}| \tag{14}$$

where $\gamma_{n+1}^{(-1)}$ is the coefficient of $w^{-(n+1)}$ in $1/(wf^{-1}(1/w)) = 1 + \sum_{n=1}^{\infty} \gamma_n^{(-1)} w^{-n}$. Since $f \in S^*[A, B]$, we have $zf'(z)/f(z) = q(z) \in \mathcal{P}[A, B]$. If $q(z) = 1 + \sum_{n=1}^{\infty} q_n z^n$, then by applying Lemma 1.1, we have

$$\sum_{p=-\infty}^{\infty} \gamma_1^{(p)} z^{-p-1} = \frac{f'(z)}{f(z)} = \frac{q(z)}{z} = \frac{1}{z} \left(1 + \sum_{n=1}^{\infty} q_n z^n \right).$$

Therefore, in view of (14) and Lemma 1.3, $|\tilde{\gamma}_0| = |\gamma_1^{-1}| = |q_1| \le A - B$. For $n \ge 1$, an application of Lemma 1.1 and the inequality (6) for t = n, s = n + 1 in (14) gives

$$|\tilde{\gamma}_n| = |\gamma_{n+1}^{(-1)}| = \frac{1}{n} |a_{n+1}^{(-n)}| \le \frac{1}{n} \prod_{m=0}^n \left(\frac{(A-B)n + mB}{m+1} \right).$$

The sharpness follows for the function q_1 given by (13).

For $A = 2\beta - 1$, B = 1 ($\beta > 1$), the above theorem reduces to [1, Theorem 4.8, p. 18]. Recall that for $-1 \leq B < A \leq 1$,

$$\Im[A,B] := \left\{ f \in \mathcal{S} : f'(z) \prec \frac{1+Az}{1+Bz} \right\}.$$

The following theorem gives the sharp inverse coefficient estimates for functions in the class $\Im[1, B]$ and its proof is based on the fact that if $p \in \mathcal{P}[A, B]$ $(-1 \leq B < A \leq 1)$, then $1/p \in \mathcal{P}[-B, -A]$ $(-1 \leq -A < -B \leq 1)$.

Theorem 2.5. For $-1 \le B < 1$, let $f \in \mathfrak{I}[1, B]$ and $g(z) = \int_0^z (1 - t)/(1 - Bt) dt$ (|z| < 1). If $f^{-1}(w) =: F(w) = w + \sum_{n=2}^{\infty} \gamma_n w^n$ and $g^{-1}(w) =: G(w) = w + \sum_{n=2}^{\infty} A_n w^n$ where w lies in some neighbourhood of the origin, then for each $n \ge 2$, $|\gamma_n| \le A_n$. The result is sharp.

Proof. Since $f' \in \mathcal{P}[1, B]$, f'(z) = p(z) for some $p \in \mathcal{P}[1, B]$. Let w = f(z) then f'(z)F'(w) = 1 and so we have

$$F'(w) = P(F(w))$$

where $P(z) := 1/p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n \in \mathcal{P}[-B, -1]$. This gives

$$1 + \sum_{n=1}^{\infty} (n+1)\gamma_{n+1}w^n = 1 + \sum_{n=1}^{\infty} c_n F(w)^n.$$

On comparing the coefficients of w^n , we have

$$(n+1)\gamma_{n+1} = \sum_{i=1}^{n} c_i \gamma_{n,i} \quad (n \ge 1)$$
(15)

where $\gamma_{n,i}$ denotes the coefficient of w^n in the expansion of $F(w)^i$ and $\gamma_{n,n} = 1$. Since $g'(z) = (1 - z)/(1 - Bz) \in \mathcal{P}[1, B]$, proceeding as above, we have

$$G'(w) = \frac{1 - BG(w)}{1 - G(w)}$$
(16)

which gives

$$\sum_{n=1}^{\infty} (n+1)A_{n+1}w^n = \sum_{n=1}^{\infty} (1-B)G(w)^n$$

Comparing the coefficients of w^{n-1} , we get

$$nA_n = (1-B)\sum_{i=1}^{n-1} A_{n-1,i} \quad (n \ge 2)$$
(17)

where $A_{n-1,i}$ denotes the coefficient of w^{n-1} in the expansion of $G(w)^i$ and $A_{n-1,n-1} = 1$. We first show that $A_n > 0$ for all $n \ge 2$. By using the power series expansion of *G* in (16) and on comparing the coefficients of both sides, we obtain

$$2A_2 = 1 - B$$
, $3A_3 = (1 - B + 2)A_2$, and
 $(n+1)A_{n+1} = (1 - B + n)A_n + \sum_{k=1}^{n-2} (k+1)A_{k+1}A_{n-k}$ $(n > 2).$

