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Abstract. We introduce and study a three-step iterative algorithm for a pair of total asymptotically
nonexpansive mappings in a uniformly convex metric space. The proposed algorithm includes Mann
and Ishikawa iterative algorithms, the iterative algorithm of Khan and Takahashi [13] and the three-step
iterative algorithm of Xu and Noor [26] as special cases. Our results are new and generalize several recent
results in Hilbert spaces, uniformly convex Banach spaces and CAT (0) spaces, simultaneously.
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1. Introduction

Let C be a nonempty subset of a metric space X and {xn} a bounded sequence in X. Define a functional
r(., {xn}) : X→ R+ by

r(x, {xn}) = lim sup
n→∞

d(x, xn) for all x ∈ X.

Set

r({xn}) = inf
x∈C

r (x, {xn}) and A({xn}) =
{
y ∈ C : r(y, {xn}) = r({xn})

}
as asymptotic center and asymptotic radius of {xn}with respect to C, respectively.

A sequence {xn} 4−converges to x if x is the unique asymptotic center for every subsequence {un} of {xn}

and we write 4 − limn→∞ xn = x.
It has been shown in [18] that 4−convergence coincides with weak convergence in a Banach space with

Opial’s property.

2010 Mathematics Subject Classification. Primary 47H09, 47H10; Secondary 49M05
Keywords. Convex metric space, an iterative algorithm, total asymptotically nonexpansive mapping, common fixed point, 4-

convergence and strong convergence.
Received: 12 April 2017; Accepted: 20 May 2017
Communicated by Vladimir Rakočević
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In 2006, Alber et al. [1] introduced the concept of total asymptotically nonexpansive mappings as the
generalization of a few classes of mappings including
(1) nonexpansive mappings
(2) asymptotically nonexpansive mappings
(3) asymptotically nonexpansive mappings in the intermediate sense
(4) generalized asymptotically nonexpansive mappings.

A mapping T : C→ C is a total asymptotically nonexpansive if there exist non-negative real sequences
{kn} and {ϕn} with kn → 0 and ϕn → 0 and a strictly increasing continuous function ξ : [0,∞)→ [0,∞) with
ξ(0) = 0 such that

d(Tnx,Tny) ≤ d(x, y) + knξ
(
d(x, y)

)
+ ϕn

for all x, y ∈ C, n ∈N.
When y ∈ F (T) = {x ∈ C : Tx = x} , the mapping T is called total asymptotically quasi- nonexpansive.
Convergence theorems for the mappings in (1)-(4) in the framework of uniformly convex Banach spaces

and CAT(0) spaces via different iterative algorithms have been obtained by a number of researchers (e.g.,
[2, 3, 12, 16, 23, 26] and the references therein).

Khan and Takahashi [13] used the two-step iterative algorithm

x1 ∈ C,
yn = βnTn

2 xn + (1 − βn)xn,
xn+1 = αnTn

1 yn + (1 − αn)xn, n ∈N,
(1)

to approximate common fixed points of a pair of asymptotically nonexpansive mappings T1,T2 on a
nonempty closed and convex subset C of a uniformly convex Banach space and αn, βn ∈ [b, c] for some
b, c ∈ (0, 1) (see also [8, 14]).

Noor [19], in 2000, introduced a three-step iterative algorithm and used it for approximate solutions of
variational inclusion in Hilbert spaces. Glowinski and Le Tallec [9] applied a three-step iterative algorithms
for finding the approximate solution of the elastoviscoplasticity problem, eigenvalue problem and liquid
crystal theory. In 2002, Xu and Noor [26] introduced the following algorithm:

x1 ∈ C,
zn = γnTnxn + (1 − γn)xn,
yn = βnTnzn + (1 − βn)xn,
xn+1 = αnTnyn + (1 − αn)xn, n ∈N.

