Second Hankel Determinant Problem for k-bi-starlike Functions

Halit Orhan ${ }^{\text {a }}$, Evrim Toklu ${ }^{\text {b }}$, Ekrem Kadıoğlu ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Faculty of Science, Ataturk University, 25240 Erzurum-Turkey
${ }^{b}$ Ağrı Ibrahim Çeçen University, Vocational School, 04100 Ağrı-Turkey

Abstract

In this paper we introduce and study some properties of k-bi-starlike functions defined by making use of the Sălăgean derivative operator. Upper bounds on the second Hankel determinant for k-bi-starlike functions are investigated. Relevant connections of the results presented here with various well-known results are briefly indicated.

1. Introduction

As usual, we denote by A the class of functions $f(z)$ normalized by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z: z \in C$ and $|z|<1\}$.
We also denote by S the subclass of A consisting of functions which are univalent in U. Let $f^{-1}(z)$ be the inverse function of $f(z)$, defined by

$$
f^{-1}(f(z))=z \quad(z \in U) \text { and } f\left(f^{-1}(w)\right)=w\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots .
$$

A function $f \in A$ is said to be bi-univalent in U if both $f(z)$ and $f^{-1}(z)$ are univalent in U. We denote by σ the class of all functions $f(z)$ which are bi-univalent in U.

Brannan et al. [2] introduced certain subclasses of the bi-univalent function class σ similar to the familiar subclasses $S^{*}(\beta)$ and $K(\beta)$ of starlike and convex function of order $\beta(0 \leq \beta<1)$, respectively (see [9]). For a brief history of functions in the class σ, see the work of Srivastava et al. [19]. In fact, judging by the remarkable flood of papers on the subject ([1], [5], [8], [11], [15]-[18], [20], [21], [23]), the pioneering work

[^0]by Srivastava et al. [19] appears to have revived the study of analytic and bi-univalent functions in recent years. By definition, we have
$$
S^{*}(\beta)=\left\{f \in S: \mathfrak{R}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\beta ; 0 \leq \beta<1, z \in U\right\}
$$
and
$$
K(\beta)=\left\{f \in S: \mathfrak{R}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\beta ; 0 \leq \beta<1, z \in U\right\}
$$

The classes $S_{\sigma}^{*}(\beta)$ and $K_{\sigma}(\beta)$ of bi-starlike functions of order β and bi-convex functions of order β, corresponding to the function classes $S^{*}(\beta)$ and $K(\beta)$, were also considered analogously.

The $q^{\text {th }}$ Hankel determinant for $n \geq 0$ and $q \geq 1$ was stated by Noonan et al. ([10]) as

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \ldots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \ldots & a_{n+q} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+q-1} & a_{n+q} & \ldots & a_{n+2 q-2}
\end{array}\right| \quad\left(a_{1}=1\right) .
$$

We note that $H_{2}(1)=a_{3}-a_{2}^{2}$ is well-known as Fekete-Szegö functional (see [4]). For our discussion in the present paper, we examine the Hankel determinant in the case $q=2$ and $n=2, H_{2}(2)=a_{2} a_{4}-a_{3}^{2}$. We will try to find upper bound for the functional $H_{2}(2)=a_{2} a_{4}-a_{3}^{2}$ for the functions f belonging to the class $S_{\sigma, k}(\beta)$ of k-bi-starlike functions.

For a function $f(z) \in A$, we define

$$
\begin{aligned}
D^{0} f(z)= & f(z) \\
D^{1} f(z)= & D f(z)=z f^{\prime}(z) \\
& \vdots \\
D^{k} f(z)= & D\left(D^{k-1} f(z)\right) \quad\left(k \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} \text { where } \mathbb{N}=\{1,2,3, \ldots\}\right)
\end{aligned}
$$

The differential operator D^{k} was considered by Sălăgean [13].
With the help of this differential operator, Sălăgean [13] also defined the class of k-starlike functions of order $\beta(0 \leq \beta<1)$ defined by

$$
S_{k}(\beta)=\left\{f \in A: \Re\left(\frac{D^{k+1} f(z)}{D^{k} f(z)}\right)>\beta, \quad z \in U\right\}
$$

Kanas et al. [7] obtained more general results for k-uniformly convex functions by using parameter k. Certain well-known subclasses of S are indeed special cases of $S_{k}(\beta)$ for suitable choices of parameters k and β. We remark that for $k=0, S_{0}(\beta) \equiv S(\beta)$ and for $k=1, S_{1}(\beta) \equiv K(\beta)$ are classes of starlike functions of order β and convex functions of order β, respectively.