Since $-1 \le B < 1$, $A_2 = (1 - B)/2 > 0$. By using induction on n, it can be easily seen from the above relations that $A_n > 0$ for all $n \ge 2$.

Next, we shall show that for all $n \ge 2$, $|\gamma_n| \le A_n$. We proceed by induction on n. Since $P \in \mathcal{P}[-B, -1]$, by using Lemma 1.3, $|c_i| \le 1 - B$ for each $i \ge 1$. Clearly, the result holds for n = 2. Assume that $|\gamma_i| \le A_i$ for $i \le n - 1$. It is easy to observe that $\gamma_{n,i} = S_i(\gamma_2, \gamma_3, \ldots, \gamma_{n-1})$ is a polynomial in $\gamma_2, \gamma_3, \ldots, \gamma_{n-1}$ with non-negative coefficients and thus $|\gamma_{n,i}| \le S_i(|\gamma_2|, |\gamma_3|, \ldots, |\gamma_{n-1}|) \le S_i(A_2, A_3, \ldots, A_{n-1})$. Therefore, in view of (15) and (17), we have

$$n|\gamma_n| \le \sum_{i=1}^{n-1} |c_i||\gamma_{n-1,i}| \le (1-B) \sum_{i=1}^{n-1} S_i(A_2, A_3, \dots, A_{n-2}) = (1-B) \sum_{i=1}^{n-1} A_{n-1,i} = nA_n$$

where $A_{n-1,i} = S_i(A_2, A_3, \dots, A_{n-2})$ is the coefficient of w^{n-1} in the expansion of $G(w)^i$.

For B = -1, the above theorem reduces to the theorem given in [18].

The following theorem has been proved in [1, Theorem 4.4, p. 14] by using the coefficient bounds of the functions in the class \mathcal{P} but we are providing a slightly different proof by making use of the coefficient bounds of the functions in the class $\mathcal{P}[2\beta - 1, 1]$ ($\beta > 1$) which shortens the computations involved in the proof to some extent.

Theorem 2.6. Let $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots \in \mathcal{K}[2\beta - 1, 1]$ ($\beta > 1$) and $f^{-1}(w) =: F(w) = w + \sum_{n=2}^{\infty} \gamma_n w^n$ in some neighbourhood of the origin. Then for $n \ge 2$,

$$|\gamma_n| \le \frac{1}{n} \prod_{m=0}^{n-2} \left(\frac{2(\beta-1) + m(2\beta-1)}{m+1} \right).$$

The result is sharp.

Proof. Since $f \in \mathcal{K}[2\beta - 1, 1]$, we have 1 + zf''(z)/f'(z) = p(z) where $p(z) = 1 + \sum_{i=1}^{\infty} c_i z^i \in \mathcal{P}[2\beta - 1, 1]$ and $\beta > 1$. This gives

$$\frac{d}{dw}\left(\frac{F(w)}{F'(w)}\right) = 1 - \frac{F(w)F''(w)}{(F'(w))^2} = p(F(w))$$
(18)

where w = f(z) lies in some disk around the origin. Integrate the equation (18) along the line segment [0, w] and using the power series expansions of *F* and *p*, we have

$$\sum_{n=1}^{\infty} \gamma_n w^n = \sum_{n=1}^{\infty} n \gamma_n w^n + \sum_{n=2}^{\infty} \left(\sum_{k=1}^{n-1} k \gamma_k \sum_{j=1}^{n-k} c_j \frac{\gamma_{n-k,j}}{n-k+1} \right) w^n$$
(19)

where $\gamma_1 = 1$ and $\gamma_{n-k,j}$ denotes the coefficient of w^{n-k} in the expansion of $F(w)^j$ with $\gamma_{n-k,n-k} = 1$.

