
Filomat 31:12 (2017), 3945–3951
https://doi.org/10.2298/FIL1712945M

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Consider the differential equation

−y′′ + q(x)y = λ2ρ(x)y, 0 < x < ∞ (1)

with boundary condition

−(α1 y(0) − α2 y′(0)) = λ2(β1 y(0) − β2 y′(0)). (2)

Here q(x) is a real valued function such that∫
∞

0
(1 + x)|q(x)|dx < ∞

and ρ(x) is a real valued piecewise continuous function. It is known that the boundary value problem
(3)-(4) has only finite number of simple negative eigenvalues −µ2

1, · · · ,−µ
2
n, (µ j > 0) and the half axis

constitutes absolutely continuous spectrum. For normalized eigenfunctions of the problem (3)-(4) we have
the asymptotic formulae as x→∞

u j(x) ∼ m je−µ jx, j = 1, . . . ,n,

u(λ, x) ∼ e−iλx
− S(λ)eiλx, −∞ < λ < ∞.

So at infinity behaviour of the radial waves is defined by {S(λ) (−∞ < λ < ∞),−µ2
k , mk (k = 1 . . . n)}. These

are called scattering data of the (3)-(4) boundary value problem. In this work characteristic properties of
the scattering data will be investigated.

1. Introduction

Consider the differential equation

−y′′ + q(x)y = λ2ρ(x)y, 0 < x < ∞ (3)
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with boundary condition

−(α1y(0) − α2y′(0)) = λ2(β1y(0) − β2y′(0)). (4)

Here αi, βi are real numbers and γ = α1β2 − α2β1 > 0, q(x) is a real valued function such that∫
∞

0
(1 + x)|q(x)|dx < ∞

and ρ(x) is a real valued piecewise continuous function such that

ρ(x) =

{
α2, 0 ≤ x < a,
1, x ≥ a, (5)

In the case β1 = β2 = 0, namely when the spectral parameter does not appear in the boundary condition,
the inverse scattering problem for the boundary value problem (3)-(4) when ρ(x) ≡ 1 was completely solved
in [16, 17, 26, 27]. When ρ(x) ≡ 1 in (3) with the spectral parameter appearing in the boundary conditions,
the inverse problem on the half-line was considered by Pocheykina-Fedotova [29] according to spectral
function, by Yurko [31–33] according to Weyl function and by Mamedov [18, 19] according to scattering
data. For ρ(x) , 1, this problem was studied in [1, 2, 8, 15, 18]. Spectral analysis of the problem on the half
line was studied by Fulton [11]. Physical applications of the problem with the linear spectral parameter
appearing in the boundary conditions on the finite interval was also given by Fulton [12]. In finite interval,
inverse spectral problems for Sturm-Liouville operators with linear or nonlinear dependence on the spectral
parameter in the boundary conditions were studied by Chernozhukova and Freiling [5], Chugunova [6],
Rundell and Sacks [30], Guliyev [14], Mamedov and Cetinkaya [21–23], Binding and Browne [3], Browne
and Sleeman [4], McCarthy and Rundell [28] .

The discontinuous version was studied by Gasymov [13] and Darwish [10]. In these papers, solution
of inverse scattering problem on the half line [0,+∞) was reduced to solution of two inverse problems on
the intervals [0, a] and [a,+∞). This type boundary condition arises from a varied assortment of physical
problems and other applied problems such as the study of heat conduction by Cohen [7] and wave equation
by Yurko [31, 32].

It turns out that the discontinuity of the function ρ(x) strongly influences the structure of the represen-
tation of the Jost solution and the basic equation of the inverse problem. Similar situation do not arise for
the system of Dirac equations with discontinuous coefficients see, [9, 24, 25].

The function

f0(x, λ) =
1
2

1 +
1√
ρ(x)

 eiλµ+(x) +
1
2

1 −
1√
ρ(x)

 eiλµ−(x) (6)

is the Jost solution of (3) when q(x) ≡ 0, where µ±(x) = ±x
√
ρ(x) + a(1 ∓

√
ρ(x)).

It is known from [15, 19] that, for all λ from the closed upper half-plane, (3)-(4) has a unique Jost solution
f (x, λ) which satisfies the condition

lim
x→+∞

f (x, λ)e−iλx = 1 (7)

and it can be represented in the form

f (x, λ) = f0(x, λ) +

∫ +∞

µ+(x)
K(x, t)eiλtdt, (8)

where the kernel K(x, t) satisfies the inequality∫ +∞

µ+(x)
|K(x, t)| dt ≤ C

(
exp

(∫ +∞

x
t
∣∣∣q(t)

∣∣∣ dt
))
, 0 < C = constant (9)
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and K(x, t) has first order partial derivatives with respect to both variables. Moreover, as x → ∞ we have
the asymptotic formula

u j(x) ∼ m je−µ jx, j = 1, . . . ,n,

u(λ, x) ∼ e−iλx
− S(λ)eiλx, −∞ < λ < ∞,

in which the scattering function S(λ) is given by

S(λ) =
(α2 + β2λ2) f ′(0, λ) − (α1 + β1λ2) f (0, λ)
(α2 + β2λ2) f ′(0, λ) − (α1 + β1λ2) f (0, λ)

