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Abstract. In this paper we first introduce the concept of the ∗w-product. We then proceed to show that
the transform with respect to the Gaussian process for the functional F can be expressed in terms of the
∗w-product without the concept of the transform. We then proceed to obtain several relationships involving
the ∗w-product.

1. Introduction

Let C0[0,T] denote one-parameter Wiener space; that is the space of real-valued continuous functions
x(t) on [0,T] with x(0) = 0. LetM denote the class of all Wiener measurable subsets of C0[0,T], and let mw
denote Wiener measure. (C0[0,T],M,mw) is a complete measure space, and we denote the Wiener integral
of a Wiener integrable functional F by ∫

C0[0,T]
F(x)dmw(x).

A subset B of C0[0,T] is said to be scale-invariant measurable provided ρB isM-measurable for all ρ > 0,
and a scale-invariant measurable set N is said to be a scale-invariant null set provided mw(ρN) = 0 for
all ρ > 0. A property that holds except on a scale-invariant null set is said to hold scale-invariant almost
everywhere(s-a.e.) [12].

In this paper, we first introduce the concept of the ∗w-product. We then proceed to show that the
transform with respect to the Gaussian process for the functional F can be expressed in terms of the ∗w-
product without using the concept of the transform. That is to say, the ∗w-product is a very useful tool
to obtain the transform with respect to the Gaussian process without using the concept of the transform.
Finally we obtain several relationships involving the ∗w-product.

2. Definitions and Preliminaries

In this section we first state several definitions and then we introduce various notations which are used
throughout this paper[7, 8, 10].
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For h ∈ L2[0,T], we define the Gaussian process Zh by

Zh(x, t) =

∫ t

0
h(s)d̃x(s) (1)

where
∫ t

0 h(s)d̃x(s) denotes the Paley-Wiener-Zygmund stochastic integral. For each v ∈ L2[0,T], let 〈v, x〉 =∫ T

0 v(t)d̃x(t). From [6], we note that 〈v,Zh(x, ·)〉 = 〈vh, x〉 for h ∈ L∞[0,T] and s-a.e. x ∈ C0[0,T]. Thus,
throughout this paper, we require h to be in L∞[0,T] rather than simply in L2[0,T].

Let K0[0,T] be the set of all complex-valued continuous functions x(t) defined on [0,T] which vanish at
t = 0 and whose real and imaginary parts are elements of C0[0,T].

Now, we state the definitions of the transform with respect to the Gaussian process and the first variation,
[8, 10, 11].

Definition 2.1. Let F and G be functionals on K0[0,T] and let γ and β be non-zero complex numbers. Then the
transform with respect to the Gaussian process and the first variation are defined by the formulas

Th1,h2
γ,β (F)(y) =

∫
C0[0,T]

F(γZh1 (x, ·) + βZh2 (y, ·))dmw(x) (2)

and

δF(Zh(x, ·)|Zs(z, ·)) =
∂
∂k

F(Zh(x, ·) + kZs(z, ·))
∣∣∣∣
k=0

(3)

if they exist.

Remark 2.2. When h1(t) = h2(t) = 1 on [0,T], γ = 1 and β = i, T1,1
1,i (F) is the Fourier-Wiener transform introduced

by Cameron in [1] and used by Cameron and Martin in [2]. When h1(t) = h2(t) = 1 on [0,T], γ =
√

2 and β = i,
T1,1
√

2,i
(F) is the modified Fourier-Wiener transform used by Cameron and Martin in [3]. When h1(t) = h2(t) = 1,

T1,1
γ,β(F) is the the integral transform [4, 5, 9, 13].

Let Zh(x, ·) be given by the equation (1). Then choose {α1, · · · , αn} from L2[0,T] such that

(a) {α1, · · · , αn} are orthogonal on [0,T]
(b) {α1h, · · · , αnh} are orthonormal on [0,T] .

One way to do this would be to choose 0 = t0 < t1 < · · · < tn = T with∫ t j

t j−1

h(s)ds > 0

for j = 1, · · · ,n and then letting

α j(s) =
( ∫ t j

t j−1

h2(s)ds
)−1/2

χ[t j−1,t j)(s).