On comparing the coefficients of w^n , we have

$$-(n-1)\gamma_n = \sum_{k=1}^{n-1} \frac{k\gamma_k}{n-k+1} \sum_{j=1}^{n-k} c_j \gamma_{n-k,j} \quad (n \ge 2).$$
(20)

Define a function $f_1 : \mathbb{D} \to \mathbb{C}$ such that

$$f_1'(z) = (1-z)^{2(\beta-1)}.$$
(21)

Then $F_1(w) := f_1^{-1}(w) = w + A_2 z^2 + A_3 z^3 + \cdots$ where for $n \ge 2$,

$$A_n := \frac{1}{n} \prod_{m=0}^{n-2} \left(\frac{2(\beta-1) + m(2\beta-1)}{m+1} \right).$$
(22)

We shall show that for all $n \ge 2$, $|\gamma_n| \le A_n$. We proceed by induction on n. Since $p \in \mathcal{P}[2\beta - 1, 1]$ ($\beta > 1$), an application of Lemma 1.3 gives $|c_j| \le 2(\beta - 1)$ for each $j \ge 1$. Therefore, the desired estimate holds for n = 2. Assume that the theorem is true for $j \le n - 1$ and thus we have $|\gamma_j| \le A_j$ for $j \le n - 1$. Since $\gamma_{n,j} = S_j(\gamma_2, \gamma_3, \dots, \gamma_{n-1})$ is a polynomial in $\gamma_2, \gamma_3, \dots, \gamma_{n-1}$ with non-negative coefficients, we have $|\gamma_{n,j}| \le S_j(|\gamma_2|, |\gamma_3|, \dots, |\gamma_{n-1}|) \le S_j(A_2, A_3, \dots, A_{n-1})$. An application of induction hypothesis and bounds of c_j in (20) gives

$$(n-1)|\gamma_{n}| \leq 2(\beta-1)\sum_{k=1}^{n-1} \frac{k|\gamma_{k}|}{n-k+1} \sum_{j=1}^{n-k} |\gamma_{n-k,j}|$$

$$\leq 2(\beta-1)\sum_{k=1}^{n-1} \frac{kA_{k}}{n-k+1} \sum_{j=1}^{n-k} S_{j}(A_{2}, A_{3}, \dots, A_{n-k-1})$$

$$= 2(\beta-1)\sum_{k=1}^{n-1} \frac{kA_{k}}{n-k+1} \sum_{j=1}^{n-k} A_{n-k,j}$$
(23)

where $A_1 = 1$ and $A_{n-k,j}$ denotes the coefficient of w^{n-k} in the expansion of $F_1(w)^j$ with $A_{n-k,n-k} = 1$. We now show that for each $n \ge 2$,

$$2(\beta - 1)\sum_{k=1}^{n-1} \frac{kA_k}{n-k+1} \sum_{j=1}^{n-k} A_{n-k,j} = (n-1)A_n.$$
(24)

For f_1 , given by (21), we have

$$1 + \frac{zf_1''(z)}{f_1'(z)} = \frac{1 - (2\beta - 1)z}{1 - z}.$$

In terms of $F_1 := f_1^{-1}$, the above equation can be rewritten as

$$\frac{d}{dw}\left(\frac{F_1(w)}{F_1'(w)}\right) = 1 - \frac{F_1(w)F_1''(w)}{(F_1'(w))^2} = \frac{1 - (2\beta - 1)F_1(w)}{1 - F_1(w)}.$$

By proceeding as in (19), we obtain

$$\sum_{n=1}^{\infty} A_n w^n = \sum_{n=1}^{\infty} n A_n w^n - 2(\beta - 1) \sum_{n=2}^{\infty} \left(\sum_{k=1}^{n-1} k A_k \sum_{j=1}^{n-k} \frac{A_{n-k,j}}{n-k+1} \right) w^n.$$

On comparing the coefficients of w^n , we get

$$(n-1)A_n = 2(\beta-1)\sum_{k=1}^{n-1} \frac{kA_k}{n-k+1}\sum_{j=1}^{n-k} A_{n-k,j} \quad (n \ge 2).$$