Definition 1.1. A function $f \in \sigma$ is said to be in the class $S_{\sigma, k}(\beta)$, if the following conditions are satisfied:

$$
\begin{equation*}
\mathfrak{R}\left(\frac{D^{k+1} f(z)}{D^{k} f(z)}\right)>\beta ; 0 \leq \beta<1, z \in U \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{R}\left(\frac{D^{k+1} g(w)}{D^{k} g(w)}\right)>\beta ; 0 \leq \beta<1, w \in U \tag{3}
\end{equation*}
$$

where $g(w)=f^{-1}(w)$.
We remark that for $k=0$ the class $S_{\sigma, 0}(\beta) \equiv S_{\sigma}^{*}(\beta)$ is the class of bi-starlike functions of order β. When $k=1, S_{\sigma, 1}(\beta) \equiv K_{\sigma}(\beta)$ is the class of bi-convex functions of order β. Our main interest focus on the class $S_{\sigma, k}(\beta)$ of k-bi-starlike functions.

The purpose of this note is to find upper bound for the functional $H_{2}(2)=a_{2} a_{4}-a_{3}^{2}$ for functions f belonging to the class $S_{\sigma, k}(\beta)$.

Now we recall the following lemmas which will be required in our next investigation.
Lemma 1.2. [12] If $p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots$ is an analytic function in U with positive real part, then

$$
\left|p_{n}\right| \leq 2, \text { and }\left|p_{2}-\frac{p_{1}^{2}}{2}\right| \leq 2-\frac{\left|p_{2}\right|^{2}}{2}(n \in \mathbb{N})
$$

Lemma 1.3. [6] If the function $p \in P$, then

$$
2 p_{2}=p_{1}^{2}+x\left(4-p_{1}^{2}\right) ; 4 p_{3}=p_{1}^{3}+2\left(4-p_{1}^{2}\right) p_{1} x-p_{1}\left(4-p_{1}^{2}\right) x^{2}+2\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) z
$$

for some x, z with $|x| \leq 1$ and $|z| \leq 1$.

2. Main Results

One of our main results is contained in

Theorem 2.1. Let f given by (1) be in the class $S_{\sigma, k}(\beta), 0 \leq \beta<1$. Then, for $k=1,2,3$

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{(1-\beta)^{2}}{2^{2 k}}\left[\frac{2^{2 k}}{3^{2 k}}-\frac{3.2^{k} M^{2}}{3^{2 k} N}\right]
$$

and for $k=0$ and for every $k \geq 4(k \in \mathbb{N})$

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq\left\{\begin{array}{cl}
\frac{(1-\beta)^{2}}{3^{2 k+1} 2^{5 k}}\left[N+6.2^{2 k} M+3.2^{5 k}\right], & \beta \in\left[0, \beta_{1}^{\prime}\right] \\
\frac{\left.(1-)^{2}\right)^{2 k}}{2^{2 k}}\left[\frac{2^{2 k}}{3^{2 k}}-\frac{3 \cdot 2^{k} k^{2}}{3^{2 k} N}\right], & \beta \in\left(\beta_{1}^{\prime}, 1\right)
\end{array}\right.
$$

where

$$
\begin{aligned}
M & =\left\{6^{k}+2 \cdot 3^{2 k}-2^{3 k}-6^{k} \beta\right\} \\
N & =16 \cdot 3^{2 k} \cdot\left(3 \cdot 2^{k}+2^{2 k}-3^{k+1}\right)(1-\beta)^{2}-6 \cdot 3^{k} \cdot 2^{3 k}(1-\beta)+3 \cdot 2^{5 k}-8 \cdot 2^{2 k} \cdot 3^{2 k}
\end{aligned}
$$

and

$$
\beta_{1}^{\prime}=\frac{3.2^{k+5}+2^{2 k+5}-2^{3 k} 3^{1-k}-32.3^{k+1}-\left(\frac{2}{3}\right)^{k} \sqrt{9.2^{4 k}+2^{2 k+7} 3^{2 k}+2^{k+7} 3^{2 k+1}-128.3^{3 k+1}}}{2\left(3.2^{k+4}+2^{2 k+4}-16.3^{k+1}\right)} .
$$