Then the α j’s satisfy (a) and (b) above. Let f : Rn
→ C be a Borel measurable function and let F : C0[0,T]→ C

be given by equation
F(x) = f (〈α1, x〉, · · · 〈αn, x〉).
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Then we have the following formula∫
C0[0,T]

F(Zh(x, ·))dmw(x) =

∫
C0[0,T]

f (〈α1h, x〉, · · · , 〈αnh, x〉)dmw(x)

=
( 1
2π

) n
2

∫
Rn

f (u1, · · · ,un) exp
{
−
|~u|2

2

}
d~u

where |~u| =
√

u2
1 + · · · + u2

n.

We finish this section by describing the class of functionals that we work with in this paper. Let S be the
space of all functionals F : K0[0,T]→ C of the form

F(x) = f (〈α1, x〉, · · · , 〈αn, x〉) (4)

for some positive integer n, where f (λ1, · · · , λn) is an entire function of n complex variables λ1, · · · , λn; that
is to say,

| f (λ1, · · · , λn)| ≤ L exp
{
−M

n∑
j=1

|λ j|
2
}

for some positive constants L and M. To simplify the expressions, we use the following notations

f (〈~α, x〉) ≡ f (〈α1, x〉, · · · , 〈αn, x〉)

and
F j(x) = f j(〈~α, x〉)

where f j(~λ) = ∂
∂λ j

f (λ1, · · · , λn) for j = 1, · · · ,n.

Remark 2.3. For any F and G in S, we can always express F by (4) and G by

G(x) = 1(〈α1, x〉, · · · , 〈αn, x〉) ≡ 1(〈~α, x〉) (5)

using the same positive integer n, where 1 is an entire function of exponential type.

The following integration formula is used several times in this paper.∫
R

exp{−aη2 + bη}dη =
(π

a

) 1
2 exp

{ b2

4a

}
(6)

for all complex numbers a and b with Re(a) > 0.

3. Transform with Respect to the Gaussian Process

If f ∈ L1(Rn), the Fourier transform of f is the function on Rn defined by

[ f ] (̂~ξ) =
( 1
2π

) n
2

∫
Rn

f (~u) exp{i~u · ~ξ}d~u, ~u, ~ξ ∈ Rn, (7)

where ~u · ~ξ = u1ξ1 + · · · + unξn. Many mathematicians and physicists study the Fourier transform since the
Fourier transform is very useful in physics and various other fields including mathematics. The convolution
product with respect to the Fourier transform f̂ of a function f is defined by

( f ∗ 1)(~u) =

∫
Rn

f (~v)1(~u − ~v)d~v, for ~u, ~v ∈ Rn. (8)
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In various fields of mathematics, in particular, functional analysis, convolution is a powerful tool that is
used to operate on two functions, f and 1, to produce a third function. Mathematically, convolution is
described using an integral that expresses the amount of overlap of one function, 1, with respect to a second
function, f . In view of this description, this classical concept is extremely useful in a variety of research
applications. In this section, we introduce the concept of the ∗w-product. The ∗w-product preserves useful
properties of convolution for the Fourier transform. We then show that the transform with respect to the
Gaussian process of the functional F given by equation (4) can be calculated from the ∗w-product without
using the concept of the transform.

We now introduce the concept of the ∗w-product.

Definition 3.1. Let F and G in S be given by equations (4) and (5). We define their ∗w-product by

(F ∗w G)(x) = ( f ∗ 1)(〈~α, x〉)

and
[F] (̂x) = [ f ] (̂〈~α, x〉).

Remark 3.2. If F ∈ S, then [F]̂exists. This follows from the fact that

|[ f ] (̂~ξ)| =
∣∣∣∣( 1

2π

) n
2

∫
Rn

f (~u) exp{i~u · ~ξ}d~u
∣∣∣∣

≤

( 1
2π

) n
2

∫
Rn
| f (~u)|d~u

≤

( 1
2π

) n
2

∫
Rn

L exp
{
−M

n∑
j=1

u2
j

}
d~u =

( L2

2M

) n
2
< ∞.

