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Available at: http://www.pmf.ni.ac.rs/filomat

A Fixed Point Theorem for Mappings on the `∞-Sum
of a Metric Space and its Application

Jacek Jachymskia, Łukasz Maślankaa, Filip Strobina
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Abstract. The aim of this paper is to prove a counterpart of the Banach fixed point principle for mappings
f : `∞(X)→ X, where X is a metric space and `∞(X) is the space of all bounded sequences of elements from X.
Our result generalizes the theorem obtained by Miculescu and Mihail in 2008, who proved a counterpart
of the Banach principle for mappings f : Xm

→ X, where Xm is the Cartesian product of m copies of X.
We also compare our result with a recent one due to Secelean, who obtained a weaker assertion under less
restrictive assumptions. We illustrate our result with several examples and give an application.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction

If (X, d) is a metric space and m ∈ N, then by Xm we denote the Cartesian product of m copies of X.
We endow Xm with the maximum metric:

dm((x0, ..., xm−1), (y0, ..., ym−1)) := max{d(x0, y0), ..., d(xm−1, ym−1)}.

Miculescu and Mihail in [6] and [7] obtained an interesting generalization of the Banach principle for
mappings defined on Xm. Namely, they proved the following

Theorem 1.1. Assume that (X, d) is a complete metric space and 1 : Xm
→ X is such that the Lipschitz constant

Lip(1) < 1. Then there exists a unique point x∗ ∈ X such that 1(x∗, ..., x∗) = x∗. Moreover, for every x0, ..., xm−1 ∈ X,
the sequence (xk) defined by

xm+k = 1(xk+m−1, ..., xk), k ≥ 0, (1)

converges to x∗.

A point x∗ ∈ X which satisfies the equality 1(x∗, ..., x∗) = x∗ is called a generalized fixed point of 1.
An interesting study of such fixed points can also be found in the paper [1] of Professor Ljubomir B. Ćirić
and S.B. Prešić.
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Theorem 1.1 gave a background for a version of the Hutchinson–Barnsley fractals theory for such mappings
defined on finite Cartesian products – see the above mentioned papers and the references therein. Also,
note that the above theorem can be extended to mappings which satisfy weaker contractive conditions –
see, e.g., [9] and [10].

The next step was done by Secelean [8]. Denote by `∞(X) the `∞-sum of a metric space X, that is, the set
of all bounded sequences of elements of X:

`∞(X) := {(xk) ⊂ X : (xk) is bounded}.

Endow `∞(X) with the supremum metric:

ds((xn), (yn)) := sup{d(xn, yn) : n ∈N∗}, (2)

whereN∗ := {0, 1, 2, ...} (throughout the paper we enumerate sequences by nonnegative integers).

Remark 1.2. Let us notice that the notion of the `∞(X)-sum of a family of spaces originates from functional
analysis; see, e.g., [4, p. xii].

Remark 1.3. It is also worth to observe that if X is bounded, then `∞(X) is exactly the product of countably
many copies of X, that is, `∞(X) =

∏
∞

k=0 X. On the other hand, if X is unbounded, then `∞(X) is a proper
subspace of

∏
∞

k=0 X.

If f : `∞(X)→ X, then we define fs : X→ X by

fs(x) := f (x, x, ...), x ∈ X. (3)

A point x∗ ∈ X is called a generalized fixed point of f , if x∗ is a fixed point of fs, i.e., if x∗ satisfies:

f (x∗, x∗, ...) = x∗.

Secelean [8, Theorem 3.1] proved the following fixed point theorem:

Theorem 1.4. Assume that X is a complete metric space and f : `∞(X) → X is such that Lip( f ) < 1. Then there
exists a unique generalized fixed point x∗ of f . Moreover, for every x = (xn) ∈ `∞(X), the sequence (yk) defined by

yk := f
(

f k
s (x0), f k

s (x1), f k
s (x2), ...

)
, k ≥ 0, (4)

converges to x∗. More precisely, for every k ∈N∗,

d(x∗, yk) ≤
Lip( f )k+1

1 − Lip( f )
sup{d( fs(xi), xi) : i ∈N∗}.

Remark 1.5. In fact, Secelean formulated his result in a more general way. Firstly, he considered also
weaker contractive conditions and secondly, he studied also mappings defined on a finite product of
spaces. However, the idea of dealing with weaker contractive conditions is relatively similar (but much
more technically complicated), and also we will not be interested in the case of finite products here.

Remark 1.6. Theorem 1.4 can be viewed as a generalization of the Banach fixed point theorem or Theo-
rem 1.1. However, it seems that the iteration procedure (4) is not a very natural counterpart of (1). It is rather
closer to iterating map fs.

We are going to show that under more restrictive (yet still natural) contractive conditions, we can obtain
a stronger thesis. In particular, our result will imply the whole Theorem 1.1. Also, we will present examples
that our assumptions are essential for the thesis and, in particular, that Theorem 1.4 is too weak to obtain
our assertion.
Finally, we will present an application.
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2. Other Metrics on `∞(X)

2.1. Metrics ds,(an) and dp,(an)

Let (X, d) be a metric space. We start with defining other metrics on space `∞(X). If (an) is a sequence of
reals, then set:

ds,(an)(x, y) := sup{and(xn, yn) : n ∈N∗} for any x = (xn), y = (yn) ∈ `∞(X)

and, if additionally an ≥ 0, n ∈N∗, and p ∈ [1,∞), then set:

dp,(an)(x, y) :=

 ∞∑
n=0

andp(xn, yn)


1/p

for any x = (xn), y = (yn) ∈ `∞(X).

It turns out that under natural assumptions on a sequence (an), functions ds,(an) and dp,(an) are metrics with
good properties:

Proposition 2.1. Let (X, d) be a metric space such that X is not a singleton and (an) be a sequence of reals. The fol-
lowing statements are equivalent:

(i) ds,(an) is a metric on `∞(X);

(ii) an > 0 for any n ∈N∗ and (an) ∈ l∞.

