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Abstract. In this paper, firstly, we introduce the notion of R-complete metric spaces. This notion let us to
consider fixed point theorem in R-complete instead of complete metric spaces. Secondly, as motivated by
the recent work of Amini-Harandi (Fixed Point Theory Appl. 2012, 2012:215), we explain a new generalized
contractive condition for set-valued mappings and prove a fixed point theorem in R-complete metric spaces
which extends some well-known results in the literature. Finally, some examples are given to support our
main theorem and also we find the existence of solution for a first-order ordinary differential equation.

1. Introduction

In 1969, Nadler [5] extended the Banach contraction principle [2] to set-valued mappings as follows.

Theorem 1.1. Let (X, d) be a complete metric space and let T be a mapping from X into CB(X). Assume that there
exists r ∈ [0, 1) such that H(Tx,Ty) ≤ rd(x, y) for all x, y ∈ X. Then there exists z ∈ X such that z ∈ T(z).

Many fixed point theorems have been proved by various authors as generalizations to Nadler’s theorem.
One such generalization is due to Kaneko in [3] and Nicolae in [6]. Another generalization was proved
by Mizoguchi and Takahashi [4] which is also well known as a positive response to a conjecture posed by
Simeon Reich [7].

Nadler’s theorem was generalized by Mizoguchi and Takahashi [4] in the following way.

Theorem 1.2. Let (X, d) be a complete metric space and let T be a mapping from (X, d) into (CB(X),H) satisfying

H(Tx,Ty) ≤ α(d(x, y))d(x, y)

for all x, y ∈ X, where α is a mapping from (0,∞) into [0, 1) such that lim sups→t+ α(s) < 1 for all t ∈ [0,∞). Then T
has a fixed point.

Recently, A. Amini-Harandi [1] introduced a new concept of set-valued contraction and proved a fixed
point theorem which generalizes some well-known results in the literature, especially [10]. In this paper,
we present an improvement and generalization of the main result of A. Amini-Harandi [1], M. Sgroi et al.
[8], J. Tiammee et al. [9] and D. Wardowski [10].

2010 Mathematics Subject Classification. Primary 47H10; Secondary 47H04
Keywords. Hausdorff metric; Set–valued contraction; Nadler’s fixed point theorem; Mizoguchi–Takahashi’s fixed point theorem;

R-regular and R-complete metric space.
Received: 23 December 2015; Accepted: 14 April 2016
Communicated by Ljubomir Ćirić
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2. Preliminaries

Throughout this paper,N,Q andRdenote, respectively, the sets of all natural numbers, rational numbers
and real numbers. Also, for every nonempty set X denote P∗(X) the set of all nonempty subsets of X.
Let (X, d) be a metric space. We denote CB(X) collections of all closed and bounded members of P∗(X).
For A,B ∈ CB(X) and x ∈ X, define

D(x,A) := inf{d(x, a); a ∈ A}

and
H(A,B) := max{sup

a∈A
D(a,B), sup

b∈B
D(b,A)}.

Notice that H is a metric on CB(X), called the Hausdorff metric induced by d.
To set up our results in the next section, we introduce some definitions that play a major role in further
sections.
Let X be a nonempty set, A,B ⊆ X and R be an arbitrary binary relation over X. The binary relations R1 and
R2 between A and B are defined as follows.
(1) A R1 B if a R b, for all a ∈ A and b ∈ B.
(2) A R2 B if for each a ∈ A there exists b ∈ B such that a R b.
Next, we introduce two types of monotone set-valued mappings by using the relations R1 and R2.

Definition 2.1. Let (X, d) be a metric space endowed a binary relation R over X and T : X→ CB(X). Then T is said
to be
(i) monotone mapping of type (I) if

x, y ∈ X, x R y⇒ Tx R1 Ty;

(ii) monotone mapping of type (II) if

x, y ∈ X, x R y⇒ Tx R2 Ty;

Example 2.2. Let X = { 12 ,
1
4 , · · · ,

1
2n , · · · } ∪ {0, 1}, d(x, y) = |x − y|, for all x, y ∈ X, and binary relation R over X

defined by

x R y ⇐⇒

 y
x ∈N,

or x = y = 0.

Let T : X→ CB(X) defined by

Tx =


{

1
2n , 1

2n+1 }, if x = 1
2n ,n = 1, 2, · · · ,

{0}, if x = 0,
{1, 1

2 ,
1
4 }, if x = 1.