In a similar way it is easy to show that F ∗w G exists. Hence, for all F,G ∈ S, [F]̂and F ∗w G exist.

Example 3.3. For n = 1, let f (u) = exp{−u2
} and 1(u) = u exp{−u2

}. Then using equations (8) and (5), we can
easily show that

[ f ] (̂ξ) =
1
√

2
exp

{
−
ξ2

4

}
and

( f ∗ 1)(u) =

√
π

2
√

2
u exp

{
−

u2

2

}
.

Hence

[F] (̂x) = [ f ] (̂〈α1, x〉) =
1
√

2
exp

{
−
〈α1, x〉2

4

}
and

(F ∗w G)(x) = ( f ∗ 1)(〈α1, x〉) =

√
π

2
√

2
〈α1, x〉 exp

{
−
〈α1, x〉2

2

}
.

Remark 3.4. Let F and G be as in Definition 3.1. Let H ∈ S be given by the formula

H(x) = h(〈~α, x〉).

Then the ∗w-product preserves the following useful properties of convolution for the Fourier transform:
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(1) The ∗w-product is commutative; that is to say

(F ∗w G) = (G ∗w F).

(2) The ∗w-product is associative; that is to say

F ∗w (G ∗w H) = (F ∗w G) ∗w H.

(3) The ∗w-product is distributive; that is to say

F ∗w (G + H) = (F ∗w G) + (F ∗w H).

(4) The Fourier transform of a ∗w-product is the product of their Fourier transform; that is to say

[(F ∗w G)]̂= (2π)
n
2 [F] [̂G] .̂

(5) The Fourier transform of a product is the ∗w-product of the Fourier transform; that is to say

[FG]̂= (2π)−
n
2 [F]̂∗w [G] .̂

The following lemma was established in [10].

Lemma 3.5. Let F ∈ S be given by equation (4). Then for all non-zero complex numbers γ and β with Re( 1
γ2 ) > 0,

Th1,h2
γ,β (F)(y) = W(βy)

for all y ∈ K0[0,T], where W(y) = w(γ; 〈~αh2, y〉) and

w(γ; ~v) =
( 1
2πγ2

) n
2

∫
Rn

f (~u) exp
{
−

1
2γ2 |

~u − ~v|2
}
d~u. (9)

For convenience, throughout the rest of this paper for all non-zero complex numbers a and b, let

Φa,b(y) = φa,b(〈~α, y〉), for all y ∈ K0[0,T] (10)

where

φa,b(~u) =
( 1
a2

) n
2 exp

{
−

1
2b2 |

~u|2
}
.

Using Lemma 3.5, the transform with respect to the Gaussian process of the functional F ∈ S can be
expressed in terms of the ∗w-product.

Theorem 3.6. Let F ∈ S be given by equation (4). Then for all non-zero complex numbers γ and β with Re( 1
γ2 ) > 0,

Th1,h2
γ,β (F)(y) =

( 1
2π

) n
2 [Φγ,γ ∗w F](βZh2 (y, ·)) (11)

for all y ∈ K0[0,T], where Φγ,γ(y) = φγ,γ(〈~α, y〉) is given by equation (10).

Proof. Since

w(γ; ~v) =
( 1

2πγ2

) n
2
∫
Rn

f (~u) exp
{
−
|~u − ~v|2

2γ2

}
d~u,
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we have

[w] (̂γ; ~ξ) =
( 1

2π

) n
2
∫
Rn

w(γ; ~v) exp{i~v · ~ξ}d~v

=
( 1

2π

) n
2
∫
Rn

[( 1
2πγ2

) n
2
∫
Rn

f (~u) exp
{
−
|~u − ~v|2

2γ2

}
d~u

]
exp{i~v · ~ξ}d~v

=
( 1

2π

) n
2
( 1

2πγ2

) n
2
∫
Rn

∫
Rn

f (~u) exp
{
−
|~u − ~v|2

2γ2 + i~v · ~ξ
}
d~ud~v.