This proves (24) and hence, in view of (23), we have $|\gamma_n| \le A_n$. The sharpness follows for the function f_1 , given in (21). \Box

Corollary 2.7. Let $f \in \mathcal{K}[2\beta - 1, 1]$ ($\beta > 1$) and $f^{-1}(w) =: F(w) = w + \sum_{n=2}^{\infty} \gamma_n w^n$ in some neighbourhood of the origin. If $F(w)/F'(w) = w + \sum_{n=2}^{\infty} \delta_n w^n$, then $|\delta_2| \leq \beta - 1$ and for n > 2,

$$|\delta_n| \le \frac{2(\beta-1)}{n(n-1)} \prod_{m=0}^{n-3} \left(\frac{2\beta + m(2\beta-1)}{m+1} \right).$$

The result is sharp.

Proof. On integrating the equation (18) along the line segment [0, w] and using the power series expansions of F/F', F and p, we have

$$w + \sum_{n=2}^{\infty} \delta_n w^n = w + \sum_{n=2}^{\infty} \sum_{j=1}^{n-1} c_j \frac{\gamma_{n-1,j}}{n} w^n$$
(25)

where $\gamma_{n-1,j}$ denotes the coefficient of w^{n-1} in the expansion of $F(w)^j$ with $\gamma_{n-1,n-1} = 1$. Note that $\gamma_{n-1,j} = S_j(\gamma_2, \gamma_3, \dots, \gamma_{n-2})$ is a polynomial in $\gamma_2, \gamma_3, \dots, \gamma_{n-2}$ with non-negative coefficients. On comparing the coefficients of w^n in (25) and using Lemma 1.3 and Theorem 2.6, we have

$$\begin{aligned} |\delta_n| &\leq \frac{2(\beta - 1)}{n} \sum_{j=1}^{n-1} S_j(A_2, A_3, \dots, A_{n-2}) \\ &= \frac{2(\beta - 1)}{n} \sum_{j=1}^{n-1} A_{n-1,j} \end{aligned}$$
(26)

where $A_{n-1,j} = S_j(A_2, A_3, ..., A_{n-2})$ denotes the coefficient of w^{n-1} in the expansion of $F_1(w)^j$ with $A_{n-1,n-1} = 1$ and F_1 is given by (22). Corresponding to $F_1, F_1(w)/F'_1(w) = w - \sum_{n=2}^{\infty} B_n w^n$ where

$$B_2 := (\beta - 1)$$
 and $B_n := \frac{2(\beta - 1)}{n(n-1)} \prod_{m=0}^{n-3} \left(\frac{2\beta + m(2\beta - 1)}{m+1} \right) (n > 2).$

For f_1 , given by (21), by proceeding as in (25), we have

$$w - \sum_{n=2}^{\infty} B_n w^n = w - \sum_{n=2}^{\infty} \sum_{j=1}^{n-1} 2(\beta - 1) \frac{A_{n-1,j}}{n} w^n.$$

On comparing the coefficients of w^n , we obtain

$$B_n = \frac{2(\beta - 1)}{n} \sum_{j=1}^{n-1} A_{n-1,j}.$$
(27)

In view of (26) and (27), the desired estimates follow. \Box

In the generalized class $\mathcal{K}[A, B]$ ($-1 \le B \le 1 < A$), the technique used in the Theorem 2.6 does not hold true. However, we are able to give the sharp estimation for the initial inverse coefficients for functions in $\mathcal{K}[A, B]$.

Theorem 2.8. Let $f(z) = z + a_2 z^2 + a_3 z^3 + \dots \in \mathcal{K}[A, B]$ $(-1 \le B \le 1 < A)$ and $f^{-1}(w) =: F(w) = w + \sum_{n=2}^{\infty} \gamma_n w^n$ in some neighbourhood of the origin. Then for $n = 2, \dots, 6$,

$$|\gamma_n| \le \frac{1}{n} \prod_{m=0}^{n-2} \left(\frac{(A-B) + mA}{m+1} \right).$$

The result is sharp.

