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Abstract. We consider the Liénard system in the plane and present general assumptions to obtain some
new explicit conditions under which this system has or fails to have a positive orbit which starts at a point
on the vertical isocline and approaches the origin without intersecting the x-axis. This arises naturally in
the existence of homoclinic orbits and oscillatory solutions. Our investigation is based on the notion of
orthogonal trajectories of orbits of the system.

1. Introduction

To study the qualitative theory of the Liénard equation

x′′ + f (x)x′ + 1(x) = 0,

such as boundedness, oscillation and periodicity of the solutions, results are established by examining the
corresponding planar system

dx
dt

= y − F(x),
dy
dt

= −1(x), (1)

where F(x) :=
∫ x

0 f (u)du. Asymptotic and qualitative behavior of this system was studied by many authors.
In the literature, there are a considerable number of results on the existence and uniqueness of periodic
orbits, homoclinic orbits, oscillation of solutions, center problem and existence of limit cycles for Liénard
and other types of second order differential equations (see [1-22] and the references cited therein). In the
study of the qualitative behavior of solutions of the Liénard system the notion ”property (Z+

1 )” is very useful.
We say that system (1) has property (Z+

1 ) if there exists a point P(x0, y0) with y0 = F(x0) and x0 > 0 such that
the positive semitrajectory of (1) starting at P approaches the origin through only the first quadrant.

In this paper, we give some conditions on F(x) and 1(x) under which the system (1) has or fails to have
property (Z+

1 ). We assume that F and 1 are continuous on an open interval I which contains 0 and satisfy
smoothness conditions to guarantee the existence and uniqueness of solutions of the corresponding initial
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value problems. Also, we assume that F(0) = 0 and x1(x) > 0 for x , 0 which implies the origin is the
unique equilibrium of (1), and hence closed orbits (if any) rotate clockwise around it. Also, throughout this
paper in the results related to property (Z+

1 ), we assume that F(x) > 0, for x > 0 sufficiently small, because
if F(x) has an infinite number of positive zeros clustering at x = 0, then the system (1) obviously fails to
have property (Z+

1 ). The following results for property (Z+
1 ) are the following theorems of Hara [11] and

Hara-Sugie [16].

Theorem 1.1. (Hara[11]) Under the condition that

lim sup
x→0+

F(x)√
2G(x)

< 2, where G(x) :=
∫ x

0
1(u)du,

the Liénard system (1) fails to have property (Z+
1 ), while it has property (Z+

1 ) if

F(x) ≥ 2
√

2G(x).

Theorem 1.2. (Hara − Su1ie[16]) Suppose that

F(x) ≤ 2
√

2G(x) − h(
√

2G(x)),

for x > 0 sufficiently small, where h(ξ) is a non-negative continuous function with

h(ξ)
ξ
≤ 2 is a non-decreasing function for ξ > 0 sufficiently small,

and ∫ ξ0

0

h(ξ)
ξ2 dξ = ∞ for some ξ0 > 0.

Then the system (1) fails to have property (Z+
1 ).

The following result gives a sufficient condition for system (1) to have property (Z+
1 ).

Theorem 1.3. (Hara − Su1ie[16]) Suppose that

F(x) ≥ 2
√

2G(x) − h(
√

2G(x)),

for x > 0 sufficiently small, where h(ξ) is a non-negative continuous function such that for ξ > 0 sufficiently small

h(ξ)
ξ

is non-decreasing,

and

a[H(ξ)]2
≤

h(ξ)
ξ

for some a > 4,

where H(ξ) =
∫ ξ

0

h(u)
u2 du. Then the Liénard system (1) has property (Z+

1 ).

These results are extended by some authors to more general planar dynamical systems of Liénard type, see
for example [1, 5, 14]. In this paper, we consider system (1) and present some new explicit necessary and
sufficient conditions under which this system has or fails to have property (Z+

1 ). Our results improve the
above and the existing results in the literature.
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2. A comparison theorem

In this section we give a comparison result that will be used repeatedly in the sequel. First, we state the
following result of T. Hara [11] on property (Z+

1 ).