Next, carrying out the integration with respect to v1, · · · , vn in the above expression we obtain that

[w] (̂γ; ~ξ) =
( 1
2π

) n
2

∫
Rn

f (~u) exp
{
−
γ2

2
|~ξ|2 + i~u · ~ξ

}
d~u

= exp
{
−
γ2

2
|~ξ|2

}( 1
2π

) n
2

∫
Rn

f (~u){i~u · ~ξ}d~u

= exp
{
−
γ2

2
|~ξ|2

}
[ f ] (̂~ξ).

Since

[φγ,γ] (̂~ξ) = exp
{
−
γ2

2
|~ξ|2

}
,

the last expression in the above equation is equal to

[w] (̂γ; ~ξ) = [φγ,γ] (̂~ξ)[ f ] (̂~ξ) =
( 1
2π

) n
2 [φγ,γ ∗ f ] (̂~ξ)

and so [w](γ; ~ξ) = (2π)−
n
2 [φγ,γ ∗ f ](~ξ). Hence, by using Definition 3.1, we have

Th1,h2
γ,β (F)(y) =

( 1
2π

) n
2 [Φγ,γ ∗w F](βZh2 (y, ·))

which establishes equation (11).

Our next theorem tells us that the transform with respect to the Gaussian process of [F]̂ is expressed in
terms of the ∗w-product, without using the concepts of the transform.

Theorem 3.7. Let F ∈ S be given by equation (4). Then for all non-zero complex numbers γ and β

Th1,h2
γ,β ([F]̂)(y) =

( 1
2πγ2

) n
2 exp

{
−
β2

2γ2 |〈
~αh2, y〉|2

}
[Φ 1

γ ,
1
γ
∗w F]

( iβ
γ2 Zh2 (y, ·)

)
(12)

for all y ∈ K0[0,T], where Φγ,γ is given by equation (10).

Proof. First using equations (2), (6) and (7), we obtain that

Th1,h2
γ,β ([F] )̂(y) =

∫
C0[0,T]

[ f ] (̂γ〈~αh1, x〉 + β〈~αh2, y〉)dmw(x)

=
( 1
2πγ2

) n
2

∫
Rn

[ f ] (̂~u + β〈~αh2, y〉) exp
{
−
|~u|2

2γ2

}
d~u

=
( 1
2πγ2

) n
2

∫
Rn

[ f ] (̂~u) exp
{
−

1
2γ2 |

~u − β〈~αh2, y〉|2
}
d~u

=
( 1
2πγ2

) n
2
( 1
2π

) n
2

∫
Rn

∫
Rn

f (~v) exp
{
−

1
2γ2 |

~u − β〈~αh2, y〉|2 + i~u · ~v
}
d~ud~v.
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Next, we carry out the integrations with respect to u1, · · · ,un using (6) and obtain

Th1,h2
γ,β ([F] )̂(y) =

( 1
2π

) n
2

∫
Rn

f (~v) exp
{
−
γ2

2
|~v|2 + iβ〈~αh2, y〉 · ~v

}
d~v

= γ−n exp
{
−
β2

2γ2 |〈
~αh2, y〉|2

}( 1
2π

) n
2

∫
Rn

f
( 1
γ
~v +

iβ
γ2 〈

~αh2, y〉
)

exp
{
−
|~v|2

2

}
d~v

= γ−n exp
{
−
β2

2γ2 |〈
~αh2, y〉|2

} ∫
C0[0,T]

f
( 1
γ
〈~αh1, x〉 +

iβ
γ2 〈

~αh2, y〉
)
dmw(x)

= γ−n exp
{
−
β2

2γ2 |〈
~αh2, y〉|2

} ∫
C0[0,T]

F
( 1
γ

Zh1 (x, ·) +
iβ
γ2 Zh2 (y, ·)

)
dmw(x)

= γ−n exp
{
−
β2

2γ2 |〈
~αh2, y〉|2

}
Th1,h2

1
γ ,

iβ
γ2

(F)(y).

Hence, applying Theorem 3.6 to the last expression in the above equation, we obtain

Th1,h2
γ,β ([F]̂)(y) =

( 1
2πγ2

) n
2 exp

{
−
β2

2γ2 |〈
~αh2, y〉|2

}
[Φ 1

γ ,
1
γ
∗w F]

( iβ
γ2 Zh2 (y, ·)

)
,

which completes the proof of Theorem 3.7.