It is easy to see that T is monotone of type (II) but not monotone of type (I). Since 1
2 R 1 but T( 1

2 ) = { 12 ,
1
4 }6 R1{1, 1

2 ,
1
4 } =

T(1).

Example 2.3. Let X = [0, 1) and let the metric on X be the Euclidean metric. Define binary relation R over X by x
R y if xy ∈ {x, y} for all x, y ∈ X. Let T : X→ CB(X) be a mapping defined by

T(x) =

{ 12 x2, x}, x ∈ Q ∩ X,
{0}, x ∈ Qc

∩ X.

It is easy to see that T is monotone of type (I) and (II).
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Definition 2.4. Let Λ denote the class of those functions φ(t1, t2, t3, t4, t5) : R5
+ → R+ which satisfy the following

conditions
(Λ1) φ is increasing in t2, t3, t4 and t5;
(Λ2) tn+1 < φ(tn, tn, tn+1, tn + tn+1, 0) implies that tn+1 < tn, for each positive sequence {tn};
(Λ3) If tn, sn → 0 and un → γ > 0, as n→∞, then we have lim supn→∞ φ(tn, sn, γ,un, tn+1) < γ;
(Λ4) φ(u,u,u, 2u, 0) ≤ u, for each u ∈ R+ = [0,+∞).

Example 2.5. Let φ : R5
+ → R+ defined by

φ(t1, t2, t3, t4, t5) = αt1 + βt2 + γt3 + δt4 + Lt5

where α, β, γ, δ,L ≥ 0, α + β + γ + 2δ = 1 and γ , 1. We claim that φ ∈ Λ. Indeed (Λ1) obviously holds. To show
(Λ2), let {tn} be a positive sequence such that

tn+1 < φ(tn, tn, tn+1, tn + tn+1, 0) = αtn + βtn + γtn+1 + δ(tn + tn+1)
= (α + β + δ)tn + (γ + δ)tn+1.

Since α + β + γ + 2δ = 1 and γ , 1, then we can conclude that 1 − (γ + δ) > 0 and hence

tn+1 <
(α + β + δ)
1 − (γ + δ)

tn = tn.

It is obvious to see that the properties (Λ3) and (Λ4) hold for this function.

Definition 2.6. [1] Let F : (0,+∞)→ R and θ : (0,+∞)→ (0,+∞) be two mappings. Throughout the paper, let ∆
be the set of all pairs (θ,F) satisfying the following:
(δ1) θ(tn) 6→ 0 for each strictly decreasing sequence {tn};
(δ2) F is a strictly increasing function;
(δ3) For each sequence {αn} of positive numbers, limn→∞ αn = 0 if and only if limn→∞ F(αn) = −∞;
(δ4) If tn ↓ 0 and θ(tn) ≤ F(tn) − F(tn+1) for each n ∈N, then we have

∑
∞

n=1 tn < ∞.

Example 2.7. [1] Let F(t) = ln(t) and θ(t) = − ln(α(t)) for each t ∈ (0,+∞), where α : (0,∞) → (0, 1) satisfying
lim sups→t+ α(s) < 1, for all t ∈ [0,∞). Then (θ,F) ∈ ∆.

Definition 2.8. Let X , ∅ and R ⊆ X × X be a binary relation. A sequence {xn} is called a R-sequence if

(∀n ∈N, xn R xn+1).

Definition 2.9. Let (X, d) be a metric space and R be a binary relation over X. Then X is said to be R-regular if for
each sequence {xn} such that xn R xn+1, for all n ∈N, and xn → x, for some x ∈ X, then xn R x, for all n ∈N (briefly,
(X, d,R) is called R-regular metric space).

Definition 2.10. Let (X, d) be a metric space and R be a binary relation over X. Then X is said to be R-complete if
every Cauchy R-sequence is convergent (briefly, (X, d,R) is called R-complete metric space ).

Example 2.11. Let X = Q. Suppose that x R y if and only if x = 0 or y = 0. Clearly, Q with the Euclidean metric is
not a complete metric space, but it is R-complete. In fact, if {xk} is an arbitrary Cauchy R-sequence in Q, then there
exists a subsequence {xkn } of {xk} for which xkn = 0 for all n ≥ 1. It follows that {xkn } converges to 0 ∈ X. On the
other hand, we know that every Cauchy sequence with a convergent subsequence is convergent. It follows that {xk} is
convergent. It is easy to see that (X, d,R) is also R-regular metric space.