Moreover, if (an) is as in (ii), then the convergence with respect to ds,(an) implies the convergence in the Tychonoff
product topology (when considering `∞(X) as a subspace of

∏
∞

k=0 X).

Proof. (i) ⇒ (ii): Suppose, on the contrary, that ap ≤ 0 for some p ∈ N∗. By hypothesis, there exist x, y ∈ X
such that x , y. Define x := (x, x, ...) and y = (x, ..., x, y, x, ...), where the p-th coordinate of y is equal to y.
Then

0 < ds,(an)(x,y) = max{0, apd(x, y)} = 0,

which yields a contradiction. Thus an > 0 for any n ∈N∗.
We show that (an) ∈ l∞. Take again x, y ∈ X with x , y and define x := (x, x, ...) and y = (y, y, ...). Then
ds,(an)(x,y) = supn∈N∗ and(x, y) = d(x, y) supn∈N∗ an, so supn∈N∗ an =

ds,(an )(x,y)
d(x,y) < ∞. Thus (an) is bounded.

The proof of (ii)⇒ (i) is standard and we leave it to the reader.
Now assume that ds,(an)(xk, x)→ 0, where xk = (xk

i )i∈N∗ and x = (xi)i∈N∗ . Then for any i ∈N∗,

0 ≤ aid(xk
i , xi) ≤ ds,(an)(xk, x),

which implies that limk→∞ d(xk
i , xi) = 0, i.e., (xk) converges to x in the Tychonoff topology.

Proposition 2.2. Let (X, d) be a metric space such that X is not a singleton and (an) be a bounded sequence of positive
reals. Let τT denote the Tychonoff product topology on `∞(X) and τds,(an ) be the topology induced by metric ds,(an).
The following statements are equivalent:

(i) τT = τds,(an ) ;

(ii) (an) ∈ c0 and (X, d) is bounded.

Proof. (i) ⇒ (ii): Suppose, on the contrary, that (an) < c0. Then there exist ε0 > 0 and a subsequence (an j )
such that an j ≥ ε0 for any j ∈N∗. Take x, y ∈ X with x , y, and define x = (x, x, ...) and xk = (xk

i )i∈N∗ , where

xk
i :=

{
x if i ≤ k,
y if i > k.
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Clearly, (xk) converges to x in (X, τT ), so by (i), ds,(an)(xk, x)→ 0. On the other hand,

ds,(an)(xk, x) ≥ sup
j∈N∗

an j d(xk
n j
, x) ≥ ε0d(x, y),

so letting k tend to∞, we obtain 0 ≥ ε0d(x, y) > 0, a contradiction. Thus (an) ∈ c0.
Now, suppose that (X, d) is unbounded. Then there exists a sequence (xk) such that d(xk, x0) > 1

ak
for any

k ∈N. Set x := (x0, x0, ...) and xk := (xk
i )i∈N∗ , where

xk
i :=

{
x0 if i ≤ k,
xk if i > k.

Then (xk) converges to x in (X, τT ), so by (i), ds,(an)(xk, x)→ 0. However, if k ≥ 1, then

ds,(an)(xk, x) = sup
j≥k+1

a jd(x j, x0) ≥ ak+1d(xk+1, x0) > 1,

which yields a contradiction.
(ii) ⇒ (i): By the last part of Proposition 2.1, it suffices to show that the convergence in (X, τT ) implies

the convergence with respect to ds,(an). Assume that xk τT
→ x, where xk = (xk

i )i∈N∗ and x = (xi)i∈N∗ . That means
limk→∞ d(xk

i , xi) = 0 for any i ∈ N∗. Fix ε > 0. Since an → 0, there is p ∈ N∗ such that for i > p, ai < ε
diam X .

Then aid(xk
i , xi) < ε for i > p and k ∈ N∗. Since limk→∞ d(xk

i , xi) = 0 for i = 0, 1, ..., p, there is j ∈ N∗ such that
for k ≥ j and i = 0, ..., p, d(xk

i , xi) < ε
ai

. Then for k ≥ j, ds,(an)(xk, x) ≤ ε. Thus we get that ds,(an)(xk, x)→ 0.

Using a similar argument as in the proofs of Propositions 2.1 and 2.2, it is possible to prove the following
two results for metrics dp,(an).

Proposition 2.3. Let (X, d) be a metric space such that X is not a singleton, (an) be a sequence of nonnegative reals
and p ∈ [1,∞). The following statements are equivalent:

(i) dp,(an) is a metric on `∞(X);

(ii) an > 0 for any n ∈N∗ and (an) ∈ l1.

Moreover, if (an) is as in (ii), then the convergence with respect to dp,(an) implies the convergence in the Tychonoff
product topology.

Proposition 2.4. Let (X, d) be a metric space such that X is not a singleton and (an) be a sequence of positive reals
such that (an) ∈ l1. The following statements are equivalent:

(i) τT = τdp,(an ) ;

(ii) (X, d) is bounded.

In what follows, when writing ds,(an) (or dp,(an)) we automatically assume that (an) is chosen so that ds,(an)
(or dp,(an)) is a metric.
A natural question arises whether these metrics are complete if d is so. Clearly, if an = 1 for all n ∈N∗, then
ds,(an) is exactly the metric ds considered by Secelean, so it is complete. Also, if inf{an : n ∈N∗} > 0, then the
metrics ds,(an) and ds are Lipschitz equivalent, hence ds,(an) is also complete.
The following example shows that the answer can be negative if an → 0.