In the table below we express transforms with respect to the Gaussian process in terms of ∗w-product
only.

Expressions

Th1,h2
γ,β (F ∗w G)(y)

(
1

2π

) n
2 [Φγ,γ ∗w (F ∗w G)](βZh2 (y, ·))

Th1,h2
γ,β ([F ∗w G]̂ )(y)

(
1

2πγ2

) n
2 exp{− β2

2γ2 |〈~αh2, y〉|2}

[Φ 1
γ ,

1
γ
∗w (F ∗w G)]( iβ

γ2 Zh2 (y, ·))

[Th1,h2
γ,β (F) ∗w Th1,h2

γ,β (G)](y)
(

1
2π

)n
[Φ γ

√
π
,
√

2γ ∗w (F ∗w G)](βZh2 (y, ·))

[Th1,h2
γ,β (F)∗w

(Th1,h2
γ,β (G) + Th1,h2

γ,β (H))](y)
(

1
2π

)n
[Φ γ

√
π
,
√

2γ ∗w (F ∗w G)](βZh2 (y, ·))

+
(

1
2π

)n
[Φ γ

√
π
,
√

2γ ∗w (F ∗w H)](βZh2 (y, ·))

Table 1: Transform involving the ∗w-product

In Table 1 above, Φγ,γ and Φ γ
√
π
,
√

2γ are given by equation (10).

In Theorem 3.8, we establish that the transform of the first variation equals the first variation of the
transform with respect to the Gaussian process.

Theorem 3.8. Let F ∈ S be given by equation (4). Let 1
l ∈ L∞[0,T]. Assume that l(t)s(t) = m(t)h(t)h2(t) on [0,T].

Then for all non-zero complex numbers γ and β

Th1,h2
γ,β (δF(Zh(·, ·)|Zz(s, ·)))(y) = δThh1,

hh2
l

γ,β (F)(Zl(y, ·)|
1
β

Zm(z, ·))

=

n∑
j=1

〈α js, z〉
( 1
2π

) n
2 [Φγ,γ ∗w F j](βZhh2 (y, ·))

(13)
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for all y ∈ K0[0,T], where Φγ,γ is given by equation (10).

Proof. By using equations (3) and (4), we have

Th1,h2
γ,β (δF(Zh(·, ·)|Zz(s, ·)))(y)

=

∫
C0[0,T]

∂
∂k

f (γ〈~αhh1, x〉 + β〈~αhh2, y〉 + k〈~αs, z〉)
∣∣∣∣
k=0

dmw(x)

=

n∑
j=1

〈α js, z〉
∫

C0[0,T]
f j(γ〈~αhh1, x〉 + β〈~αhh2, y〉)dmw(x)

=

n∑
j=1

〈α js, z〉Thh1,hh2
γ,β (F j)(y).

(14)

On the other hand, by using the same method as used to establish (14) above we obtain that

δThh1,
hh2

l
γ,β (F)(Zl(y, ·)|

1
β

Zm(z, ·)) =

n∑
j=1

〈
α j

mhh2

l
, z

〉
Thh1,hh2
γ,β (F j)(y)

=

n∑
j=1

〈α js, z〉Thh1,hh2
γ,β (F j)(y).

(15)

From equations (14) and (15), we have

Th1,h2
γ,β (δF(Zh(·, ·)|Zz(s, ·)))(y) = δThh1,

hh2
l

γ,β (F)(Zl(y, ·)|
1
β

Zm(z, ·)). (16)

Hence, applying Theorem 3.6 to the last expression in the equations (14) and (15) above, we establish
equation (13).

4. Relationships Involving Two Concepts

In Section 3, we introduced the concept of the ∗w-product. We showed that the transform with respect
to the Gaussian process of F can be expressed in terms of the ∗w-product. In this section, we establish the
various relationships involving the two concepts.