Example 2.12. Let X = [0, 1). Suppose that

x R y ⇐⇒

x ≤ y ≤ 1
4 ,

or x = 0.
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Clearly, X with the Euclidian metric is not a complete metric space, but it is R-complete. In fact, if {xk} is an
arbitrary Cauchy R-sequence in X, then there exists a subsequence {xkn } of {xk} for which xkn = 0 for all n ≥ 1 or
there exists a monotone subsequence {xkn } of {xk} for which xkn ≤

1
4 for all n ≥ 1. It follows that {xkn } converges to

a point x ∈ [0, 1
4 ] ⊆ X. On the other hand, we know that every Cauchy sequence with a convergent subsequence is

convergent. It follows that {xk} is convergent. It is easy to see that (X, d,R) is also R-regular metric space.

Example 2.13. Let X = R. Suppose x R y if and only x = 0 or 0 , y ∈ Q. It is easy to see that (X, d,R) is a
R-complete but not R-regular metric space.

Example 2.14. Let X = R, suppose x R y if

x, y ∈
(
n +

2
4
,n +

3
4

)
for some n ∈ Z or

x = 0.

It is easy to see that (X, d,R) is a R-complete but not R-regular metric space.

3. Fixed Point Theory

We prove main theorem of this section by using the technique in [1].

Theorem 3.1. Let (X, d,R) be a R-complete (not necessarily complete), R-regular metric space and T : X → CB(X)
be a set-valued mapping. Assume that there exists (θ2 ,F) ∈ ∆ such that

θ(d(x, y)) + F(H(Tx,Ty)) ≤ F(φ(d(x, y),D(x,Tx),D(y,Ty),D(x,Ty),D(y,Tx))), (1)

for each x R y, with Tx , Ty, where φ ∈ Λ. If the following conditions are satisfied
(i) T is monotone of type (I);
(ii) There exists x0 ∈ X such that {x0} R2 Tx0;
(iii) T is compact valued or F is continuous from the right;
Then T has a fixed point.

Proof. By assumption (ii), there exists x1 ∈ Tx0 such that x0 R x1. By assumption (i), since T is monotone of
type (I), then Tx0 R1 Tx1. If x1 ∈ Tx1, then x1 is fixed point of T and the proof is complete. Assume that
x1 < Tx1, then Tx0 , Tx1. Since either T is compact valued or F is continuous from right, x1 ∈ Tx0 and

F(D(x1,Tx1)) < F(H(Tx0,Tx1)) +
θ(d(x0, x1))

2

then there exists x2 ∈ Tx1 with x1 R x2 such that

F(d(x1, x2)) ≤ F(H(Tx0,Tx1)) +
θ(d(x0, x1))

2
.

Repeating this process, we find that there exists a R-sequence {xn}with initial point x0 such that xn+1 ∈ Txn,
Txn , Txn+1 and

F(d(xn, xn+1)) ≤ F(H(Txn−1,Txn)) +
θ(d(xn−1, xn))

2
, (2)
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for all n ∈N. From (1), (2), (Λ1) and (δ2)we have

θ(d(xn−1, xn)) + F(d(xn, xn+1))

≤ θ(d(xn−1, xn)) + F(H(Txn−1,Txn)) +
θ(d(xn−1, xn))

2
≤ F(φ(d(xn−1, xn),D(xn−1,Txn−1),D(xn,Txn),D(xn−1,Txn),D(xn,Txn−1)))

+
θ(d(xn−1, xn))

2

≤ F(φ(d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), d(xn−1, xn+1), 0)) +
θ(d(xn−1, xn))

2
≤ F(φ(d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), d(xn−1, xn) + d(xn, xn+1), 0))

+
θ(d(xn−1, xn))

2
,

and so

θ(d(xn−1, xn))
2

+ F(d(xn, xn+1))

≤ F(φ(d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), d(xn−1, xn) + d(xn, xn+1), 0)),
(3)

for each n ∈N. This implies that

d(xn, xn+1)
< φ(d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), d(xn−1, xn) + d(xn, xn+1), 0),

for each n ∈N. Then by (Λ2), d(xn, xn+1) < d(xn−1, xn) for each n ∈N. Since {d(xn, xn+1)} is a strictly decreasing
sequence, then by using (3), (Λ1) and (Λ4), we obtain that

θ(d(xn−1, xn))
2

+ F(d(xn, xn+1))