Example 2.5. Let (X, d) := (R, | · |) and for every k ∈N∗, let xk := (0, 1, .., k, 0, 0, ...). Then:
- ds,(an)(xk, xk+1) = (k + 1)ak+1, so if

∑
(k + 1)ak+1 < ∞, then (xk) is Cauchy in ds,(an);

- if p ≥ 1, then dp,(an)(xk, xk+1) = (k + 1)a1/p
k+1, so if

∑
(k + 1)a1/p

k+1 < ∞, then (xk) is Cauchy in dp,(an).
On the other hand, (xk) cannot be convergent since, by Propositions 2.1 and 2.3, convergence in any of
metrics ds,(an), dp,(an) implies the convergence of each coordinate.
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Corollary 2.6. Assume that an → 0.
(1) If (X, d) is bounded and complete, then `∞(X) is complete with respect to any of metrics ds,(an), dp,(an).
(2) If (X, d) is complete and (xk) = ((xk

i )i∈N∗ ) is a Cauchy sequence in `∞(X) (with respect to any of metrics ds,(an), dp,(an))
such that the set {xk

i : i, k ∈N∗} is bounded in X, then (xk) is convergent to x = (xi), where xi = limk→∞ xk
i , i ∈N∗.

(3) If xk = (xk
i )i∈N∗ , k ∈ N∗, and x = (xi) are elements of `∞(X) such that the set {xk

i : i, k ∈ N∗} is bounded, then

xk d′
→ x iff xk

→ x with respect to the Tychonoff topology on `∞(X), where d′ is any of metrics ds,(an), dp,(an).
(4) If (X, d) is compact, then `∞(X) is compact with respect to any of metrics ds,(an), dp,(an).

Proof. (1). If (xk) = ((xk
i )i∈N∗ ) is a Cauchy sequence in `∞(X), then each (xk

i )k∈N∗ is Cauchy in (X, d), hence
convergent to some xi ∈ X. Then by Propositions 2.2 and 2.4, xk

→ (xi) with respect to any of metrics
ds,(an), dp,(an).

(2) follows from (1) used for the subspace `∞(Y) ⊂ `∞(X), where Y := {xk
i : i, k ∈N∗}.

(3) follows from Propositions 2.2 and 2.4 and (1), used for Y := {xk
i : i, k ∈N∗}.

(4) is a direct consequence of Propositions 2.2 and 2.4.

Remark 2.7. It is worth to remark that the definitions of metrics ds,(an) and dp,(an) base on the same ideas as
definitions of weighted Lp-sum of spaces considered in functional analysis (see for example [2]). However,
our setting is strictly metric.

2.2. Particular versions of metrics ds,(an) and dp,(an): metrics ds,q and dp,q

From now on we will assume that (an) is a geometric sequence (qn) for q ∈ (0, 1]. As we will show, the
obtained results in such a case imply corresponding results for the general case of (an).
For q ∈ (0, 1], denote ds,q := ds,(qn), that is,

ds,q(x, y) := sup{qnd(xn, yn) : n ∈N∗} for any x = (xn), y = (yn) ∈ `∞(X).

By Proposition 2.1, ds,q is a metric. Observe that in this notation, the supremum metric ds is exactly the
metric ds,1.
If additionally q < 1 and p ∈ [1,∞), denote dp,q := dp,(qn), that is,

dp,q(x, y) :=

 ∞∑
n=0

qndp(xn, yn)


1/p

for any x = (xn), y = (yn) ∈ `∞(X).

By Proposition 2.3, dp,q is a metric.
The following result shows some connections between ds,q and dp,q.

Proposition 2.8. In the above frame, assume that q < 1 and p ≥ 1. Then the following statements hold:

(i) ds,q ≤ dp,qp ;

(ii) if q ≤ q′ ≤ 1, then ds,q ≤ ds,q′ ;

(iii) if q1/p < q′ ≤ 1, then dp,q ≤
(
1 − q

(q′)p

)−1/p
ds,q′ ;

(iv) for every x, y ∈ `∞(X), limp′→∞ dp′,q(x, y) = ds,1(x, y).

Proof. Let x = (xn), y = (yn) ∈ `∞(X).
We prove (i). Since qn

→ 0 and (d(xn, yn)) is bounded, we have for some k0 ∈N∗:

ds,q(x, y) = sup
n∈N∗

qnd(xn, yn) = qk0 d(xk0 , yk0 ) =
(
qpk0 dp(xk0 , yk0 )

)1/p
≤

 ∞∑
n=0

(qp)ndp(xn, yn)


1/p

= dp,qp (x, y).
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(ii) follows from the fact that for any n ∈N∗, qnd(xn, yn) ≤ (q′)nd(xn, yn).
(iii) follows from

dp,q(x, y) =

 ∞∑
n=0

qndp(xn, yn)


1/p

=

 ∞∑
n=0

qn

(q′)pn

(
(q′)nd(xn, yn)

)p


1/p

≤

 ∞∑
n=0

(
q

(q′)p

)n


1/p

ds,q′ (x, y) =

(
1 −

q
(q′)p

)−1/p

ds,q′ (x, y).

We prove (iv). Let ε > 0. Then there exists k0 ∈N∗ such that:

ds,1(x, y) ≤ d(xk0 , yk0 ) + ε =
1

qk0/p

(
qk0 dp(xk0 , yk0 )

)1/p
+ ε ≤

1
qk0/p

dp,q(x, y) + ε.

Hence, qk0/pds,1(x, y) ≤ dp,q(x, y) + ε and therefore: ds,1(x, y) ≤ lim infp→∞ dp,q(x, y) + ε. Since ε > 0 was
arbitrary, we have ds,1(x, y) ≤ lim infp→∞ dp,q(x, y). On the other hand, (iii) (with q′ = 1) implies that
lim supp→∞ dp,q(x, y) ≤ ds,1(x, y). Thus we arrive to the desired equality.