Formula 1. Let F ∈ S be given by equation (4). Let 1
l ∈ L∞[0,T]. Assume that l(t)s(t) = m(t)h(t)h2(t) on

[0,T]. Then for all non-zero complex numbers γ and β

[Φγ,γ ∗w δF(Zh(·, ·)|Zs(z, ·))](βZh2 (y, ·)) = δ[Φγ,γ ∗w F](βZhh2 (y, ·)|
1
β

Zm(z, ·)) (17)

for all y ∈ K0[0,T], where Φγ,γ is given by equation (10).

Proof. From Theorem 3.8, we have the following formula

Th1,h2
γ,β (δF(Zh(·, ·)|Zs(z, ·)))(y) = δThh1,

hh2
l

γ,β (F)(Zl(y, ·)|
1
β

Zm(z, ·)). (18)

Hence, applying Theorem 3.6 to both sides of the expression in equation (18) above, we obtain

Th1,h2
γ,β (δF(Zh(·, ·)|Zs(z, ·)))(y) =

( 1
2π

) n
2 [Φγ,γ ∗w δF(Zh(·, ·)|Zs(z, ·))](βZh2 (y, ·))

and
δThh1,

hh2
l

γ,β (F)(Zl(y, ·)|
1
β

Zm(z, ·)) =
( 1
2π

) n
2
δ[Φγ,γ ∗w F](βZhh2 (y, ·)|

1
β

Zm(z, ·)).

Thus we have the desired result.
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Formula 2. Let F ∈ S be given by equation (4). Let 1
l ∈ L∞[0,T]. Assume that l(t)s(t) = m(t)h(t)h2(t) on

[0,T]. Then for all non-zero complex numbers γ and β

[Φγ,γ ∗w δ[F] (̂Zh(·, ·)|Zs(z, ·))](βZh2 (y, ·))

=
( 1
γ

)n
exp

{
−
β2

2γ2 |〈
~α

hh2

l
, y〉|2

}
δ[Φ 1

γ ,
1
γ
∗w F]

( iβ
γ2 Zhh2 (y, ·)|

1
β

Zm(z, ·)
) (19)

where Φ 1
γ ,

1
γ

is given by equation (10).

Proof. First, by using equation (11), the left hand side of equation (12) is equal to

Th1,h2
γ,β ([F]̂)(y) =

( 1
2π

) n
2 [Φγ,γ ∗w [F]̂](βZh2 (y, ·))

and so

[Φγ,γ ∗w [F]̂](βZh2 (y, ·)) =
( 1
γ

)n
exp

{
−
β2

2γ2 |〈
~αh2, y〉|2

}
[Φ 1

γ ,
1
γ
∗w F]

( iβ
γ2 Zh2 (y, ·)

)
(20)

for all y ∈ K0[0,T], where Φ 1
γ ,

1
γ

is given by equation (10). From equations (17) and (20), we have

[Φγ,γ ∗w δ[F] (̂Zh(·, ·)|Zs(z, ·))](βZh2 (y, ·))

= δ[Φγ,γ ∗w [F]̂](βZhh2 (y, ·)|
1
β

Zm(z, ·))

=
( 1
γ

)n
exp

{
−
β2

2γ2 |〈
~α

hh2

l
, y〉|2

}
δ[Φ 1

γ ,
1
γ
∗w F]

( iβ
γ2 Zhh2 (y, ·)|

1
β

Zm(z, ·)
)
,

which completes the proof of Formula 2.

Formula 3. Let F ∈ S be given by equation (4). Let 1
l ∈ L∞[0,T]. Assume that l(t)s(t) = m(t)h(t)h2(t) on

[0,T]. Then for all non-zero complex numbers γ and β

[Φγ,γ ∗w [δF(Zh(·, ·)|Zs(z, ·))]̂ ](βZh2 (y, ·))

=
( 1
γ

)n
exp

{
−
β2

2γ2 |〈
~αh2, y〉|2

}
δ[Φ 1

γ ,
1
γ
∗w F]

( iβ
γ2 Zhh2 (y, ·)

∣∣∣∣ − iγ
β

Zm(z, ·)
) (21)

where Φ 1
γ ,

1
γ

is given by equation (10).