Proof. Let $f \in S_{\sigma, k}(\beta)$. Then

$$
\begin{align*}
& \frac{D^{k+1} f(z)}{D^{k} f(z)}=\beta+(1-\beta) p(z) \tag{4}\\
& \frac{D^{k+1} g(w)}{D^{k} g(w)}=\beta+(1-\beta) q(w) \tag{5}
\end{align*}
$$

where $p, q \in P$ and $g=f^{-1}$. Thus, after some calculations, it follows from (4) and (5) that

$$
\begin{equation*}
a_{2}=\frac{1-\beta}{2^{k}} p_{1} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
a_{3}=\frac{(1-\beta)^{2}}{2^{2 k}} p_{1}^{2}+\frac{1-\beta}{4.3^{k}}\left(p_{2}-q_{2}\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{4}=\frac{\left(3^{k+1}-2^{2 k}\right)(1-\beta)^{3}}{3.2^{4 k}} p_{1}^{3}+\frac{5(1-\beta)^{2}}{8.6^{k}} p_{1}\left(p_{2}-q_{2}\right)+\frac{(1-\beta)}{6.4^{k}}\left(p_{3}-q_{3}\right) \tag{8}
\end{equation*}
$$

Then, we can establish that

$$
\begin{align*}
\left|a_{2} a_{4}-a_{3}^{2}\right|= & \left\lvert\,-\frac{(1-\beta)^{4}\left(3^{k+1}-2^{2 k}-3.2^{k}\right)}{3.2^{5 k}} p_{1}^{4}\right. \\
& \left.+\frac{(1-\beta)^{3}}{8.12^{k}} p_{1}^{2}\left(p_{2}-q_{2}\right)+\frac{(1-\beta)^{2}}{6.2^{3 k}} p_{1}\left(p_{3}-q_{3}\right)-\frac{(1-\beta)^{2}}{16.9^{k}}\left(p_{2}-q_{2}\right)^{2} \right\rvert\, \tag{9}
\end{align*}
$$

Making use of Lemma 1.3, we have

$$
\begin{equation*}
p_{2}-q_{2}=\frac{4-p_{1}^{2}}{2}(x-y) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{3}-q_{3}=\frac{p_{1}^{3}}{2}+\frac{\left(4-p_{1}^{2}\right) p_{1}}{2}(x+y)-\frac{\left(4-p_{1}^{2}\right) p_{1}}{4}\left(x^{2}+y^{2}\right)+\frac{4-p_{1}^{2}}{2}\left[\left(1-|x|^{2}\right) z-\left(1-|y|^{2}\right) w\right] . \tag{11}
\end{equation*}
$$

Then, by using equations (10) and (11) in (9) we may set

$$
\begin{align*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq & \left(\frac{(1-\beta)^{4}\left(3.2^{k}+2^{2 k}-3^{k+1}\right)}{3.2^{5 k}}+\frac{(1-\beta)^{2}}{12.3^{k}}\right) p_{1}^{4}+\frac{(1-\beta)^{2}}{6.2^{3 k}} p_{1}\left(4-p_{1}^{2}\right) \\
& +\left[\frac{(1-\beta)^{2}}{6.2^{3 k}} p_{1}^{2} \frac{\left(4-p_{1}^{2}\right)}{2}+\frac{(1-\beta)^{3}}{8.12^{k}} p_{1}^{2} \frac{\left(4-p_{1}^{2}\right)}{2}\right](|x|+|y|) \\
& +\left[\frac{(1-\beta)^{2}}{6.2^{3 k}} p_{1}^{2} \frac{\left(4-p_{1}^{2}\right)}{4}-\frac{(1-\beta)^{2}}{6.2^{3 k}} p_{1} \frac{\left(4-p_{1}^{2}\right)}{2}\right]\left(|x|^{2}+|y|^{2}\right) \\
& +\frac{(1-\beta)^{2}}{16.9^{k}} \frac{\left(4-p_{1}^{2}\right)^{2}}{4}(|x|+|y|)^{2} \tag{12}
\end{align*}
$$

Since $p \in P$, so $\left|p_{1}\right| \leq 2$. Letting $\left|p_{1}\right|=p$, we may assume without restriction that $p \in[0,2]$. For $\eta=|x| \leq 1$ and $\mu=|y| \leq 1$, we get