Lemma 2.1. (Hara[11]) Consider system (1). For each point P = (x0, y0) on the vertical isocline in the right half-
plane, the positive semitrajectory γ+(P) approaches the origin, without intersecting the x-axis, if and only if there
exist a constant δ ≥ x0 and a continuous function ψ(x), such that

ψ(x) < F(x) and
∫ x

0

1(ξ)
F(ξ) − ψ(ξ)

dξ ≤ ψ(x)for 0 < x < δ.

Using the above lemma, we present a simple comparison theorem.

Theorem 2.2. Suppose that the system (1) corresponding to F1 and 11 has property (Z+
1 ). If we have

F2(x) ≥ F1(x) and 12(x) ≤ 11(x),

for all x > 0, then system (1) corresponding to F2 and 12 has this property, too.

Proof. By assumption the system (1) corresponding to F1 and 11 has property (Z+
1 ). Thus from the above

lemma, there is a continuous function ψ(x) < F1(x) (hence ψ(x) < F2(x)) and some δ > 0 such that for
0 < x < δ we have∫ x

0

12(ξ)
F2(ξ) − ψ(ξ)

dξ ≤
∫ x

0

11(ξ)
F1(ξ) − ψ(ξ)

dξ ≤ ψ(x).

Now using again the above lemma we have that (1) has property (Z+
1 ).

Consider (1) with 1(x) = x and F(x) = λx. Then, we have a linear system and, either by elementary results
or by the above lemma, we easily find that system (1) has property (Z+

1 ), for λ ≥ 2, and that it fails to have
property (Z+

1 ), for λ < 2. Now consider the system (1) as

dx
dt

= y − F(x)

dy
dt

= −x. (2)

The above comparison theorem shows that if

lim sup
x→0+

F(x)
x

< 2,

then system (2) fails to have property (Z+
1 ), while it has property (Z+

1 ) if

F(x) ≥ 2x.

From Theorem 1.2 of Sugie-Hara [16], we can solve the problem in the case F(x)
x ↗ 2 as x → 0+. But this

result is restricted and cannot solve the problem, when in general we have F(x)
x → 2 as x→ 0+. As we shall

see, the results of this paper solve this problem even in the case

lim inf
x→0+

F(x)
x
≤ 2 ≤ lim sup

x→0+

F(x)
x
.
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3. Main results

The main idea in proving the main results in this paper is to find the family of orthogonal trajectories of
system (1). Indeed, if this family described by u(x, y) = C and taking w(t) := u

(
x(t), y(t)

)
, where

(
x(t), y(t)

)
is a solution of this system, initiate at a point on the vertical isocline and remains at the first quadrant
approaching the origin then we must have w′(t) ≤ 0 for all t sufficiently large (see Theorem 3.2).

Lemma 3.1. The orthogonal trajectories of (1) in the right half-plane are level curves of the function

u(x, y) =

∫ x

x0

F(ξ)
1(ξ)

exp(−
∫ ξ

1

dη
1(η)

)dξ + y exp(−
∫ x

1

dη
1(η)

), x > 0, (3)

where x0 > 0 is arbitrary.

Proof. The orbits of system (1) satisfy the following differential equation

dy
dx

=
−1(x)

y − F(x)
.

Therefore, their orthogonal trajectories have the equation

−
dx
dy

=
−1(x)

y − F(x)
,

or equivalently(
y − F(x)

)
dx − 1(x)dy = 0. (4)

In order to make the equation (4) integrable, we multiply it by the integration factorµ =
1
1(x)

exp
(
−

∫ x

1

dη
1(η)

)
,

then we get the exact equation Du(x, y) = 0 where u = u(x, y) is given in (3) and the proof is complete.

Theorem 3.2. Suppose that for some δ > 0 we have

lim sup
x→0+

∫ x

δ

(F(ξ)
1(ξ)

− 2
)

exp
(
−

∫ ξ

1

dη
1(η)

)
dξ = +∞. (5)

Then the Liénard system (1) fails to have property (Z+
1 ).