≤ F(φ(d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), d(xn−1, xn) + d(xn, xn+1), 0))
≤ F(φ(d(xn−1, xn), d(xn−1, xn), d(xn−1, xn), d(xn−1, xn) + d(xn−1, xn), 0))
= F(φ(d(xn−1, xn), d(xn−1, xn), d(xn−1, xn), 2d(xn−1, xn), 0))
≤ F(d(xn−1, xn)),

(4)

for each n ∈N.
Let limn→∞ d(xn, xn+1) = r, for some r ≥ 0. Now, we show that r = 0. On contrary, assume that r > 0. From
(4) we get

1
2

n−1∑
i=1

θ(d(xi, xi+1)) ≤ F(d(x1, x2)) − F(d(xn, xn+1)) (5)

for each n ∈N. Since {d(xn, xn+1)} is strictly decreasing, then from (δ1) we obtain thatθ(d(xn, xn+1))9 0. Thus,∑
∞

i=1 θ(d(xi, xi+1)) = +∞, and then from (5) we have limn→∞ F(d(xn, xn+1)) = −∞. Then by (δ3), d(xn, xn+1)→ 0,
as n→∞, that a contradiction. Hence

lim
n→∞

d(xn, xn+1) = 0. (6)

From (4), (6) and (δ4), we have
∑
∞

n=1 d(xn, xn+1) < ∞. Then by triangle inequality {xn} is Cauchy R-sequence.
Since X is R-complete, then there exists x ∈ X such that limn→∞ xn = x. Now, we prove that x is fixed point
of T. If there exist a strictly increasing sequence {nk} such that xnk ∈ Tx for all k ∈ N, since Tx is closed and
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xnk → x, as k→∞, we get that x ∈ Tx and proof is complete.
So, we can assume that there exists n0 ∈ N such that xn < Tx, for each n > n0. This implies that Txn , Tx,
for each n ≥ n0. Now since X is a R-regular metric space by using (1) with x = xn and y = x, we obtain

F(D(xn+1,Tx)) < θ(d(xn, x)) + F(D(xn+1,Tx))
≤ θ(d(xn, x)) + F(H(Txn,Tx))
≤ F(φ(d(xn, x),D(xn,Txn),D(x,Tx),D(xn,Tx),D(x,Txn)))
≤ F(φ(d(xn, x), d(xn, xn+1),D(x,Tx),D(xn,Tx), d(x, xn+1))),

for each n ≥ n0.
Therefore

D(xn+1,Tx) < φ(d(xn, x), d(xn, xn+1),D(x,Tx),D(xn,Tx), d(x, xn+1)), (7)

for each n ≥ n0. Now if x ∈ Tx, then proof is complete. Let x < Tx then by using (7) and (Λ3) we have

D(x,Tx) = lim sup
n→∞

D(xn+1,Tx)

≤ lim sup
n→∞

φ(d(xn, x), d(xn, xn+1),D(x,Tx),D(xn,Tx), d(x, xn+1))

< D(x,Tx),

which is a contradiction. Hence x ∈ Tx and proof is complete.

Letting
φ(t1, t2, t3, t4, t5) = αt1 + βt2 + γt3 + δt4 + Lt5,

where α, β, γ, δ,L ≥ 0, α + β + γ + 2δ = 1 and γ , 1, we get a generalization of Theorem 3.4 of [8].

Corollary 3.2. Let (X, d,R) be a R-complete (not necessarily complete), R-regular metric space and T : X→ CB(X)
be a set-valued mapping. Assume that there exists (θ2 ,F) ∈ ∆ such that

θ(d(x, y)) + F(H(Tx,Ty))
≤ F(αd(x, y) + βD(x,Tx) + γD(y,Ty) + δD(x,Ty) + LD(y,Tx)),

for each x R y, with Tx , Ty, where α, β, γ, δ,L ≥ 0, α + β + γ + 2δ = 1 and γ , 1. If the following conditions are
satisfied
(i) T is monotone of type (I);
(ii) There exists x0 ∈ X such that {x0} R2 Tx0;
(iii) T is compact valued or F is continuous from the right;
Then T has a fixed point.

Proof. By using Example 2.1 of [1], we can easily show that this corollary is a generalization of Theorem 3.4
of [8].

Letting
φ(t1, t2, t3, t4, t5) = t1

we get a generalization of Theorem 2.4 of [1].