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq T_{1}+(\eta+\mu) T_{2}+\left(\eta^{2}+\mu^{2}\right) T_{3}+(\eta+\mu)^{2} T_{4}=G(\eta, \mu)
$$

where

$$
\begin{aligned}
& T_{1}=T_{1}(p)=\frac{(1-\beta)^{2}}{3.2^{3 k}}\left[\left((1-\beta)^{2} \frac{\left(3.2^{k}+2^{2 k}-3^{k+1}\right)}{2^{2 k}}+\frac{1}{4}\right) p^{4}-\frac{p^{3}}{2}+2 p\right] \geq 0 \\
& T_{2}=T_{2}(p)=\frac{(1-\beta)^{2} p^{2}\left(4-p^{2}\right)}{2^{2 k+2}}\left[\frac{1}{3.2^{k}}+\frac{(1-\beta)}{4.3^{k}}\right] \geq 0 \\
& T_{3}=T_{3}(p)=\frac{(1-\beta)^{2} p\left(4-p^{2}\right)(p-2)}{24.2^{3 k}} \leq 0 \\
& T_{4}=T_{4}(p)=\frac{(1-\beta)^{2}}{16.9^{k}} \cdot \frac{\left(4-p^{2}\right)^{2}}{4} \geq 0
\end{aligned}
$$

We now need to maximize the function $G(\eta, \mu)$ on the closed region $[0,1] \times[0,1]$.
Since $T_{3}<0$ and $T_{3}+2 T_{4}>0$ for $p \in[0,2)$, we conclude that $G_{\eta \eta} G_{\mu \mu}-\left(G_{\eta \mu}\right)^{2}<0$.

Thus the function G can't have a local maximum in the interior of the region. Now, we investigate the maximum value of G on the boundary of the region.

For $\eta=0$ and $0 \leq \mu \leq 1$ (similarly $\mu=0$ and $0 \leq \eta \leq 1$), we obtain $G(0, \mu)=H(\mu)=\left(T_{3}+T_{4}\right) \mu^{2}+$ $T_{2} \mu+T_{1}$.

Case 1: $T_{3}+T_{4} \geq 0$: In this case for $0 \leq \mu \leq 1$ and any fixed p with $0 \leq p<2$, it's clear that $H^{\prime}(\mu)=2\left(T_{3}+T_{4}\right) \mu+T_{2}>0$, that is, $H(\mu)$ is increasing function. Hence, for fixed $p \in[0,2)$, the maximum of $H(\mu)$ occurs at $\mu=1$, and max $H(\mu)=H(1)=T_{1}+T_{2}+T_{3}+T_{4}$.

Case 2: $T_{3}+T_{4}<0$: Since $T_{2}+2\left(T_{3}+T_{4}\right) \geq 0$ for $0<\mu<1$ and any fixed p with $0 \leq p<2$,it is clear that $T_{2}+2\left(T_{3}+T_{4}\right)<2\left(T_{3}+T_{4}\right) \mu+T_{2}<T_{2}$ and so $H^{\prime}(\mu)>0$. Hence for fixed $p \in[0,2)$, the maximum of $H(\mu)$ occurs at $\mu=1$.

Also for $p=2$ we obtain

$$
\begin{equation*}
G(\eta, \mu)=\frac{(1-\beta)^{2}}{3.2^{3 k}}\left[\frac{(1-\beta)^{2}\left(3.2^{k}+2^{2 k}-3^{k+1}\right)}{2^{2 k-4}}+4\right] \tag{13}
\end{equation*}
$$

Taking into consideration the value (13), and the cases 1 and 2 , for $0 \leq \mu \leq 1$ and any fixed p with $0 \leq p \leq 2$, $\max H(\mu)=H(1)=T_{1}+T_{2}+T_{3}+T_{4}$.

For $\eta=1$ and $0 \leq \mu \leq 1$ (similarly $\mu=1$ and $0 \leq \eta \leq 1$), we have $G(1, \mu)=F(\mu)=\left(T_{3}+T_{4}\right) \mu^{2}+\left(T_{2}+\right.$ $\left.2 T_{4}\right) \mu+T_{1}+T_{2}+T_{3}+T_{4}$.

Similarly to the above cases of $T_{3}+T_{4}$, we get that $\max F(\mu)=F(1)=T_{1}+2 T_{2}+2 T_{3}+4 T_{4}$.
Since $H(1) \leq F(1)$ for $p \in[0,2]$, $\max G(\eta, \mu)=G(1,1)$ on the boundary of the region. Thus, the maximum value of G occurs at $\eta=1$ and $\mu=1$ in the closed region.