(2)

They used it to approximate fixed points of asymptotically nonexpansive mappings in a uniformly convex
Banach space assuming the conditions on the sequences {αn} and

{
βn

}
as under:

(C1) : 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1
(C2) : 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

The iterative algorithms (1)-(2) involve convex combinations formed through the built-in linear structure
of the Banach space and also contain modified Mann and Ishikawa iterative algorithms as special cases.
Most of the problems in various disciplines of science are nonlinear in nature, whereas fixed point theory
explored in the setting of Banach spaces majorly depends on the linear structure of the underlying space.
One of the nonlinear framework for fixed point theory is a metric space embedded with a convex structure
W : X2

× I→ X satisfying

d
(
u,W

(
x, y, α

))
≤ αd(u, x) + (1 − α)d(u, y) (3)

for all x, y,u ∈ X and α ∈ I = [0, 1] (see [24]). A metric space X together with a convex structure W is known
as a convex metric space. For the sake of simplicity, we denote a convex metric space also by X.A nonempty
subset C of X is convex if W(x, y, λ) ∈ C for all x, y ∈ C and λ ∈ I. Some examples of convex metric spaces
are normed spaces and their convex subsets, Hadamard manifolds and CAT (0) spaces.
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Kohlenbach [17] enriched the concept of convex metric space as ”hyperbolic space” by including three
additional conditions in the definition of a convex metric space, see for its use, for example, [4].

A convex metric space X is uniformly convex [22] if for any ε > 0, r > 0, x, y, z ∈ X,there exists α > 0 such
that d (z, x) ≤ r, d

(
z, y

)
≤ r and d

(
x, y

)
≥ rε imply that d

(
z,W

(
x, y, 1

2

))
≤ r (1 − α) < r.

The class of uniformly convex metric space is nonlinear in nature and is a general theoretical setting
with rich geometrical properties for metric fixed point theory.

To know the importance of different iterative algorithms for the approximation of fixed points of total
asymptotically nonexpansive mappings in uniformly convex Banach spaces, CAT (0) spaces and hyperbolic
spaces, we refer the interested reader to [7, 11, 15, 21, 25].

We define a unified iterative algorithm containing the algorithms (1)-(2) as special cases, in a general
nonlinear setup, namely, uniformly convex metric space. Our algorithm reads as under:

x1 ∈ C,
zn = W

(
Tn

1 xn, xn, γn

)
,

yn = W
(
Tn

2 zn, xn, βn

)
,

xn+1 = W
(
Tn

1 yn, xn, αn

)
, n ∈N.

(4)

In this paper, we approximate common fixed points of two mappings which are uniformly continuous
and total asymptotically nonexpansive via the algorithm (4) in a uniformly convex metric space. Throughout
the paper, we denote F (T1) ∩ F (T2) by F.

For the development of our main section, some key results are needed as listed below.

Lemma 1.1. [5] Let C be a nonempty, closed and convex subset of a complete uniformly convex metric space X. Then
every bounded sequence {xn} in C has a unique asymptotic center in C.

Lemma 1.2. [5] Let C be a nonempty closed and convex subset of a uniformly convex complete metric space. Let
{xn} be a bounded sequence in C such that AC({xn}) = {y} and r({xn}) = ρ. If {ym} is another sequence in C such that
limm→∞ r(ym, {xn}) = ρ (a real number), then limm→∞ ym = y.

Lemma 1.3. ([20]) If {rn}, {sn} and {tn} are non-negative real sequences satisfying rn+1 ≤ (1 + sn)rn +tn for all
n ∈N,

∑
∞

n=1 sn < ∞ and
∑
∞

n=1 tn < ∞, then limn→∞ rn exists.

Lemma 1.4. [6] Let X be a uniformly convex metric space with continuous convex structure W. Let x ∈ X and {an}

be a sequence in [b, c] for some b, c ∈ (0, 1). If {un} and {vn} are sequences in X such that lim supn−→∞ d(un, x) ≤
r, lim supn−→∞ d(vn, x) ≤ r and limn−→∞ d(W(un, vn, an), x) = r for some r ≥ 0, then limn→∞ d(un, vn) = 0.

2. Convergence Analysis

We first prove the following helpful lemmas.

Lemma 2.1. Let C be a nonempty closed and convex subset of a convex metric space X. Let Ti : C → C be total
asymptotically nonexpansive mappings with sequences {kin} and {ϕin}, n ∈ N, i = 1, 2 and ξi satisfy the following
conditions:
(C3) :

∞∑
n=1

kin < ∞ and
∞∑

n=1
ϕin < ∞;

(C4) : there exist constants Mi > 0, M∗i > 0 such that ξi (t) ≤M∗iλ for all λ ≥M.
Let {xn} be the sequence as defined in (4). If F , φ, then lim

n→∞
d
(
xn, p

)
exists for each p ∈ F.