By the previous section, if X is bounded, then all metrics ds,q and dp,q are equivalent (and generate the
Tychonoff topology on `∞(X) =

∏
∞

k=0 X). In general, this is not the case. For example, ds,q and dp,qp need not
be equivalent (recall point (i) of the above proposition), as the next example shows:

Example 2.9. Let q ∈ (0, 1), (R, | · |) be the Euclidean space and p ≥ 1. For k ∈N, let xk = (xk
i )i∈N∗ be defined

by

xk
i :=

{ 1
(k+1)1/pqi if i ≤ k,

0 if i > k.

Then xk
→ (0), the zero sequence, with respect to ds,q, but does not converge with respect to dp,qp . Indeed,

for every k ∈N∗,

ds,q(xk, (0)) = sup{qnd(xk
n, 0) : n ∈N∗} =

1
(k + 1)1/p ,

but

dp,qp (xk, (0)) =

 ∞∑
n=0

(qp)ndp(xk
n, 0)


1/p

=

 k∑
n=0

1
(k + 1)


1/p

= 1. (5)

3. Main Results

3.1. Sequences of generalized iterates and a selfmap of `∞(X)

For any mapping f : `∞(X)→ X, define f̃ : `∞(X)→ `∞(X) as follows:

f̃ ((xn)) = ( f ((xn)), x0, x1, ...) for any (xn) ∈ `∞(X).

Now if x := (xn) ∈ `∞(X), then we set x̃0 := x and

x1 := f (x̃0) and x̃1 := f̃ (x̃0).

Assume that for some k ∈N, we defined xi
∈ X, and x̃i

∈ `∞(X) for i ∈ {1, ..., k}. Then set

xk+1 := f (x̃k) and x̃k+1 := f̃ (x̃k).
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In this way we defined sequences (xk) ⊂ X and (x̃k) ⊂ `∞(X). Observe that for every k ∈N,

x̃k = ( f (x̃k−1), ..., f (x̃0), x0, x1, ...) = (xk, ..., x1, x0, x1, ...). (6)

Clearly, (x̃k) is the sequence of iterates of x = (xn) ∈ `∞(X) of mapping f̃ . We will say that (xk) is the sequence
of generalized iterates of function f at x.
Recall that x∗ ∈ X is a generalized fixed point of f , if

f (x∗, x∗, ...) = x∗.

Definition 3.1. A generalized fixed point x∗ ∈ X of map f : `∞(X) → X is called a generalized contractive
fixed point (GCFP), if for every x ∈ `∞(X), the sequence (xk) of generalized iterates converges to x∗.

The above definition is a counterpart of the notion of a contractive fixed point of a selfmap of a metric space
introduced by Leader and Hoyle [3]:
if 1 : Y → Y, then a fixed point y∗ ∈ Y of 1 is called a contractive fixed point (CFP), if for every y ∈ Y, the
sequence of iterates (1k(y)) converges to y∗.
We will show that the existence of a GCFP of f is strongly related to the existence of a CFP of f̃ . We start
with the lemma which follows directly from (6):

Lemma 3.2. In the above frame let x = (xn) ∈ `∞(X).

(i) If x̃k
→ x for some x ∈ `∞(X) with respect to the Tychonoff topology, then x = (x, x, x, ...) for some x ∈ X, and

xk
→ x.

(ii) If xk
→ x for some x ∈ X, then x̃k

→ x with respect to the Tychonoff topology, where x = (x, x, x, ...).

We are ready to state the theorem:

Theorem 3.3. In the above frame,

(i) f has a GCFP iff f̃ has a CFP with respect to the Tychonoff topology on `∞(X);

(ii) if x∗ is a CFP of f̃ with respect to the Tychonoff topology, then x∗ = (x∗, x∗, ...), where x∗ is a GCFP of f .

Proof. Let x∗ be a CFP of f̃ . Then by Lemma 3.2(i), x∗ = (x∗, x∗, ...) for some x∗ ∈ X and xk
→ x∗ for every

x ∈ `∞(X) (as x̃k
→ x∗ by hypothesis). Also,

( f (x∗, x∗, ...), x∗, x∗, ....) = f̃ (x∗, x∗, ...) = (x∗, x∗, ...),

so x∗ is a generalized fixed point of f , and in view of the above observations, it is a GCFP. Conversely, if x∗
is a GCFP of f , then by Lemma 3.2(ii), x̃k

→ x∗ for any x ∈ `∞(X), where x∗ = (x∗, x∗, x∗, ...). As x∗ is obviously
a fixed point of f̃ , it is a CFP.

Remark 3.4. It is worth to observe that the convergence of the sequence (x̃k) of iterates of f̃ with respect to
the Tychonoff topology is equivalent to the convergence with respect to any of metrics dp,q and ds,q if q < 1.
Indeed, this follows from Corollary 2.6 and (6).

3.2. A fixed point theorem
If f : `∞(X)→ X, then let Ls,q( f ) be the Lipschitz constant of f with respect to ds,q on `∞(X), and let Lp,q( f )

be the Lipschitz constant of f with respect to dp,q on `∞(X). Similarly, by L̃s,q( f̃ ) and L̃p,q( f̃ ) we denote the
Lipschitz constants of corresponding map f̃ .

Remark 3.5. In this framework, Secelean’s Theorem 1.4 says that if Ls,1( f ) < 1, then f admits a unique
generalized fixed point, and for every (xn) ∈ `∞(X), the sequence (yk) defined by (4) converges to this fixed
point.
Our main result says what happens if we assume contractive conditions with respect to dp,q or ds,q with
q < 1.
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The next lemma shows the relationships between Lipschitz constants of f and f̃ with respect to the
considered metrics.

Lemma 3.6. In the above frame, if f : `∞(X)→ X, then

(i) L̃s,q( f̃ ) ≤ max{q,Ls,q( f )}, where q ≤ 1;

(ii) L̃p,q( f̃ ) ≤
(
(Lp,q( f ))p + q

)1/p
, where q < 1 and p ≥ 1.