Proof. Since $f \in \mathcal{K}[A, B]$, 1 + zf''(z)/f'(z) < (1 + Az)/(1 + Bz) which is equivalent to 1 + zf''(z)/f'(z) < (1 - Az)/(1 - Bz). Let $g(z) := zf'(z) = z + \sum_{n=2}^{\infty} na_n z^n$ and $p(z) := zg'(z)/g(z) = 1 + b_1 z + b_2 z^2 + \cdots$. Then p(z) < (1 - Az)/(1 - Bz) and for n > 1, we have

$$(n-1)na_n = \sum_{k=1}^{n-1} (n-k)b_k a_{n-k}.$$
(28)

It is easy to observe that if $p < \varphi$, then

$$p(z) = \varphi\left(\frac{p_1(z) - 1}{p_1(z) + 1}\right), \quad p_1(z) = 1 + c_1 z + c_2 z^2 + \dots \in \mathcal{P}.$$
(29)

Using (28) and (29) for $\varphi = (1 - Az)/(1 - Bz)$, the coefficients a_i can be expressed in terms of c_i , A and B, see [30]. In particular, we have

$$\begin{aligned} a_2 &= -\frac{1}{4}(A-B)c_1, \\ a_3 &= \frac{1}{24}(A-B)\left((A-2B+1)c_1^2 - 2c_2\right), \\ a_4 &= -\frac{1}{192}(A-B)\left((A-2B+1)(A-3B+2)c_1^3 - 2(3A-7B+4)c_1c_2 + 8c_3\right), \\ a_5 &= \frac{1}{1920}(A-B)\left(-4(3A^2-17AB+11A+23B^2-29B+9)c_1^2c_2 + (A-2B+1)(A-3B+2)(A-4B+3)c_1^4 + 16(2A-5B+3)c_1c_3 + 12(A-3B+2)c_2^2 - 48c_4\right) \end{aligned}$$

3549

and

$$\begin{aligned} a_6 &= \frac{1}{23040} (A-B) \Big(-(A-5B+4)(A-4B+3)(A-3B+2)(A-2B+1)c_1^5 \\ &+ 4(5A^3-50A^2B+35A^2+160AB^2-220AB+75A-163B^3+329B^2 \\ &- 219B+48)c_1^3c_2 - 16(5A^2-30AB+20A+43B^2-56B+18)c_1^2c_3 \\ &+ 32(5A-17B+12)c_2c_3 - 4(15A^2-100AB+70A+157B^2-214B+72)c_1c_2^2 \\ &+ 48(5A-13B+8)c_1c_4 - 384c_5 \Big). \end{aligned}$$

Using power series expansions of f and f^{-1} in the relation $f(f^{-1}(w)) = w$, or

$$w = f^{-1}(w) + a_2(f^{-1}(w))^2 + \cdots,$$

we obtain

$$\begin{aligned} \gamma_2 &= -a_2, \\ \gamma_3 &= 2a_2^2 - a_3, \\ \gamma_4 &= -5a_2^3 + 5a_2a_3 - a_4, \\ \gamma_5 &= 14a_2^4 - 21a_2^2a_3 + 6a_2a_4 + 3a_3^2 - a_5 \end{aligned}$$

and

$$\gamma_6 = 7\Big(-6a_2^5 + 12a_2^3a_3 - 4a_2^2a_4 + a_2(a_5 - 4a_3^2) + a_3a_4\Big) - a_6.$$

Substituting the expressions of a_i in terms of c_i in the above expressions of γ_i , we have

$$\begin{split} \gamma_2 &= \frac{1}{4}(A-B)c_1, \\ \gamma_3 &= \frac{1}{24}(A-B)\left((2A-B-1)c_1^2+2c_2\right), \\ \gamma_4 &= \frac{1}{192}(A-B)\left((2A-B-1)(3A-B-2)c_1^3+2(7A-3B-4)c_1c_2+8c_3\right), \\ \gamma_5 &= \frac{1}{1920}(A-B)\left(p(A,B)\,c_1^2c_2+(2A-B-1)(3A-B-2)(4A-B-3)c_1^4\right) \\ &\quad + 8(11A-5B-6)c_1c_3+4(7A-B-6)c_2^2+48c_4) \end{split}$$