Proof. Using (C4) and strictly increasing function ξi, we obtain

ξi (λ) ≤ ξi (Mi) + λM∗i for i = 1, 2. (5)
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We apply (3) to (4) and p ∈ F and obtain

d
(
zn, p

)
= d

(
W

(
Tn

1 xn, xn, γn

)
, p

)
≤ γnd

(
Tn

1 xn, p
)

+
(
1 − γn

)
d
(
xn, p

)
≤ γn

[
d(xn, p) + k1nξ1

(
d(xn, p)

)
+ ϕ1n

]
+

(
1 − γn

)
d
(
xn, p

)
≤ γn

[
d(xn, p) + k1nξ1 (M1) + k1nM∗1d(xn, p) + ϕ1n

]
+

(
1 − γn

)
d
(
xn, p

)
≤

(
1 + k1nM∗1

)
d(xn, p) + k1nξ1 (M1) + ϕ1n

(6)

and

d
(
yn, p

)
= d

(
W

(
Tn

2 zn, xn, βn

)
, p

)
≤ βnd

(
Tn

2 zn, p
)

+
(
1 − βn

)
d
(
xn, p

)
+

(
1 − βn

)
d
(
xn, p

)
≤ βn

[
d(zn, p) + k2nξ2

(
d(zn, p)

)
+ ϕ2n

]
≤ βn

[
d(zn, p) + k2nξ2 (M2) + k2nM∗2d(zn, p) + ϕ2n

]
+

(
1 − βn

)
d
(
xn, p

)
≤

(
1 + k2nM∗2

)
d(zn, p) + k2nξ2 (M2) + ϕ2n.

(7)

Inserting (6) into (7), we get

d
(
yn, p

)
≤

(
1 + k2nM∗2

) [ (
1 + k1nM∗1

)
d(xn, p)

+k1nξ1 (M1) + ϕ1n

]
+ k2nξ2 (M2) + ϕ2n

=
[
1 + k1nM∗1 + k2nM∗2 + k1nM∗1k2nM∗2

]
d(xn, p)

+ k1n

(
1 + k2nM∗2

)
ξ1 (M1) + ϕ1n

(
1 + k2nM∗2

)
+ k2nξ2 (M2) + ϕ2n.

(8)

Also

d
(
xn+1, p

)
= d

(
W

(
Tn

1 yn, xn, αn

)
, p

)
≤ αnd

(
Tn

1 yn, p
)

+ (1 − αn) d
(
xn, p

)
≤ αn

{
d
(
yn, p

)
+ k1n ξ1

(
d
(
yn, p

))
+ ϕ1n

}
+ (1 − αn) d

(
xn, p

)
≤ αn

{(
1 + k1nM∗1

)
d(yn, p) + k1nξ1 (M1) + ϕ1n

}
+ (1 − αn) d

(
xn, p

)
≤

(
1 + k1nM∗1

)
d(yn, p) + k1nξ1 (M1) + ϕ1n + (1 − αn) d

(
xn, p

)
.

(9)

Inserting (8) into (9), we get

d
(
xn+1, p

)
≤

(
1 + k1nM∗1

) 
[
1 + k1nM∗1 + k2nM∗2 + k1nM∗1k2nM∗2

]
d(xn, p)

+k1n

(
1 + k2nM∗2

)
ξ1 (M1) + ϕ1n

(
1 + k2nM∗2

)
+k2nξ2 (M2) + ϕ2n

 + k1nξ1 (M1) + ϕ1n

=

 1 + k1nM∗1 + k1nM∗1
(
1 + k1nM∗1

)
+k2nM∗2

(
1 + k1nM∗1

)
+ k1nM∗1k2nM∗2

(
1 + k1nM∗1

)  d(xn, p)

+ k1n

(
1 + k2nM∗2

)
ξ1 (M1)

(
1 + k1nM∗1

)
+ ϕ1n

(
1 + k2nM∗2

) (
1 + k1nM∗1

)
+ k2nξ2 (M2)

(
1 + k1nM∗1

)
+ ϕ2n

(
1 + k1nM∗1

)
+ k1nξ1 (M1) + ϕ1n.