Proof. Let x = (xn), y = (yn) ∈ `∞(X). We have:

ds,q( f̃ (x), f̃ (y)) = sup
{
d( f (x), f (y)), qd(x0, y0), ..., qnd(xn−1, yn−1), ...

}
≤ sup

(
{Ls,q( f )ds,q(x, y)} ∪

{
qnd(xn−1, yn−1) : n ∈N

})
≤ max{Ls,q( f )ds,q(x, y), qds,q(x, y)} = max{q,Ls,q( f )}ds,q(x, y),

so we get (i). If p ≥ 1 and q < 1, then

dp,q( f̃ (x), f̃ (y)) =

dp( f (x), f (y)) +

∞∑
n=1

qndp(xn−1, yn−1)


1/p

≤

(Lp,q( f ))pdp
p,q(x, y) + q

∞∑
n=1

qn−1dp(xn−1, yn−1)


1/p

≤

(
(Lp,q( f ))pdp

p,q(x, y) + qdp
p,q(x, y)

)1/p

=
(
(Lp,q( f ))p + q

)1/p
dp,q(x, y),

so we get (ii).

We are ready to state the main result of the paper.

Theorem 3.7. Assume that (X, d) is a complete metric space, and f : `∞(X) → X satisfies one of the following
conditions:

(Q) Ls,q( f ) < 1 for some q ∈ (0, 1);

(P) Lp,q( f ) < (1 − q)1/p for some q ∈ (0, 1) and p ∈ [1,∞).

Then f has a GCFP.
Moreover, if x∗ ∈ X is a GCFP of f and x ∈ `∞(X), then

(i) if Ls,q( f ) < 1 for some q < 1, it holds

d(xk, x∗) ≤ Ls,q( f )
max{Ls,q( f ), q}k−1

1 −max{Ls,q( f ), q}
ds,q(x̃1, x̃0); (7)

(ii) if Lp,q( f ) < (1 − q)1/p, it holds

d(xk, x∗) ≤ Lp,q( f )
((Lp,q( f ))p + q)

k−1
p

1 − ((Lp,q( f ))p + q)
1
p

dp,q(x̃1, x̃0). (8)
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Proof. We first deal with the case Lp,q( f ) < (1 − q)1/p. By Lemma 3.6, the Lipschitz constant of f̃ satisfies

L̃p,q( f̃ ) ≤ (Lp,q( f )p + q)1/p < ((1 − q) + q)1/p = 1,

so f̃ is a Banach contraction with respect to dp,q on `∞(X). Now take any x = (xn) ∈ `∞(X). Then for every
m > k, we have

dp,q(x̃k, x̃m) ≤ dp,q(x̃k, x̃k+1) + ... + dp,q(x̃m−1, x̃m) ≤ dp,q

(
f̃ k(x̃0), f̃ k(x̃1)

)
+ ... + dp,q

(
f̃ m−1(x̃0), f̃ m−1(x̃1)

)
≤ (L̃p,q( f̃ ))k(dp,q(x̃0, x̃1) + ... + (L̃p,q)m−k−1dp,q(x̃0, x̃1)) ≤

(L̃p,q( f̃ ))k

1 − L̃p,q( f̃ )
dp,q(x̃0, x̃1),

which means that (x̃k) is a Cauchy sequence with respect to dp,q. Moreover

d(xk+1, xm+1) = d( f (x̃k), f (x̃m)) ≤ Lp,q( f )dp,q(x̃k, x̃m) ≤ Lp,q( f )
(L̃p,q( f̃ ))k

1 − L̃p,q( f̃ )
dp,q(x̃0, x̃1),

which means that (xk) is a Cauchy sequence in X. Hence the set {xk : k ∈ N} ∪ {xn : n ∈ N∗} is bounded

and by Corollary 2.6(2), x̃k dp,q
→ x for some x ∈ `∞(X). Since f̃ is continuous with respect to dp,q, the point x

is a fixed point of f̃ , which must be unique as L̃p,q( f̃ ) < 1. Hence x is a CFP of f̃ (with respect to Tychonoff
topology – see Remark 3.4), and by Theorem 3.3, x = (x∗, x∗, ...), where x∗ is a CGFP of f . Moreover, by the
above computations, for every x ∈ X and m > k, we have

d(xk+1, xm+1) ≤ Lp,q( f )
(L̃p,q( f̃ ))k

1 − L̃p,q( f̃ )
dp,q(x̃0, x̃1) ≤ Lp,q( f )

((Lp,q( f ))p + q)
k
p

1 − ((Lp,q( f ))p + q)
1
p

dp,q(x̃1, x̃0). (9)

Letting m→∞, we get

d(xk, x∗) ≤ Lp,q( f )
((Lp,q( f ))p + q)

k−1
p

1 − ((Lp,q( f ))p + q)
1
p

dp,q(x̃1, x̃0)

for all k ∈N.
To get the assertion for assumption (Q) we could follow the same lines. However, as we will see in a
moment, conditions (Q) and (P) are equivalent.

Remark 3.8. As was announced, a bit surprisingly, conditions (P) and (Q) are equivalent. In fact, each of
them is also equivalent to a particular version of (P). More precisely, for every f : `∞(X)→ X, the following
conditions are equivalent:

(i) f satisfies (Q), that is, for some q ∈ (0, 1), Ls,q( f ) < 1;

(ii) f satisfies (P), that is, for some q ∈ (0, 1) and p ∈ [1,∞), Lp,q( f ) < (1 − q)1/p;

(iii) for every q ∈ (0, 1) there exists p ∈ [1,∞) such that Lp,q( f ) < (1 − q)1/p.