Let $K:[0,2] \rightarrow R$

$$
\begin{equation*}
K(p)=\max G(\eta, \mu)=G(1,1)=T_{1}+2 T_{2}+2 T_{3}+4 T_{4} \tag{14}
\end{equation*}
$$

Substituting the values of T_{1}, T_{2}, T_{3} and T_{4} in the function K defined by (14), yields

$$
K(p)=\frac{(1-\beta)^{2}}{2^{2 k}}\left\{\frac{N}{48.2^{3 k} 3^{2 k}} p^{4}+\frac{M}{3^{2 k} 2^{k+1}} p^{2}+\frac{2^{2 k}}{3^{2 k}}\right\} .
$$

Assume that $K(p)$ has a maximum value in an interior of $p \in[0,2]$, by elementary calculations, we arrive at

$$
K^{\prime}(p)=\frac{(1-\beta)^{2}}{2^{2 k}}\left\{\frac{N}{12.2^{3 k} 3^{2 k}} p^{3}+\frac{M}{2^{k} 3^{2 k}} p\right\}
$$

Setting $K^{\prime}(p)=0$, we have the real critical points $p_{0_{1}}=0$ and $p_{0_{2}}=\sqrt{\frac{-12.22^{2 k} M}{N}}$.
It can be showed easily that M is a positive real number for every $\beta \in[0,1)$ and for every $k \in \mathbb{N}$. That is, $M>0$.

Besides, by using Mathematica Program we can obtain that one of roots of equation $N=0$ is

$$
\begin{aligned}
\beta_{1}= & \frac{3.2^{k+5}+2^{2 k+5}-2^{3 k+1} 3^{1-k}-32.3^{k+1}}{2\left(3.2^{k+4}+2^{2 k+4}-16.3^{k+1}\right)} \\
& -\frac{2.3^{-2 k} \sqrt{2^{4 k+7} 3^{4 k}-2^{7 k+4} 3^{2 k+1}-5.2^{6 k} 3^{2 k+3}+2^{5 k+4} 3^{3 k+2}+2^{3 k+7} 3^{4 k+1}-2^{2 k+7} 3^{5 k+1}}}{2\left(3.2^{k+4}+2^{2 k+4}-16.3^{k+1}\right)}
\end{aligned}
$$

As a result of some calculations we can deduce that N is a negative real number for every $\beta \in[0,1)$ and for $k=1,2,3,4,5$ (see Figure 1) but N is not always a negative real number for $k \geq 6(k \in \mathbb{N})$ and for some values of $\beta \in[0,1)$. Also, if below Figure 1 is scrutinized, we can conclude that N is a negative real number for every $\beta \in[0,1)$ and for $k=1,2,3,4,5$.

Figure 1: We can see that N is a negative real number for $\mathrm{k}=1,2,3,4,5$.

We can do the following examine in consequence of above explanations:
First all, let $k=1,2,3$. In this case $M>0$ and $N<0$ for every $\beta \in[0,1)$. Since $p_{0_{2}}<2(k=1,2,3)$ for every $\beta \in[0,1)$ and so $K^{\prime \prime}\left(p_{0_{2}}\right)<0$, the maximum value of $K(p)$ corresponds to $p=p_{0_{2}}$, that is,

$$
\max _{0 \leq p \leq 2} K(p)=K\left(p_{0_{2}}\right)=\frac{(1-\beta)^{2}}{2^{2 k}}\left[\frac{2^{2 k}}{3^{2 k}}-\frac{3 \cdot 2^{k} M^{2}}{3^{2 k} N}\right]
$$

Consequently, since $K(0)<K(2) \leq K\left(p_{0_{2}}\right)$ we obtain max $K(p)=K\left(p_{0_{2}}\right)$.
Now, let $k=4,5$. In this case, we can deduce that for some values of $\beta \in[0,1)$ is $p_{0_{2}} \geq 2$ (see Figure 2). If Figure 2 is analyzed, we conclude that for $k>3(k \in \mathbb{N})$ and for some value of $\beta \in[0,1)$ is $p_{0_{2}} \geq 2$ or $p_{0_{2}}<2$.

Figure 2: We can observe that for $k>3$ and some values of β are $p_{0_{2}} \geq 2$ or $p_{0_{2}}<2$.