Corollary 3.3. Let (X, d,R) be a R-complete (not necessarily complete), R-regular metric space and T : X→ CB(X)
be a set-valued mapping. Assume that there exists (θ2 ,F) ∈ ∆ such that

θ(d(x, y)) + F(H(Tx,Ty)) ≤ F(d(x, y)),

for each x R y, with Tx , Ty. If the following conditions are satisfied
(i) T is monotone of type (I);
(ii) There exists x0 ∈ X such that {x0} R2 Tx0;
(iii) T is compact valued or F is continuous from the right;
Then T has a fixed point.
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In below we explain a generalization of Theorem 3.2 of [9].

Corollary 3.4. Let (X, d,R) be a R-complete (not necessarily complete), R-regular metric space and T : X→ CB(X)
be a set-valued mapping. Assume that

H(Tx,Ty) ≤ α(d(x, y))d(x, y), (8)

for each x R y, with Tx , Ty where α is a function from (0,∞) into (0, 1) such that lim sups→t+ α(s) < 1 for all
t ∈ [0,∞). If the following conditions are satisfied
(i) T is monotone of type (I);
(ii) There exists x0 ∈ X such that {x0} R2 Tx0;
Then T has a fixed point.

Proof. Let F(t) = ln(t), θ(t) = − ln(α(t)) for each t ∈ (0,∞), and φ : R5
+ → R+ defined by φ(t1, t2, t3, t4, t5) = t1

then (θ,F) ∈ ∆ and φ ∈ Λ. Hence by using Theorem 3.1, T has a fixed point.

Now we illustrate our main results by the following examples.

Example 3.5. Let (X, d) be a metric space, where X = {1, 2, 3, 4}, d(1, 2) = d(1, 3) = 1, d(1, 4) = 7
4 and d(2, 3) =

d(2, 4) = d(3, 4) = 2. Let T : X → CB(X) be given by T1 = T4 = {1, 4}, T2 = T3 = {4} and R =
{(1, 1), (1, 2), (1, 3), (1, 4), (4, 1), (4, 4)} be a binary relation over X. Since X is finite set then every Cauchy se-
quence in (X, d) is equivalent constant and so convergent. Then (X, d) is a R-complete metric space. It is easy to see
that:
(1) T is monotone of type (I);
(2) There exists x0 ∈ X such that {x0} R2 Tx0;
(3) X is a R-regular metric space;
(4) Inequality

1 + ln(H(Tx,Ty)) ≤ ln(α.d(x, y) + L.D(y,Tx)),

holds for each x R y, with Tx , Ty, where α = 1 and L = 4. Then by Corollary 3.2, T has a fixed point.

Example 3.6. Let X = { 12 ,
1
4 , · · · ,

1
2n , · · · } ∪ {1}, d(x, y) = |x − y|, for all x, y ∈ X, and binary relation R defined over

X by

x R y ⇐⇒
y
x
∈N.

Let T : X→ CB(X) defined by

Tx =

{ 1
2n }, if x = 1

2n ,n = 1, 2, · · · ,
{1, 1

2 }, if x = 1.

Now we can easily show that
(1) X is a R-complete ( not complete metric space ) and R-regular metric space. Furthermore, every R-sequence is
convergence;
(2) T is monotone of type (I);
(3) There exists x0 ∈ X such that {x0} R2 Tx0;
(4) Inequality

1 + ln(H(Tx,Ty)) ≤ ln(α.d(x, y) + L.D(y,Tx)),

holds for for each x R y, with Tx , Ty, where α = 1 and L = 2. Then by Corollary 3.2, T has a fixed point.



H. Baghani, M. Ramezani / Filomat 31:12 (2017), 3875–3884 3882

Example 3.7. Consider the sequence {Sn} as follows:

S1 = 1 × 2,
S2 = 1 × 2 + 2 × 3,
S3 = 1 × 2 + 2 × 3 + 3 × 4,
· · ·

Sn = 1 × 2 + 2 × 3 + · · · + n(n + 1) =
n(n + 1)(n + 2)

3
,n ∈N.

Let X = {Sn : n ∈ N} and d(x, y) = |x − y|, x, y ∈ X. For all Sn,Sm ∈ X define Sn R Sm if and only if (1 = n ≤ m).
Hence (X, d,R) is a R-complete and R-regular metric space. Define set-valued mapping T : X → CB(X) by the
formulae:

Tx =

{Sn−1,Sn+1}, if x = Sn,n = 3, 4, · · · ,
{S1}, if x = S1,S2.

It is easy to see that T is monotone mapping of type (I) and {S1} R2 TS1.
Now since,

lim
n→∞

H(T(Sn),T(S1))
d(Sn,S1)

= 1,

then T is not R-contraction.
First, observe that

Sn R Sm , T(Sn) , T(Sm)⇐⇒ (1 = n,m > 2).