Proof. By using equations (12) and (17), we have

[Φγ,γ ∗w [δF(Zh(·, ·)|Zs(z, ·))]̂ ](βZh2 (y, ·))

=
( 1
γ

)n
exp

{
−
β2

2γ2 |〈
~αh2, y〉|2

}
[Φ 1

γ ,
1
γ
∗w δF(Zh(·, ·)|Zs(z, ·))]

( iβ
γ2 Zh2 (y, ·)

)
=

( 1
γ

)n
exp

{
−
β2

2γ2 |〈
~αh2, y〉|2

}
δ[Φ 1

γ ,
1
γ
∗w F]

( iβ
γ2 Zhh2 (y, ·)

∣∣∣∣ − iγ
β

Zm(z, ·)
)
,

which completes the proof of Formula 3.

The following simple example illustrates the Formulas 1-3 in Section 4.

Let f (u) = exp{−u2
} and let

F(x) = f (〈α, x〉). (22)
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Then for all non-zero complex numbers γ, direct calculations show that

(Φγ,γ ∗w F)(x) = (φγ,γ ∗ f )(〈α, x〉)

=
( 2π
1 + 2γ2

) 1
2 exp

{
−
〈α, x〉2

1 + 2γ2

} (23)

where Φγ,γ is given by equation (10). Equation (23) now follows from equation (8).

Example using the Formula 1. Let F be given by equation (22). Then by using equations (3) and (23)

δ[Φγ,γ ∗w F](βZhh2 (y, ·)|
1
β

Zm(z, ·)) =
−2
√

2π
(1 + 2γ2)3/2

〈αhh2, y〉〈αm, z〉 exp
{
−

β2

1 + 2γ2 〈αhh2, y〉2
}

and hence from Formula 1,

[Φγ,γ ∗w δF(Zh(·, ·)|Zs(z, ·))](βZh2 (y, ·)) =
−2
√

2π
(1 + 2γ2)3/2

〈αhh2, y〉〈αm, z〉 exp
{
−

β2

1 + 2γ2 〈αhh2, y〉2
}
.

Example using the Formula 2. Let F be given by equation (22). Then by using equations (3) and (23)

1
γ

exp
{
−
β2

2γ2 〈α
hh2

l
, y〉2

}
δ[Φ 1

γ ,
1
γ
∗w F]

( iβ
γ2 Zhh2 (y, ·)|

1
β

Zm(z, ·)
)

=
−2i
√

2π
(2 + γ2)3/2

〈αhh2, y〉〈αm, z〉 exp
{ β2

(2 + γ2)γ2 〈αhh2, y〉2 −
β2

2γ2 〈α
hh2

l
, y〉2

}
and hence from Formula 2,

[Φγ,γ ∗w δ[F] (̂Zh(·, ·)|Zs(z, ·))](βZh2 (y, ·))

=
−2i
√

2π
(2 + γ2)3/2

〈αhh2, y〉〈αm, z〉 exp
{ β2

(2 + γ2)γ2 〈αhh2, y〉2 −
β2

2γ2 〈α
hh2

l
, y〉2

}
.

Example using the Formula 3. Let F be given by equation (22). Then by using equations (3) and (23)

1
γ

exp
{
−
β2

2γ2 〈αh2, y〉2
}
δ[Φ 1

γ ,
1
γ
∗w F]

( iβ
γ2 Zhh2 (y, ·)

∣∣∣∣ − iγ
β

Zm(z, ·)
)

=
−γ
√

2π
(2 + γ2)3/2

〈αhh2, y〉〈αm, z〉 exp
{ β2

(2 + γ2)γ2 〈αhh2, y〉2 −
β2

2γ2 〈αh2, y〉2
}

and hence from Formula 2,

[Φγ,γ ∗w [δF(Zh(·, ·)|Zs(z, ·))]̂ ](βZh2 (y, ·))

=
−γ
√

2π
(2 + γ2)3/2

〈αhh2, y〉〈αm, z〉 exp
{ β2

(2 + γ2)γ2 〈αhh2, y〉2 −
β2

2γ2 〈αh2, y〉2
}
.
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