Case 1: If $\beta \in\left[0, \beta_{1}^{\prime}\right]$ then $p_{0_{2}} \geq 2$, that is, $p_{0_{2}}$ is out of the interval $(0,2)$. Therefore, the maximum value of $K(p)$ occurs at $p=p_{0_{1}}$ or $p=p_{0_{2}}$ which contradicts our assumption of having the maximum value at the interior point of $p \in[0,2]$. Since K is an increasing function in the interval [0,2], maximum point of K must be on the boundary of $p \in[0,2]$, that is, $p=2$. Thus, we have

$$
\max _{0 \leq p \leq 2} K(p)=K(2)=\frac{(1-\beta)^{2}}{3^{2 k+1} 2^{5 k}}\left[N+6 \cdot 2^{2 k} M+3 \cdot 2^{5 k}\right] .
$$

Case 2: When $\beta \in\left(\beta_{1}^{\prime}, 1\right)$ we observe that $p_{0_{2}} \leq 2$, that is, $p_{0_{2}}$ is interior of the interval [0,2]. Since $K^{\prime \prime}\left(p_{0_{2}}\right)<0$, the maximum value of $K(p)$ occurs at $p=p_{0_{2}}$. Thus, we have

$$
\max _{0 \leq p \leq 2} K(p)=K\left(p_{0_{2}}\right)=\frac{(1-\beta)^{2}}{2^{2 k}}\left[\frac{2^{2 k}}{3^{2 k}}-\frac{3 \cdot 2^{k} M^{2}}{3^{2 k} N}\right]
$$

Finally, we examined the cases of $k \geq 6$ (and $k=0$) in below, in this case, we see that N is negative real number for $\beta \in\left(\beta_{1}, 1\right)$ (see Figure 3).Thus, $p_{0_{2}}$ is a real number.

Figure 3: It can be showed both p and β for values of $k \geq 6$.

Therefore, there are two cases;
Case 1: For $N \geq 0$, that is, $\beta \in\left[0, \beta_{1}\right)$.Therefore, $K^{\prime}(p)>0$ for $p \in(0,2)$. Since K is an increasing function in the interval $(0,2)$, maximum point of K must be on the boundary of $p \in[0,2]$, that is, $p=2$. Thus, we have

$$
\max _{0 \leq p \leq 2} K(p)=K(2)=\frac{(1-\beta)^{2}}{3^{2 k+1} 2^{5 k}}\left[N+6 \cdot 2^{2 k} M+3 \cdot 2^{5 k}\right] .
$$

Case 2: When $\beta \in\left[\beta_{1}, \beta_{1}^{\prime}\right]$, we observe that $p_{0_{2}} \geq 2$, that is, $p_{0_{2}}$ is out of the interval $(0,2)$. Therefore, the maximum value of $K(p)$ occurs at $p_{0_{1}}=0$ or $p=p_{0_{2}}$ which contradicts our assumption of having the maximum value at the interior point of $p \in[0,2]$. Since K is an increasing function in the interval [0,2], maximum point of K must be on the boundary of $p \in[0,2]$, that is, $p=2$. Thus, we have

$$
\max _{0 \leq p \leq 2} K(p)=K(2)=\frac{(1-\beta)^{2}}{3^{2 k+1} 2^{5 k}}\left[N+6 \cdot 2^{2 k} M+3 \cdot 2^{5 k}\right] .
$$

When $\beta \in\left(\beta_{1}^{\prime}, 1\right)$, we observe that $p_{0_{2}} \leq 2$, that is, $p_{0_{2}}$ is interior of the interval $[0,2]$. Since $K^{\prime \prime}\left(p_{0_{2}}\right)<0$, the maximum value of $K(p)$ occurs at $p=p_{0_{2}}$. Thus, we have

$$
\max _{0 \leq p \leq 2} K(p)=K\left(p_{0_{2}}\right)=\frac{(1-\beta)^{2}}{2^{2 k}}\left[\frac{2^{2 k}}{3^{2 k}}-\frac{3 \cdot 2^{k} M^{2}}{3^{2 k} N}\right] .
$$