(10)

Since {kin} and
{
ϕin

}
are bounded, we set max

{
kin, ϕin

}
≤ δ for some δ > 0.
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Put

sn = k1nM∗1 + k1nM∗1
(
1 + δM∗1

)
+ k2nM∗2

(
1 + δM∗1

)
+ k1nM∗1δM∗2

(
1 + δM∗1

)
and

tn = k1n

(
1 + δM∗2

)
ξ1 (M1)

(
1 + δM∗1

)
+ ϕ1n

(
1 + δM∗2

) (
1 + δM∗1

)
+k2nξ2 (M2)

(
1 + δM∗1

)
+ ϕ2n

(
1 + δM∗1

)
+ k1nξ1 (M1) + ϕ1n.

In the light of (C3),
∞∑

n=1
sn < ∞ and

∞∑
n=1

tn < ∞.

Therefore we apply Lemma 1.3 to (10) and get that lim
n→∞

d
(
xn, p

)
exists for each p ∈ F.

Lemma 2.2. Let C be a nonempty closed and convex subset of a uniformly convex metric space X with continu-
ous convex structure W. Let Ti : C → C be total asymptotically nonexpansive mappings with F , φ and satisfy
(C3) − (C4). Then for the sequences {xn} ,

{
yn

}
and {zn} given in (4), we have the following assertions: (i) If (C1) is

satisfied, then limn→∞ d
(
Tn

1 yn, xn

)
= 0; (ii) If (C2) is satisfied and lim infn→∞ αn > 0, then limn→∞ d

(
Tn

2 zn, xn

)
= 0.

Proof. Suppose (i) holds. Then there exist a, b ∈ (0, 1) such that 0 < a ≤ αn ≤ b < 1.
By Lemma 2.1, lim

n→∞
d
(
xn, p

)
exists for p ∈ F. Let lim

n→∞
d
(
xn, p

)
= c for some c ≥ 0.We discuss the case when

c > 0. Now, lim
n→∞

d
(
xn, p

)
= c can be expressed as

lim
n→∞

d
(
W

(
Tn

1 yn, xn, αn

)
, p

)
= c. (11)

As in (9), we have that

d
(
Tn

1 yn, p
)
≤ d

(
yn, p

)
+ k1n ξ1

(
d
(
yn, p

))
+ ϕ1n

≤

(
1 + k1nM∗1

)
d(yn, p) + k1nξ1 (M1) + ϕ1n

≤

(
1 + k1nM∗1

) 
(
1 + k1nM∗1 + k2nM∗2 + k1nM∗1k2nM∗2

)
d(xn, p)

+k1n

(
1 + k2nM∗2

)
ξ1 (M1) + ϕ1n

(
1 + k2nM∗2

)
+k2nξ2 (M2) + ϕ2n

 + k1nξ1 (M1) + ϕ1n.

Taking lim supn→∞ on both sides in the above inequality and with the help of (C3), we get that

lim sup
n→∞

d
(
Tn

1 yn, p
)
≤ c. (12)

In the light of (11) and (12), we utilize Lemma 1.4 with values x = p, r = c, an = αn,un = Tn
1 yn, vn = xn and

get that

lim
n→∞

d
(
Tn

1 yn, xn

)
= 0. (13)

Suppose (ii) holds. Then there exists α, a, b ∈ (0, 1) such that 0 < a ≤ βn ≤ b < 1 and α ≤ αn for all n ∈N.
From (8), we have that

lim sup
n→∞

d
(
yn, p

)
≤ c. (14)

Re-arranging the terms in the inequality (9) and then using the given fact that 0 < α ≤ αn for all n ∈ N, we
obtain

d
(
xn, p

)
≤

(
1 + k1nM∗1

)
d(yn, p) + k1nξ1 (M1) + ϕ1n

+
d
(
xn, p

)
− d

(
xn+1, p

)
α

.
(15)
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By lim inf
n→∞

on both sides of (15), we get

c ≤ lim inf
n→∞

d
(
yn, p

)
. (16)

A combined effect of (14) and (16) yields that

lim
n→∞

d
(
yn, p

)
= c.