Proof. If we assume that the system (1) has property (Z+
1 ) then there exists a solution

(x(t), y(t)) t0 ≤ t < ∞, x(t0) = x0,

hat initiates at the point (x0,F(x0)) on the vertical isocline y = F(x) (x > 0), remains at the first quadrant and

approaches the origin. By calculating
du
dt

along with (x(t), y(t)), t0 ≤ t < ∞we get

du
dt

=
∂u
∂x

dx
dt

+
∂u
∂y

dy
dt

= −
1
1(x)

exp
(
−

∫ x

1

dη
1(η)

)[
(
dx
dt

)2 + (
dy
dt

)2
]
. (6)

Since dx
dt < 0 and dy

dt = −1(x) < 0, then (6) gives

du
dt
≤ −

2
1(x)

(
dx
dt

)(
dy
dt

) exp
(
−

∫ x

1

dη
1(η)

)
= 2(

dx
dt

) exp
(
−

∫ x

1

dη
1(η)

)
,
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and by integration from t0 to t we arrive at

u
(
x(t), y(t)

)
− K ≤

∫ t

t0

2
dx
dτ

exp
(
−

∫ x(τ)

1

dη
1(η)

)
dτ = 2

∫ x(t)

x0

exp
(
−

∫ ξ

1

dη
1(η)

)
dξ, (7)

where K = F(x0) exp
(
−

∫ x0

1
dη
1(η)

)
. Now, since y(t) > 0, (3) together (7) give∫ x(t)

x0

F(ξ)
1(ξ)

exp
(
−

∫ ξ

1

dη
1(η)

)
dξ − K ≤ 2

∫ x(t)

x0

exp
(
−

∫ ξ

1

dη
1(η)

)
dξ,

or equivalently∫ x(t)

x0

(F(ξ)
1(ξ)

− 2
)

exp
(
−

∫ ξ

1

dη
1(η)

)
dξ ≤ K.

This contradicts (5) and the proof is complete.

Theorem 3.3. Suppose that

lim sup
x→0+

∫ x

δ

( F(ξ)√
2G(ξ)

− 2
) 1(ξ)
G(ξ)

dξ = +∞, (8)

for some δ > 0. Then Liénard system (1) fails to have property (Z+
1 ).

Proof. Define for x > 0 the function

u = u(x) :=
√

2G(x),

and the mapping Λ : R+
× R→

(
0,

√
2G(∞)

)
× R by

Λ(x, y) = (u(x), y) ≡ (u, v),

Then the mapping Λ is a diffeomorphism of the right half-plane onto
(
0,

√
2G(∞)

)
that transforms the

system (1) to the following simpler form of the Liénard system

du
dτ

= v − F∗(u) and
dv
dτ

= −u,

in which dτ
dt =

1(x)
√

2G(x)
and F∗(u) = F

(
G−1( u2

2 )
)
. Consequently, we have only to determine whether the system

above, instead of (1), fails to have property (Z+
1 ). Applying Theorem 3.2 to this system, it suffices to have

lim sup
η→0+

∫ η

δ

F∗(u) − 2u
u2 du = +∞.

Now, the change of variable u =
√

2G(x) in the integral above and the fact that
√

2G(x) ↓ 0 as x→ 0+, give
the equivalent condition (8).

The following corollary is an improvement of Theorem 1.2.

Corollary 3.4. Suppose that

F(x) ≤ 2
√

2G(x) − h(
√

2G(x)),

where h(u) is a continuous function such that for some δ > 0

lim sup
x→0+

∫ δ

x

h(u)
u2 du = +∞.

Then the Liénard system (1) fails to have property (Z+
1 ).



A. Aghajani et al. / Filomat 31:12 (2017), 3761–3770 3766

Proof. We have∫ x

δ

( F(ξ)√
2G(x)

− 2
) 1(ξ)
G(ξ)

dξ = 2
∫ x

δ

(
F(ξ) − 2

√
2G(ξ)

) 1(ξ)

[2G(ξ)]
3
2

dξ

≥

∫ x

δ
h
(√

2G(ξ)
)
d
( 1√

2G(ξ)

)
=

∫ √2G(x)

√
2G(δ)

h(u)d
(1
u

)
=

∫ √2G(δ)

√
2G(x)

h(u)
u2 du.

This, together with the fact that
√

2G(x) ↓ 0 as x→ 0+ gives us

lim sup
x→0+

∫ x

δ

( F(ξ)√
2G(ξ)

− 2
) 1(ξ)
G(ξ)

dξ = lim sup
x→0+

∫ δ

x

h(u)
u2 du = +∞.