We thus have completed our proof of Theorem 2.1.
Corollary 2.2. [3]Let f given by (1) be in the class $S_{\sigma}^{*}(\beta)$ and $0 \leq \beta<1$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \begin{cases}\frac{4(1-\beta)^{2}}{3}\left(4 \beta^{2}-8 \beta+5\right), & \beta \in\left[0, \frac{29-\sqrt{137}}{32}\right) \\ (1-\beta)^{2}\left(\frac{13 \beta^{2}-14 \beta-7}{16 \beta^{2}-26 \beta+5}\right), & \beta \in\left(\frac{29-\sqrt{137}}{32}, 1\right)\end{cases}
$$

Corollary 2.3. [3]Let f given by (1) be in the class $K_{\sigma}(\beta)$ and $0 \leq \beta<1$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{(1-\beta)^{2}}{24}\left(\frac{5 \beta^{2}+8 \beta-32}{3 \beta^{2}-3 \beta-4}\right)
$$

Acknowledgement: The authors would like to thank the referee(s) for his/her insightful suggestions and comments.

References

[1] Ş. Altınkaya, S. Yalçın, Initial coefficient bounds for a general class of bi-univalent functions, Int. J. Anal., Article ID 867871, (2014) 4 pp .
[2] D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Studia Universitatis Babeş-Bolyai. Math., 31 (2) (1986) 70-77.
[3] E. Deniz, M. Çağlar and H. Orhan, Second Hankel determinant for bi-starlike and bi-convex functions of order β, Appl. Math. Comp. 2015; 271: 301-307.
[4] M. Fekete, G. Szegö, Eine Bermerkung Über Ungerade Schlichte Funktionen, J. London. Math. Soc., 2 (1933). 85-89.
[5] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011) 1569-1573.
[6] U. Grenander, G. Szegö, Toeplitz form and their applications, California Monographs in Mathematical Sciences, Univ. California Press, Berkeley, (1958).
[7] S. Kanas, H. M. Srivastava, Linear operators associated with k-uniformly convex functions, Integral Transforms Spec. Funct. 9 (2000), 121-132. http://dx.doi.org/10.1080/10652460008819249.
[8] N. Magesh, J. Yamini, Coefficient bound for a certain subclass of bi-univalent functions, Int. Math. Forum, 8 (27) (2012) 1337-1344.
[9] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Ration. Mech. Anal., 32 (1969) 100-112.
[10] J. W. Noonan, D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc., 223 (2) (1976) 337-3346.
[11] H. Orhan, N. Magesh and V. K. Balaji, Fekete-Szegö problem for certain classes of Ma-Minda bi-univalent functions, Afr. Mat. 2015; DOI 10.1007/s13370-015-0383-y.
[12] C. Pommerenke, Univalent Functions, Vandenhoeck \& Rubrecht, Göttingen, 1975.
[13] G. S. Sălăgean, Subclasses of univalent functions, in Complex Analysis, Fifth Romanian-Finnish Seminar, Vol. 1013 of Lecture Notes in Mathematics, pp. 362-372, Springer, Berlin, Germany, 1983.
[14] H.M. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23 (2015), 242-246.
[15] H. M. Srivastava, S. Bulut, M. Çağlar and N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (5) (2013) 831-842.
[16] H.M. Srivastava, S.S. Eker and R.M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (2015), 1839-1845.
[17] H.M. Srivastava, S.Gaboury and F. Ghanim, Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions,Acta Univ. Apulensis Math. Inform. No. 41 (2015), 153-164.
[18] H. M. Srivastava, S.B. Joshi, S.S. Joshi and H. Pawar, Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, Palest. J. Math. 5 (Special Issue: 1) (2016), 250-258.
[19] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain Subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (10) (2010) 1188-1192.
[20] H.M. Srivastava, G. Murugusundaramoorthy and N. Magesh, Certain subclasses of bi-univalent functions associated with the Hohlov operator, Global J. Math. Anal. 1 (2) (2013), 67-73.
[21] H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J. 7 (2) (2014), 1-10.
[22] Q. H. Xu, Y. C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012) 990-994.
[23] Q.H. Xu, H.G. Xiao and H.M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), 11461-11465.

[^0]: 2010 Mathematics Subject Classification. 30C45
 Keywords. analytic and univalent functions, bi-univalent functions, Hankel determinant, k-bi-starlike function
 Received: 12 January 2016; Accepted: 22 June 2016
 Communicated by Hari M. Srivastava
 Email addresses: orhanhalit607@gmail.com (Halit Orhan), evrimtoklu@gmail.com (Evrim Toklu), ekrem@atauni.edu.tr (Ekrem Kadıoğlu)