On the other hand, for every m ∈N,m > 2 we have

1 + ln(H(TS1,TSm)) ≤ ln(α.d(S1,Sm) + L.D(Sm,TS1)),

where α = 1 and L = 9. Then by Corollary 3.2, T has a fixed point.

4. Applications to Ordinary Differential Equations

Our purpose here is to apply Corollary 3.4 to prove the existence of a solution for the following differential
equation:u′(t) = f (t,u(t)), a.e. t ∈ I = [0,T],

u(0) = a, a ≥ 1,
(9)

where f : I ×R→ R is an integrable function satisfying the following conditions:
(c1) f (s, x) ≥ 0 for all x ≥ 0 and s ∈ I,
(c2) there exists α ∈ L1(I) such that

| f (s, x) − f (s, y)| ≤ α(s)|x − y|

for all t ∈ I and x, y ≥ 0 with xy ≥ (x ∨ y), where x ∨ y = x or y.

Note that f : I × R → R is not necessarily Lipschitz from the given condition (c2). For example, the
function

f (s, x) =

sx, x ≤ 1
2 ,

0, x > 1
2

satisfies the conditions (c1) and (c2) while f is not continuous. Also, for s , 0,∣∣∣∣ f (s,
1
2

) − f (s,
2
3

)
∣∣∣∣ = s

1
2
> s

1
6

= s
∣∣∣∣12 − 2

3

∣∣∣∣.
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Theorem 4.1. Under above assumptions, the differential equation (9) has a positive solution.

Proof. Let X = {u ∈ C(I,R) : u(t) > 0, ∀t ∈ I}. We consider the following binary relation over X:

x R y ⇐⇒ x(t)y(t) ≥ (x(t) ∨ y(t))

for all t ∈ I. Let A(t) =
∫ t

0 |α(s)|ds. Then A′(t) = |α(t)| for almost every t ∈ I. Define

‖x‖A = sup
t∈I

e−A(t)
|x(t)|, d(x, y) := ‖x − y‖A

for all x, y ∈ X. It is easy to see that (X, d) is a metric space.
Now, we show that X is R-complete (not necessarily complete). Take a Cauchy R-sequence {xn} in X. It

is easy to show that {xn} is convergent to a point x ∈ C(I,R). Observe that C(I,R) is a Banach space with this
norm since it is equivalent to the maximum norm. It is enough to show the x ∈ X. Fix t ∈ I. The definition
of relation R implies that

xn(t) xn+1(t) ≥ (xn(t) ∨ xn+1(t))

for each n ∈ N. Since xn(t) > 0 for all n ∈ N, there exists a subsequence {xnk } in {xn} for which xnk (t) ≥ 1 for
each k ∈N. The convergence of this sequence of real numbers to x(t) implies that x(t) ≥ 1. But since t ∈ I is
arbitrary, it follows that x ≥ 1 and hence x ∈ X. By similar reason, we can prove that (X, d,R) is a R-regular
metric space. Define a mapping F : X→ X by

F u(t) =

∫ t

0
f (s,u(s))ds + a.

Note that the fixed points of F are the solutions of (9). To complete the proof, we need the following
steps:

Step 1: F is monotone of type (I).
In fact, for all x, y ∈ X with x R y and t ∈ I,

F x(t) =

∫ t

0
f (s, x(s))ds + a ≥ 1,

which implies that F x(t)F y(t) ≥ F x(t) and so F x R F y. Moreover, for each x ∈ X, x R F x.
Step 2: F satisfies in contractive condition (8).

In fact, for all x, y ∈ X with x R y and t ∈ I, the condition (c2) implies that

e−A(t)
|F x(t) − F y(t)| ≤ e−A(t)

∫ t

0
| f (s, x(s)) − f (s, y(s))|ds

≤ e−A(t)
∫ t

0
|α(s)|eA(s)e−A(s)

|x(s) − y(s)|ds

≤ e−A(t)
( ∫ t

0
|α(s)|eA(s)ds

)
‖x − y‖A

≤ e−A(t)(eA(t)
− 1) ‖x − y‖A

≤ (1 − e−‖α‖1 ) ‖x − y‖A

and so

‖F x − F y‖A ≤ (1 − e−‖α‖1 ) ‖x − y‖A.

Since 1 − e−‖α‖1 < 1, F satisfies in contractive condition (8).
Thus, Corollary 3.4 applies that the operator F has a fixed point.
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