and

$$\gamma_{6} = \frac{1}{23040} (A - B) (q(A, B) c_{1}^{2}c_{3} + r(A, B) c_{1}c_{2}^{2} + 384(2A - B - 1)c_{1}c_{4} + s(A, B) c_{1}^{3}c_{2} + (2A - B - 1)(3A - B - 2)(4A - B - 3)(5A - B - 4)c_{1}^{5} + 16(25A - B - 24)c_{2}c_{3} + 384c_{5})$$

where

$$p(A, B) := 4(23A^2 - 17AB - 29A + 3B^2 + 11B + 9),$$

$$q(A, B) := 8(101A^2 - 81AB - 121A + 16B^2 + 49B + 36),$$

$$r(A, B) := 4(127A^2 - 58AB - 196A + 3B^2 + 52B + 72)$$

and

$$s(A, B) := 4(163A^3 - 160A^2B - 329A^2 + 50AB^2 + 220AB + 219A - 5B^3 - 35B^2 - 75B - 48).$$

Since $-1 \le B \le 1 < A$, we can easily see that

$$\frac{\partial p(A, B)}{\partial A} = 4 \Big(29(A - 1) + 17(A - B) \Big) > 0,$$

$$\frac{\partial q(A, B)}{\partial A} = 8 \Big(121(A - 1) + 81(A - B) \Big) > 0$$

and

$$\frac{\partial r(A,B)}{\partial A} = 4 \Big(196(A-1) + 58(A-B) \Big) > 0.$$

Therefore, $p(A,B) > p(1,B) = 12(1-B)^2 \ge 0$; $q(A,B) > q(1,B) = 128(1-B)^2 \ge 0$ and $r(A,B) > r(1,B) = 12(1-B)^2 \ge 0$. Clearly,

$$\frac{\partial s(A,B)}{\partial A} = 4(489A^2 - 658A - 320AB + 219 + 220B + 50B^2)$$

and

$$\frac{\partial^2 s(A,B)}{\partial A^2} = 4 \Big(658(A-1) + 320(A-B) \Big) > 0.$$

Therefore, $\partial s(A, B)/\partial A$ is a strictly increasing function of A and hence $\partial s(A, B)/\partial A > 200(1 - B)^2 \ge 0$. Consequently, $s(A, B) > s(1, B) = 20(1 - B)^3 \ge 0$.

Thus, for n = 2, ..., 6, γ_n are polynomials in c_i (i = 1, 2, ..., 5) with non-negative coefficients. Since $p_1 \in \mathcal{P}$, $|c_i| \le 2$ (i = 1, 2, ...) and therefore, the maximum of $|\gamma_n|$ would correspond to $|c_i| = 2$. On simplification, we get the desired estimates. Define a function $f_0 : \mathbb{D} \to \mathbb{C}$ such that

$$f'_0(z) = \begin{cases} (1 - Bz)^{(A-B)/B}, & B \neq 0\\ e^{-Az}, & B = 0. \end{cases}$$

The result is sharp for the function f_0 . \Box

References

- M. F. Ali and A. Vasudevarao, Coefficient inequalities and Yamashita's conjecture for some classes of analytic functions, J. Aust. Math. Soc. 100 (2016), no. 1, 1–20.
- [2] R. M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc. (2) 26 (2003), no. 1, 63–71.

[3] V. V. Anh and P. D. Tuan, Meromorphic starlike univalent functions, Bull. Austral. Math. Soc. 30 (1984), no. 3, 395-410.

- [4] M. K. Aouf, On a class of *p*-valent starlike functions of order α , Internat. J. Math. Math. Sci. 10 (1987), no. 4, 733–744.
- [5] A. Baernstein, II and G. Schober, Estimates for inverse coefficients of univalent functions from integral means, Israel J. Math. 36 (1980), no. 1, 75–82.
- [6] D. A. Brannan and W. E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. (2) 1 (1969), 431-443.
- [7] C. H. Fitzgerald, Quadratic inequalities and coefficient estimates for schlicht functions, Arch. Rational Mech. Anal. 46 (1972), 356–368.
- [8] D. J. Hallenbeck, Convex hulls and extreme points of some families of univalent functions, Trans. Amer. Math. Soc. 192 (1974), 285–292.
- [9] E. Jabotinsky, Representation of functions by matrices. Application to Faber polynomials, Proc. Amer. Math. Soc. 4 (1953), 546–553.
- [10] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math. 23 (1970/1971), 159–177.