We first prove (i)⇒ (iii). Assume that Ls,q( f ) < 1 for some q ∈ (0, 1), and choose any q0 ∈ (0, 1). Observe that

lim
p→∞

(1 − q0)1/p = 1,

so we can take p ∈ [1,∞) so that Ls,q( f ) < (1−q0)1/p and also qp
≤ q0. Then let q′ ∈ [q, 1) be such that (q′)p = q0.

By Proposition 2.8(i),(ii) we have for all x, y ∈ `∞(X),

d( f (x), f (y)) ≤ Ls,q( f )ds,q(x, y) ≤ Ls,q( f )ds,q′ (x, y) ≤ Ls,q( f )dp,(q′)p (x, y) = Ls,q( f )dp,q0 (x, y).
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Hence Lp,q0 ( f ) ≤ Ls,q( f ) < (1 − q0)1/p. Thus we get (iii).
Implication (iii)⇒ (ii) is obvious.
Finally, we prove (ii) ⇒ (i). Assume that Lp,q( f ) < (1 − q)1/p for some q ∈ (0, 1) and p ∈ [1,∞). By Proposi-
tion 2.8(iii) for q′ > q1/p:

Ls,q′ ( f ) ≤
Lp,q( f )

(1 − q
(q′)p )1/p

.

Taking the limit with q′ → 1, we get

lim
q′→1

Ls,q′ ( f ) ≤
Lp,q( f )

(1 − q)1/p <
(1 − q)1/p

(1 − q)1/p = 1,

which means that Ls,q′ ( f ) < 1 for some q′ < 1 and we get (i).

Remark 3.9. In view of (iii) from Remark 3.8, we see that for every q0 ∈ (0, 1), condition (P) is equivalent to

(Pq0 ) Lp,q0 ( f ) < (1 − q0)1/p for some p ∈ [1,∞).

Later we will see that we cannot restrict to arbitrary q0 in (Q), and also we cannot restrict to arbitrary
p0 ∈ [1,∞) in (P).

Remark 3.10. Since (P) and (Q) are equivalent, formally it is enough to consider just one of them ((Q) seems
to be more natural). On the other hand, the theory works properly for both types of metrics. In particular,
we get natural estimations (7) and (8).

Remark 3.11. By Proposition 2.8(ii) we see that for any q ∈ (0, 1), Ls,1( f ) ≤ Ls,q( f ). Hence if (Q) (or,
equivalently, (P)) is satisfied, then also the assumptions of Theorem 1.4 are satisfied. (In fact, at the end
of [8], Secelean considered the metric d1, 1

2
and observed these relationships.). It turns out that the converse

is not true, as the next example shows.

Example 3.12. Let X := [0, 1] and f ((xn)) := 1
2 sup{xn : n ∈ N∗}. Then clearly Ls,1( f ) = 1

2 < 1, so the
assumptions of Theorem 1.4 are satisfied and x∗ = 0 is a generalized fixed point of f . However, if
x = (xn) ∈ `∞([0, 1]) is such that for some i ∈ N∗, xi := δ > 0, then for any k ∈ N, xk

≥
1
2δ. In particular, the

sequence of generalized iterations (xk) does not converge to x∗ = 0 and f has no GCFP.

Remark 3.13. Theorem 3.7 can be formulated in a more general way. Namely, assume that (X, d) is complete
and a sequence (an) of positive reals satisfies M := supn∈N

an
an−1

< 1, and let f : `∞(X) → X be such that one
of the following conditions holds:

(i) a0Ls,(an)( f ) < 1;

(ii) Lp,(an)( f ) <
(

1−M
a0

)1/p
for some p ∈ [1,∞),

where Ls,(an)( f ) and Lp,(an)( f ) are Lipschitz constants of f with respect to metrics ds,(an) and dp,(an), respectively.
Then f has a GCFP.
However, this assertion follows directly from Theorem 3.7. Indeed, for any x = (xn), y = (yn) ∈ `∞(X) we
have:

dp,(an)(x, y) =

 ∞∑
n=0

andp(xn, yn)


1/p

≤

 ∞∑
n=0

a0Mndp(xn, yn)


1/p

= a1/p
0 dp,M(x, y)

and therefore Lp,M( f ) ≤ a1/p
0 Lp,(an)( f ), so (ii) implies (P). Similarly, we can see that (i) implies (Q).

In the last section we are going to use Theorem 3.7 to prove Theorem 1.1. However, now we will show
another connection between mappings on finite Cartesian products and mappings defined on spaces of
sequences:
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Theorem 3.14. Assume that (X, d) is a complete metric space and let f : `∞(X)→ X satisfy (Q) (or, equivalently, (P))
for q ∈ (0, 1). Choose any x ∈ X and for any n ∈N, define fn : Xn

→ X as follows:

∀(x0,...,xn−1)∈Xn fn(x0, ..., xn−1) := f (x0, ..., xn−1, x, x, ...). (10)

Then for any n ∈ N, Lip( fn) ≤ Ls,q( f ) (w.r.t. maximum metric dm on Xn) and the sequence (xn
∗ ) of generalized

fixed points of fns’ (whose existence follows from Theorem 1.1) converges to x∗, a generalized fixed point of f . More
precisely, for every n ∈N,

d(xn
∗ , x∗) ≤ qn Ls,q( f )

1 − Ls,q( f )
d(x∗, x). (11)

Proof. Assume that Ls,q( f ) < 1 for some q ∈ (0, 1). For every n ∈N, we have

d
(

fn(x0, ..., xn−1), fn(y0, ..., yn−1)
)

= d
(

f (x0, ..., xn−1, x, x, ...), f (y0, ..., yn−1, x, x, ...)
)

≤ Ls,q( f )ds,q((x0, ..., xn−1, x, ...), (y0, ..., yn−1, x, ...))