That is,

lim
n→∞

d
(
W

(
Tn

2 zn, xn, βn

)
, p

)
= c. (17)

Since

d
(
Tn

2 zn, p
)
≤ d(zn, p) + k2nξ2

(
d(zn, p)

)
+ ϕ2n

≤

(
1 + k2nM∗2

)
d(zn, p) + k2nξ2 (M2) + ϕ2n

≤

(
1 + k2nM∗2

) [(
1 + k1nM∗1

)
d(xn, p) + k1nξ1 (M1) + ϕ1n

]
+ k2nξ2 (M2) + ϕ2n,

lim supn→∞ on both sides in the above inequality and using (C3), we get that

lim sup
n→∞

d
(
Tn

2 zn, p
)
≤ c. (18)

Again utilizing Lemma 1.4 with values x = p, r = c, an = βn,un = Tn
2 zn, vn = xn together with (17) and (18),

we have that

lim
n→∞

d
(
Tn

2 zn, xn

)
= 0.

Lemma 2.3. Let C be a nonempty closed and convex subset of a uniformly convex metric space X. Let T1,T2 : C→ C
be uniformly continuous and total asymptotically nonexpansive mappings with F , φ and {xn} be given in (4). If the
conditions (C1) − (C4) are satisfied, then we have

lim
n→∞

d (T1xn, xn) = 0 = lim
n→∞

d (T2xn, xn) .

Proof. It has been obtained in Lemma 2.2 that

lim
n→∞

d
(
Tn

1 yn, xn

)
= 0 = lim

n→∞
d
(
Tn

2 zn, xn

)
.

Since

d
(
xn, yn

)
= d

(
xn,W

(
Tn

2 zn, xn, βn

))
≤ βnd

(
xn,Tn

2 zn

)
→ 0,

therefore

d
(
Tn

1 xn, xn

)
≤ d

(
Tn

1 xn,Tn
1 yn

)
+ d

(
Tn

1 yn, xn

)
≤ d

(
xn, yn

)
+ k1n ξ1

(
d
(
xn, yn

))
+ ϕ1n + d

(
Tn

1 yn, xn

)
≤

(
1 + k1nM∗1

)
d
(
xn, yn

)
+ k1nξ1 (M1) + ϕ1n + d

(
Tn

1 yn, xn

)
→ 0.
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Similarly

d (xn, zn) = d
(
xn,W

(
Tn

1 xn, xn, γn

))
≤ γnd

(
xn,Tn

1 xn

)
→ 0

gives that

d
(
Tn

2 xn, xn

)
≤ d

(
Tn

2 xn,Tn
2 zn

)
+ d

(
Tn

2 zn, xn

)
≤ d (xn, zn) + k2n ξ2 (d (xn, zn)) + ϕ2n + d

(
Tn

2 zn, xn

)
≤

(
1 + k2nM∗2

)
d (xn, zn) + k2n ξ2 (M2) + ϕ2n + d

(
Tn

2 zn, xn

)
→ 0.

(19)

Also observe that

d (xn, xn+1) = d
(
xn,W

(
Tn

1 yn, xn, αn

))
≤ αnd

(
xn,Tn

1 yn

)
→ 0.

(20)

The inequality

d (xn,T1xn) ≤ d (xn, xn+1) + d
(
xn+1,Tn+1

1 xn+1

)
+ d

(
Tn+1

1 xn+1,Tn+1
1 xn

)
+ d

(
Tn+1

1 xn,Txn

)
,

uniformly continuity of T1 and (19)-(20) provide that

lim
n→∞

d (xn,T1xn) = 0.

Similarly

lim
n→∞

d (xn,T2xn) = 0.

That is

lim
n→∞

d (xn,T1xn) = 0 = lim
n→∞

d (xn,T2xn) .

Remark 2.4. Lemma 2.3 extends Lemma 2.2 of Xu and Noor [26] for two mappings without any additional condition
on control parameters and Lemma 2.2 of Khan and Takahashi [13] for three- step iterative algorithm in the setting of
convex metric spaces.

Now we obtain our 4−convergence theorem.

Theorem 2.5. Let C be a nonempty closed and convex subset of a complete uniformly convex metric space X. Let
T1,T2 : C → C be uniformly continuous and total asymptotically nonexpansive mappings with F , φ and {xn} be
given in (4). If the conditions (C1) − (C4) are satisfied, then 4 − limn→∞ xn = x ∈ F.

Proof. For each p ∈ F, limn→∞
(
xn, p

)
exists (Lemma 2.1) and hence {xn} is bounded. Therefore {xn} has a

unique asymptotic centre, that is, A({xn}) = {x}. Let {un} be any subsequence of {xn} such that A({un}) = {u}.
By definition of asymptotic centre, u ∈ C.We claim that u is a fixed point of T1.