Now, Theorem 3.3 completes the proof.

Example 3.5. Consider the Liénard system (1) with

1(x) = x and F(x) = 3x − 2.2 x sin2
(1
x

)
.

Here, we have G(x) = x2

2 . Writing F(x) = 2x − h(x), where h(x) = −x + 2.2 x sin2
(1
x

)
, then we have

∫ δ

0

h(u)
u2 =

∫ δ

0

−1 + 2.2 sin2
(1
u

)
u

du

=

∫ δ

0

0.1 − 1.1 cos
(2
u

)
u

du

= 0.1
∫ δ

0

du
u

+ 1.1
∫ +∞

1
δ

cosu
u

du = +∞.

Therefore, from Corollary 3.4 system (1) fails to have property (Z+
1 ). Notice that, in this example the function h(x)

x is
not non-decreasing in any interval (0, δ) (δ > 0), hence we cannot use Theorem 1.2.

Remark 3.6. The method in which F(x) is compared with
√

2G(x) to obtain sufficient conditions under which the
system (1) has or fails to have property (Z+

1 ) (and other similar properties) was initiated by A.F. Filippov [7] and
improved by J. Sugie and T. Hara [11, 16]; see also [1–5, 10, 12–15, 17–20]. In the next results we use a new approach
and in parallel with the above results, we compare F(x) with 21(x), instead of

√
2G(x) (of course under some additional

assumptions on 1(x)).

We start with a simple observation based on Hara’s lemma.

Proposition 3.7. Suppose that for some δ > 0,

1(x) ≥ x, 0 < x < δ. (9)

If we have

F(x) > 21(x), 0 < x < δ, (10)

then the Liénard system (1) has property (Z+
1 ).
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Proof. Taking ψ(x) = 1(x) then by assumptions (9) and (10) we have 1(x) < F(x) − ψ(x) for 0 < x < δ, and
hence∫ x

0

1(ξ)
F(ξ) − ψ(ξ)

dξ ≤
∫ x

0
dξ = x ≤ 1(x) = ψ(x), 0 < x < δ.

Now, Hara’s lemma gives the desired result.

Proposition 3.8. Suppose that for some δ > 0,∫ δ

0
exp

(
−

∫ x

1

dη
1(η)

)
dx = +∞. (11)

If we have

lim sup
x→0+

F(x)
1(x)

< 2, (12)

then the Liénard system (1) fails to have property (Z+
1 ).

Proof. From (12) we have
F(ξ)
1(ξ)

− 2 ≤ −m < 0, for some m ∈ (0, 2) and all ξ > 0 sufficiently small. Thus using

(11), we get

lim sup
x→0+

∫ x

δ
(
F(ξ)
1(ξ)

− 2) exp
(
−

∫ ξ

1

dη
1(η)

)
dξ ≥ m

∫ δ

0
exp

(
−

∫ x

1

dη
1(η)

)
dx = +∞,

and from Theorem 3.2 the proof is complete.

Theorem 3.9. Suppose that F and 1 satisfy∫ 1

0

dη
1(η)

= +∞, (13)

and

F(x) ≤ 21(x) − h
(

exp
∫ x

1

dη
1(η)

)
,

where h is a nonnegative function on (0, δ) for some δ > 0, and satisfies

lim sup
x→0+

∫ δ

x

h(u)
u2 du = +∞.

Then the Liénard system (1) fails to have property (Z+
1 ).

Proof. Using the above assumptions we have∫ x

δ

(F(ξ)
1(ξ)

− 2
)

exp
(
−

∫ ξ

1

dη
1(η)

)
dξ =

∫ x

δ

(
F(ξ) − 21(ξ)

)( 1
1(ξ)

)
exp

(
−

∫ ξ

1

dη
1(η)

)
dξ

≥

∫ x

δ
h
(

exp(
∫ ξ

1

dη
1(η)

)
)
d
(

exp
(
−

∫ ξ

1

dη
1(η)

))
=

∫ u(x)

u(δ)
h(u)d

(1
u

)
=

∫ u(δ)

u(x)

h(u)
u2 du,
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where u(x) = exp
( ∫ x

1

dη
1(η)

)
. From (13) we also have u(x) ↓ 0 as x→ 0+, thus

lim sup
x→0+

∫ x

δ
(
F(ξ)
1(ξ)

− 2) exp(−
∫ ξ

1

dη
1(η)

)dξ = lim sup
x→0+

∫ δ

x

h(u)
u2 du = +∞,

and the proof is complete from Theorem 3.2.