= Ls,q( f ) max{qkd(xk, yk) : k = 0, ...,n − 1} ≤ Ls,q( f )dm((x0, ..., xn−1), (y0, ..., yn−1)).

Hence Lip( fn) ≤ Ls,q( f ) < 1 and the assumptions of Theorem 1.1 are fulfilled. Thus fn has a fixed point
xn
∗ ∈ X. Then we have

d(xn
∗ , x∗) = d( f (xn

∗ , ..., x
n
∗ , x, ...), f (x∗, ..., x∗, x∗, ...)) ≤ Ls,q( f )ds,q((xn

∗ , ..., x
n
∗ , x, ...), (x∗, ..., x∗, x∗, ...))

= Ls,q( f ) max{d(xn
∗ , x∗), q

nd(x∗, x)} ≤ Ls,q( f )(d(xn
∗ , x∗) + qnd(x∗, x)).

Hence

d(xn
∗ , x∗) ≤ qn Ls,q( f )

1 − Ls,q( f )
d(x∗, x).

Finally, we give an example which shows that the thesis of the above theorem need not hold under the
assumption Ls,1( f ) < 1:

Example 3.15. Consider function f from Example 3.12. Take any x > 0 and for every n ∈N, let fn : [0, 1]n
→

[0, 1] be defined by (10), i.e.,
fn(x0, .., xn−1) := f (x0, ..., xn−1, x, x, ...).

Then, clearly, fn(x0, ..., xn−1) ≥ 1
2 x for every (x0, ..., xn−1). In fact, xn

∗ = 1
2 x, so (xn

∗ ) does not converge to x∗ = 0.

4. An Example

To illustrate the considered machinery, we will calculate Lipschitz constants Lp,q( f ) and Ls,q( f ) in the
case of mappings f : `∞(R)→ R of the form

f (x) =
∑
n∈N∗

bnxn, for x = (xn) ∈ `∞(R) (12)

for some sequence (bn) of reals with
∑

n∈N∗ |bn| < ∞. We will use these calculations in a discussion connected
with Remark 3.8.
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Proposition 4.1. If f : `∞(R)→ R is defined by (12), then

Ls,q( f ) =

∞∑
n=0

|bn|

qn

and if q < 1, then

Lp,q( f ) =


(∑
∞

n=0
|bn |

p/(p−1)

(qn)1/(p−1)

)(p−1)/p
if p > 1,

sup
{
|bn |

qn : n ∈N∗
}

if p = 1.

Proof. Let q < 1. Set I1 := supn∈N∗
|bn |

qn . Then for every x = (xn), y = (yn) ∈ `∞(R), we have

d( f (x), f (y)) =

∣∣∣∣∣∣∣
∞∑

n=0

bnxn − bnyn

∣∣∣∣∣∣∣ ≤
∞∑

n=0

|bn|
∣∣∣xn − yn

∣∣∣
=

∞∑
n=0

|bn|

qn qn
∣∣∣xn − yn

∣∣∣ ≤ I1

∞∑
n=0

qn
∣∣∣xn − yn

∣∣∣ = I1d1,q(x, y).

Now assume that I1 < ∞, and let ε > 0. Then there is n0 such that
|bn0 |

qn0 ≥ I1 − ε. If yn = 0 for all n ∈ N∗ and
xn = 0 for n , n0 and xn0 = 1, then

| f (x) − f (y)| = |bn0 xn0 | =
|bn0 |

qn0
qn0 |xn0 | =

|bn0 |

qn0
d1,q(x, y) ≥ (I1 − ε)d1,q(x, y).

Hence L1,q = I1. In a similar way we can show that L1,q = I1 when I1 = ∞.
Now assume p > 1. Then for every x = (xn), y = (yn) ∈ `∞(R), we have by the Hölder inequality:

| f (x) − f (y)| =

∣∣∣∣∣∣∣
∞∑

n=0

bn(xn − yn)

∣∣∣∣∣∣∣ ≤
∞∑

n=0

|bn|

(qn)1/p · (q
n)1/p

∣∣∣xn − yn

∣∣∣
≤

 ∞∑
n=0

|bn|
p/(p−1)

(qn)1/(p−1)


(p−1)/p  ∞∑

n=0

qn
|xn − yn|

p


1/p

=

 ∞∑
n=0

|bn|
p/(p−1)

(qn)1/(p−1)


(p−1)/p

dp,q((xn), (yn)).

Observe that the first inequality is the equality if bn(xn − yn) ≥ 0 for all n ∈ N∗. Moreover, from the

Hölder inequality we know that the second inequality is the equality iff the sequences
((
|bn |

(qn)1/p

)p/(p−1)
)
,((

(qn)1/p
|xn − yn|

)p)
are linearly dependent. For every n ∈N∗, let yn := 0, and define

xn :=

 sgn(bn)
(
|bn |

qn

)1/(p−1)
if n ≤ N,

0 if n > N,
(13)

where sgn(·) denotes the sign function. Then by previous observations, replacing (bn) by (b′n) defined by
b′n := bn for n ≤ N and b′n := 0 for n > N, we have

| f (x) − f (y)| =

 N∑
n=0

|bn|
p/(p−1)

(qn)1/(p−1)


(p−1)/p

dp,q(x, y).

Since N was taken arbitrarily, we get Lp,q( f ) =
(∑
∞

n=0
|bn |

p/(p−1)

(qn)1/(p−1)

)(p−1)/p
.

Finally, for any q ≤ 1 and every x = (xn), y = (yn) ∈ `∞(R), we have

| f (x) − f (y)| ≤
∞∑

n=0

|bn||xn − yn| =

∞∑
n=0

|bn|

qn qn
|xn − yn| ≤

 ∞∑
n=0

|bn|

qn

 ds,q(x, y).
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Now let yn := 0 for all n ∈N∗, fix any N ∈N, and define xn := 0 for n > N and for n = 0, ...,N, set xn := sgn(bn)
qn .