By Lemma 2.3, we have

lim
n→∞

d (un,T1un) = 0. (21)
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In the presence of strictly increasing function ξ1 and (C2), we calculate, for any m,n ∈N,that

d
(
Tm

1 u,un

)
≤ d

(
Tm

1 u,Tm
1 un

)
+ d

(
Tm

1 un,Tm−1
1 un

)
+ ... + d

(
T2

1un,T1un

)
+ d (T1un,un)

≤ d (u,un) + k1mξ1 (d (u,un)) + ϕ1m +

m−1∑
j=0

d(T j
1un,T

j+1
1 un)

≤

(
1 + k1mM∗j

)
d(u,un) + k1mξ1 (M1) + ϕ1m +

m−1∑
j=0

d(T j
1un,T

j+1
1 un).

In the light of uniform continuity of T j
1

(
j = 2, 3, 4, ...,m − 1

)
and (21), the above inequality reduces to

r
(
Tm

1 u, {un}
)
≤

(
1 + k1mM∗j

)
r (u, {un}) .

That is,

lim sup
m→∞

r
(
Tm

1 u, {un}
)
≤ r (u, {un}) .

By the definition of A({un}),we have that

r (u, {un}) ≤ lim inf
m→∞

r
(
Tm

1 u, {un}
)
.

Therefore

lim
m→∞

r
(
Tm

1 u, {un}
)

= r (u, {un}) .

By Lemma 2, limm→∞ Tm
1 u = u. Since T1 is uniformly continuous, therefore T1u = T1

(
limm→∞ Tm

1 u
)

=

limm→∞ Tm+1
1 u = u. That is, u ∈ F (T1) .By similar calculations, we have that u ∈ F (T2) . That is, u ∈ F.

Therefore, by Lemma 5 limn→∞ d(xn,u) exists. Suppose x , u. Then by the uniqueness of asymptotic
centres, we have

lim sup
n→∞

d(un,u) < lim sup
n→∞

d(un, x)

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn,u)

= lim sup
n→∞

d(un,u),

which is not true. Hence x = u.Therefore, A({un}) = {u} for all subsequences {un} of {xn}. This proves that
4 − limn→∞ xn = x ∈ F.

Recall that (i) T : C → C is completely continuous if d(xn,Txn) → 0 imply that {Txn} has a convergent
subsequence (ii) T1,T2 : C→ C with F , φ, satisfy condition (AV) if

d (x,T1x) + d (x,T2x)
2

≥ f (d(x,F)) for x ∈ C,

where f : [0,∞)→ [0,∞) is a nondecreasing function with f (0) = 0 and f (t) > 0 for all t ∈ (0,∞).
Next, we prove strong convergence theorem via (4).

Theorem 3.7. Under the hypotheses of Theorem2.5, assume that one of the following conditions is satisfied:
(a) Every subsequence of {xn} is convergent
(b) Tm

1 (or Tm
2 ) is completely continuous for some m ≥ 1

(c) T1 and T2 satisfy condition(AV).
Then {xn}, {yn} and {zn} in (4) converge strongly to the same point of F.
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Proof. Lemma 2.3 provides that

lim
n→∞

d (xn,T1xn) = 0 = lim
n→∞

d (xn,T2xn) .

Assume that (a) holds. Let {xni } be a subsequence of {xn} such that xni → z ∈ C. Then (20) assures that z ∈ F.
As limn→∞ d

(
xn, p

)
exists for all p ∈ F (Lemma 2.1), so xn → z.

Let (b) be given. Suppose Tm
1 is completely continuous for some m ≥ 1.

Note that

d
(
Tm

1 xn, xn

)
≤ d

(
Tm

1 xn,Tm−1
1 xn

)
+ d

(
Tm−1

1 xn,Tm−2
1 xn

)
+ ... + d

(
T2

1xn,T1xn

)
+ d (T1xn, xn)→ 0

because T j
1

(
j = 2, 3, 4, ...,m − 1

)
are uniformly continuous. Since {xn} is bounded and Tm

1 is completely
continuous, so {Tm

1 xn} has a convergent subsequence {Tm
1 xn j } (say). Suppose Tm

1 xn j → z ∈ C.
Then

d
(
xn j , z

)
≤ d

(
xn j ,T

m
1 xn j

)
+ d

(
Tm

1 xn j , z
)
→ 0.