- [11] W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Polon. Math. 28 (1973), 297–326.
- [12] G. P. Kapoor and A. K. Mishra, Coefficient estimates for inverses of starlike functions of positive order, J. Math. Anal. Appl. 329 (2007), no. 2, 922–934.
- [13] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12.
- [14] J. G. Krzyż, R. J. Libera, and E. J. Złotkiewicz, Coefficients of inverses of regular starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 33 (1979), 103–110 (1981).
- [15] R. J. Libera and E. J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982), no. 2, 225–230.
- [16] R. J. Libera and E. J. Złotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (1983), no. 2, 251–257.
- [17] R. J. Libera and E. J. Złotkiewicz, Coefficient bounds for inverses of odd univalent functions, Complex Variables Theory Appl. 3 (1984), no. 1-3, 185–189.
- [18] R. J. Libera and E. J. Złotkiewicz, Coefficient bounds for the inverse of a function with derivative in P. II, Proc. Amer. Math. Soc. 92 (1984), no. 1, 58–60.
- [19] R. J. Libera and E. J. Złotkiewicz, The coefficients of the inverse of an odd convex function, Rocky Mountain J. Math. 15 (1985), no. 3, 677–683.
- [20] R. J. Libera and E. J. Złotkiewicz, Löwner's inverse coefficients theorem for starlike functions, Amer. Math. Monthly 99 (1992), no. 1, 49–50.
- [21] K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann. 89 (1923), no. 1-2, 103–121.
 [22] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on
- Complex Analysis (Tianjin, 1992), Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994, pp. 157–169.
- [23] A. K. Mishra and P. Gochhayat, Coefficients of inverse functions in a nested class of starlike functions of positive order, J. Inequal. Pure Appl. Math. 7 (2006), no. 3, Article 94, 15 pp.
- [24] J. Nishiwaki and S. Owa, Coefficient inequalities for certain analytic functions, Int. J. Math. Math. Sci. 29 (2002), no. 5, 285–290. [25] S. Owa and H. M. Srivastava, Some generalized convolution properties associated with certain subclasses of analytic functions,
- J. Inequal. Pure Appl. Math. 3 (2002), no. 3, Article 42, 13 pp.
- [26] K. S. Padmanabhan, On certain classes of starlike functions in the unit disk, J. Indian Math. Soc. (N.S.) 32 (1968), 89–103.
- [27] C. Pommerenke, On meromorphic starlike functions, Pacific J. Math. 13 (1963), 221–235.
- [28] J. T. Poole, Coefficient extremal problems for schlicht functions, Trans. Amer. Math. Soc. 121 (1966), 455–475.
- [29] D. V. Prokhorov and J. Szynal, Inverse coefficients for (α, β)-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125–143.
- [30] V. Ravichandran and S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris 353 (2015), no. 6, 505–510.
- [31] M. I. S. Robertson, On the theory of univalent functions, Ann. of Math. (2) 37 (1936), no. 2, 374–408.
- [32] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (2) 48 (1943), 48-82.
- [33] A. C. Schaeffer and D. C. Spencer, The coefficients of schlicht functions. II, Duke Math. J. 12 (1945), 107–125.
- [34] H. Silverman, Subclasses of starlike functions, Rev. Roumaine Math. Pures Appl. 23 (1978), no. 7, 1093–1099.
- [35] H. Silverman, Coefficient bounds for inverses of classes of starlike functions, Complex Variables Theory Appl. 12 (1989), no. 1-4, 23–31.
- [36] H. M. Srivastava, A. K. Mishra, and S. N. Kund, Coefficient estimates for the inverses of starlike functions represented by symmetric gap series, Panamer. Math. J. 21 (2011), no. 4, 105–123.
- [37] B. A. Uralegaddi, M. D. Ganigi, and S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math. 25 (1994), no. 3, 225–230.
- [38] P. Wiatrowski, On the radius of convexity of some family of functions regular in the ring 0 < |z| < 1, Ann. Polon. Math. 25 (1971), 85–98.