Theorem 3.10. Suppose that for x > 0 sufficiently small, 1 is differentiable,

1 ≤ 1′(x) ≤ k − 1, (14)∫ 1

0

dη
1(η)

= +∞, (15)

and

1(x) exp
(
−

∫ x

1

dη
1(η)

)
> l > 0. (16)

If we have

F(x) ≥ 21(x) − h
(

exp
∫ x

1

dη
1(η)

)
, (17)

where h(u) is a non-negative continuous function such that for u > 0 sufficiently small

h(u)
u

is non-decreasing, (18)

and

a[H(u)]2
≤

h(u)
u

for some a >
k2

l
, (19)

where H(ξ) =
∫ ξ

0

h(u)
u2 du, then the Liénard system (1) has property (Z+

1 ).

Proof. Let ρ = limx→0+

h(x)
x

. Then by (18) ρ ≥ 0 and
h(x)

x
≥ ρ for x > 0. If ρ > 0, then for some x0 > 0 we

have H(x0) ≥ ρ
∫ x0

0

dη
η

= ∞, which contradicts (19). Therefore we have
h(x)

x
→ 0 and H(x) → 0 as x → 0+.

Define u(x) = exp
( ∫ x

1

dη
1(η)

)
. From (15), u(x) ↓ 0 as x→ 0+. Let σ be chosen so that

0 < σ < 1 −
k2

la
.

Then there exist δ > 0 such that for 0 < x < δ,

1(x)
u(x)

> l ,
h(u(x))

u(x)
<
σ
2k

l and H(u(x)) <
σ

2k(k + 1)
l. (20)

In Hara’s lemma take ψ(x) = 1(x) + ku(x)H(u(x)). Then we have

F(x) − ψ(x) ≥ u(x)
[
1(x)
u(x)

−

h
(
u(x)

)
u(x)

− kH
(
u(x)

)]
> 0,
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for 0 < x < δ. Define the function φ(x) by

φ(x) = ψ(x) −
∫ x

0

1(ξ)
F(ξ) − ψ(ξ)

dξ, x > 0.

We have

d
dx
φ(x) ≥

h(u(x))
r(x)

[
1 − k(k + 1)

(u(x)
1(x)

)
H(x) − k

(u(x)
1(x)

)h
(
u(x)

)
u(x)

− k2
(u(x)
1(x)

)H2
(
u(x)

)
u(x)

h
(
u(x)

) ]
,

hence by (20),

d
dx
φ(x) ≥

h
(
u(x)

)
r(x)

(
1 −

σ
2
−
σ
2
−

k2

al

)
> 0, 0 < x < δ,

where r(x) = 1(x) − h(u(x)) − ku(x)H(u(x)). Therefore, φ(x) > 0 for 0 < x < δ and Hara’s lemma completes
the proof.

Example 3.11. To present an example of a function 1 that satisfies all the required assumptions appearing in Theorem

3.10, consider the Liénard system (1) with 1(x) =
(
1 +

1

ln2(x)

)
x, on (0, 1). Here, we have 1(x) > x and

1 < 1′(x) = 1 +
1

ln2(x)
−

2

ln3(x)
< 6, for x ∈ (0,

1
e

).

Also we have∫ x

1

dη
1(η)

= ln x − arctan(ln x).

Therefore,

lim
x→0+
1(x) exp

(
−

∫ x

1

dη
1(η)

)
= e−

π
2 > 0,

∫ 1

0

dη
1(η)

= +∞ and
∫ δ

0
exp

(
−

∫ x

1

dη
1(η)

)
dx = +∞,

so assumptions (14), (15) and (16) are satisfied. Hence, for any function F which satisfies (17), (18) and (19) with a
suitable h, Liénard system (1) has property (Z+

1 ).
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