Hence xn j → z. The rest of the proof is similar to the case (a).
Finally assume (c). Then by condition (AV), we obtain

d (xn,T1xn) + d (xn,T2xn)
2

≥ f (d(xn,F))

By lim infz∈F on both sides in (10), we obtain that

d (xn+1,F) ≤ (1 + sn) d (xn,F) + tn

where
∑
∞

n=1 sn < ∞ and
∑
∞

n=1 tn < ∞.
By Lemma 2.1, limn→∞ d (xn,F) exists. We claim that limn→∞ d (xn,F) = 0.Assume that c = limn→∞ d (xn,F) >

0. Then we can choose a natural number n0 such that 0 < c
2 < d (xn+1,F) for all n ≥ n0. Using condition (AV)

0 < f
( c

2

)
< f (d (xn+1,F)) ≤

d (xn,T1xn) + d (xn,T2xn)
2

→ 0

as n → ∞. That is f
(

c
2

)
= 0 for c > 0 which is against the definition of f in condition (AV). Therefore,

limn→∞ d(xn,F) = 0. Next, we claim that {xn} is a Cauchy sequence. Since
∑
∞

n=1 sn < ∞, so
∑
∞

n=1 sn = s(say)
and hence

∏
∞

n=1 (1 + sn) = s. Let ε > 0. Since limn→∞ d(xn,F) = 0 and
∑
∞

n=1 tn < ∞, there exists n0 ≥ 1 such
that d(xn0 ,F) < ε

4s+4 and
∑
∞

n=n0
tn < ε

4s .
Let m > n ≥ n0 and p ∈ F.Then by (21), we have

d (xm, xn) ≤ d (xm,F) + d (xn,F)

≤

m−1∏
i=n0

(1 + si) d
(
xn0 ,F

)
+

m−1∏
i=n0

(1 + si)
m−1∑
n=n0

ti +

n−1∏
i=n0

(1 + si) d
(
xn0 ,F

)
+

n−1∏
i=n0

(1 + si)
n−1∑
n=n0

ti

≤

∞∏
i=n0

(1 + si) d
(
xn0 ,F

)
+

∞∏
i=n0

(1 + si)
∞∑

n=n0

ti +

∞∏
i=n0

(1 + si) d
(
xn0 ,F

)
+

∞∏
i=n0

(1 + si)
∞∑

n=n0

ti

< 2
[
(1 + s)

ε
4s + 4

+ s
ε
4s

]
= ε.

This proves that {xn} is a Cauchy sequence in C. Let limn→∞ xn = q. Then d
(
q,F

)
= d (limn→∞ xn,F) =

limn→∞ d (xn,F) = 0.Since F is closed, we obtain q ∈ F. Hence {xn} converges strongly to a point of F.
As

lim
n→∞

d (xn, zn) = 0 = lim
n→∞

d
(
xn, yn

)
,

therefore the limits of the sequences {xn}, {yn} and {zn} coincide.
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Remark 2.6. Observe that
(i) CAT (0) spaces, uniformly convex Banach spaces and Hilbert spaces are uniformly convex metric spaces, therefore
our results also hold in CAT (0) spaces, uniformly convex Banach spaces and Hilbert spaces, simultaneously.
(ii) Nonexpansive mapping, asymptotically nonexpansive mappings, asymptotically nonexpansive mappings in the
intermediate sense and generalized asymptotically nonexpansive mappings all are total asymptotically nonexpansive,
therefore our theorems generalize the corresponding ones in [2, 3, 13, 16, 26] etc.
(iii) The iterative algorithm(4) unifies the algorithms(1) − (2) and as a result all the theorems in [13, 26] follow as
corollaries of our corresponding theorems.

Remark 2.7. The essentials of hypotheses in our results are natural in view of the following observations: Take
X = R,C = [0, 2] ,T1,T2 : C→ C are

T1 (x) =

1 if x ∈ [0, 1]
√

2 − x if x ∈ [1, 2]

and

T2 (x) =

1 if x ∈ [0, 1]
1
√

3

√

4 − x2 if x ∈ [1, 2] ,

αn = 4n+5
5n , βn = 2n+3

3n .Then both T1 and T2 are total asymptotically nonexpansive and uniformly continuous map-
pings (see [16]), F (T1) ∩ F (T2) = {1} , 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1 and 0 < lim infn→∞ βn ≤

lim supn→∞ βn < 1.
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