Then

| f (x) − f (y)| =

∣∣∣∣∣∣∣
N∑

n=0

bnxn

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
N∑

n=0

bn

qn qn sgn(bn)
qn

∣∣∣∣∣∣∣ =

N∑
n=0

|bn|

qn · 1 =

 N∑
n=0

|bn|

qn

 ds,q(x, y).

Since N was arbitrary, we have Ls,q( f ) =
∑

n∈N∗
|bn |

qn .

Remark 4.2. It is very likely that the above result can be obtained from functional analysis machinery,
since f is a linear map which is a sum of linear maps. However, we presented here the proof for the sake
of completeness.

Example 4.3. We will consider functions f : `∞(R)→ R of the form (12) with different sequences (bn).
(1) Let b0 = 0 and bn = bn, where b ∈ (0, 1

2 ] is fixed. By Proposition 4.1,

Ls,q( f ) =

∞∑
n=1

(
b
q

)n

=

{ b
q−b if q > b,
∞ if q ≤ b.

Now if b < 1/2, then Ls,q( f ) < 1 iff q > 2b. This shows that in the formulation of condition (Q) we cannot
restrict to some particular value q0 (compare Remark 3.9).
If b = 1/2, then

∑
∞

n=1 bn = 1, so every x ∈ R is a generalized fixed point of f . Also limq→1 Ls,q( f ) = 1, which
shows that in Theorem 3.7 we cannot assume that Ls,q( f ) > 1.
(2) Let bn = 0 for n , 1 and b1 = b, where b ∈ (0, 1] is fixed. By Proposition 4.1, for every p ∈ [1,∞),

Lp,q( f ) =
b

q1/p .

Now if b < 1, then Lp,q( f ) < (1 − q)1/p iff b < (q − q2)1/p. In particular, we can choose q ∈ (0, 1) and p ∈ [1,∞)
such that Lp,q( f ) < (q − q2)1/p. However, if we fix p0 ∈ [1,∞), then

sup
{
(q − q2)1/p : p ∈ [1, p0], q ∈ (0, 1)

}
=

1
41/p0

< 1.

This shows that in the formulation of condition (P) we cannot restrict to some particular value of p0.
If b = 1, then every x ∈ R is a generalized fixed point of f . Also, for every q ∈ (0, 1), limp→∞

Lp,q( f )
(1−q)1/p =

limp→∞
1

(q−q2)1/p = 1. This shows that in Theorem 3.7 we cannot assume that Lp,q( f ) > (1 − q)1/p.

5. Applications

At first we show that Theorem 3.7 implies Theorem 1.1 and, in particular, the classical Banach fixed
point theorem. Recall that by Xm we denote the Cartesian product of m copies of X and we endow Xm with
the maximum metric

dm((x0, ..., xm−1), (y0, ..., ym−1)) := max{d(x0, y0), ..., d(xm−1, ym−1)}.

Proof. (of Theorem 1.1) Choose q ∈ (0, 1) such that Lip(1) < qm−1. Define f : `∞(X)→ X by f (x0, x1, x2, ...) :=
1(x0, ..., xm−1). For every x = (xn), y = (yn) ∈ `∞(X), we have

d( f (x), f (y)) = d(1(x0, ..., xm−1), 1(y0, ..., ym−1)) ≤ Lip(1) max{d(x0, y0), ..., d(xm−1, ym−1)}

≤
Lip(1)
qm−1 max{q0d(x0, y0), ..., qm−1d(xm−1, ym−1)} ≤

Lip(1)
qm−1 ds,q(x, y).

Hence Ls,q( f ) ≤ Lip(1)
qm−1 < 1, so mapping f satisfies the assumptions of Theorem 3.7. It remains to observe

that if x0, ..., xm−1 ∈ X, then sequence (xk) defined by (1), is the sequence of generalized iterates of f at
x := (xm−1, ..., x0, x0, x0, ...).
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The second application of our result deals with a recursive procedure which ”looks back” at all previously
defined elements.

Example 5.1. Fix (bn) ⊂ R, c ∈ R, and consider the sequence (xk) defined by the following linear recursion:{
x1 := c,
xk := c + b0xk−1 + b1xk−2 + ... + bk−2x1, k ≥ 2.

Then (xk) is the sequence of iterates of y = (0, 0, ...), of the map f (x) :=
∑
∞

n=0 bnxn + c. Thus if the assumptions
of Theorem 3.7 are satisfied (the Lipschitz constants can be calculated as in Proposition 4.1), then xk

→ x∗,
where x∗ is the GCFP of f , that is

x∗ = f (x∗, x∗, ...) =

∞∑
n=0

bnx∗ + c =

 ∞∑
n=0

bn

 x∗ + c,

which gives x∗ = c
1−(∑∞n=0 bn) .

For example, assume that bn := 1
3·2n , n ∈N∗ and c = 1. Setting q = 4

5 , we have that Ls,q( f ) = 8
9 , so f fulfills the

assumptions of Theorem 3.7. Thus xk
→ x∗ = c

1−
∑

n∈N∗ bn
= 3. Moreover, by the second part of Theorem 3.7,

for every k ∈N,

|xk
− 3| ≤ Ls,q( f )

max{Ls,q( f ), q}k−1

1 −max{Ls,q( f ), q}
ds,q(x̃1, (0)) = 9

(8
9

)k

since ds,q(x̃1, (0)) = ds,q((c, 0, 0, ...), (0, 0, ...)) = c = 1.

Remark 5.2. As we have already mentioned, Secelean [8] used his theorem to study the Hutchinson–
Barnsley theory of fractals for maps defined on `∞(X). In our paper [5] we use results of this article to obtain
an appropriate version of the Hutchinson–Barnsley theory in such setting.
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