=
E(λ)
E(λ)

(10)

where f (x, λ) is the Jost solution of (3) given in [20], iµk (k = 1, . . . ,n) are the zeros of the function E(λ), and
mk (k = 1, . . . ,n) are the normalized or normalizing numbers given by

m−2
k =

∫
∞

0
ρ(x)

∣∣∣ f (x, iµk)
∣∣∣2 dx +

1
γ

[
β2 f ′(0, iµk) − β1 f (0, iµk)

]2

So at infinity behaviour of the radial waves is defined by {S(λ) (−∞ < λ < ∞),−µ2
k , mk (k = 1 . . . n)}. These

are called scattering data of the (3)-(4) boundary value problem. This scattering data is uniquely determines
the potential function q(x).

According to Lemma 2.2 in [20], the equation E(λ) = 0 has only finite number of simple roots in the half
plane =λ > 0; moreover, these roots lie on the imaginary axis.

The aim of this work is to investigate the continuity of the scattering function S(λ) and derive Levinson
formula for the boundary value problem (3), (4)

2. Continuity of the Scattering Function S(λ)

We will use the fundamental equation to show that the scattering function S(λ) is continuous on
(−∞,∞). Equation (11) is called the fundamental equation of the inverse problem of the scattering theory
for the boundary value problem (3)-(4). This equation is different from the classic equation of Marchenko
and we call equation (11) the modified Marchenko equation. As it is seen below that, the discontinuity of the
function ρ(x) strongly influences the structure of the fundamental equation of the boundary value problem
(3)-(4).

F(x, y) +

∫ +∞

µ+(x)
K(x, t)F0(t + y)dt + K(x, y) +

1 −
√
ρ(x)

1 +
√
ρ(x)

K(x, 2a − y) = 0, (11)

where

F0(x) =
1

2π

∫ +∞

−∞

[S0(λ) − S(λ)]e−iλxdλ +

n∑
k=1

m2
ke−λkx, (12)

F(x, y) =
1
2

1 +
1√
ρ(x)

 F0(y + µ+(x)) +
1
2

1 −
1√
ρ(x)

 F0(y + µ−(x)), (13)

S0(λ) =


f0(0,λ)
f0(0,λ) = e−2iλa 1+τe−2iλaα

e−2iλaα+τ , β2 = 0,

f ′0 (0,λ)
f ′0 (0,λ) = −e−2iλa 1−τe−2iλaα

e−2iλaα−τ , β2 , 0

and τ = (α − 1)/(α + 1).
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Theorem 2.1. The function S(λ) is continuous at all real points λ and

S(0) =

{
1, E(0) , 0,
−1, E(0) = 0. (14)

Proof. Since E(λ) , 0 for λ , 0, S(λ) =
E(λ)
E(λ) is continuous for all λ , 0. When E(0) , 0, S(λ) is continuous for

λ = 0 and S(0) = 1
Now let’s consider the case E(0) = 0

E(0) = α2 f ′(0, 0) − α1 f (0, 0)

= α2

[
−αK(0, a(1 − α)) +

∫
∞

a(1−α)
Kx(0, t)dt

]
− α1

[
1 +

∫
∞

a(1−α)
K(0, t)dt

]
= 0 (15)

Writing x = 0 in the fundamental equation (11), we obtain

K(0, y) +
1 − α
1 + α

K(0, 2a − y) + F(0, y) +

∫
∞

a(1−α)
K(0, t)F0(t + y)dt = 0 (16)

Taking derivative of the fundamental equation with respect to x and writing x = 0, we obtain

Kx(0, y) +
1 − α
1 + α

Kx(0, 2a− y) +

∫
∞

a(1−α)
Kx(0, t)F0(t + y)dt− αK(0, a(1− α))F0(a(1− α) + y) + Fx(0, y) = 0 (17)

Multiplying (16) with α1 and (17) with α2 and subtracting them, we obtain

α2Kx(0, y) − α1K(0, y) +
1 − α
1 + α

(
α2Kx(0, 2a − y) − α1K(0, 2a − y)

)
+

+

∫
∞

a(1−α)
(α2Kx(0, t) − α1K(0, t)) F0(t + y)dt + α2Fx(0, y) − α1F(0, y)

− αα2K(0, a(1 − α))F0(a(1 − α) + y) = 0 (18)

Integrating (18) with respect to y from z to∞∫
∞

z

(
α2Kx(0, y) − α1K(0, y)

)
dy +

1 − α
1 + α

∫
∞

z

(
α2Kx(0, 2a − y) − α1K(0, 2a − y)

)
dy+

+

∫
∞

a(1−α)

(∫
∞

z
(α2Kx(0, s) − α1K(0, s)) ds

)
F0(t + z)dt

−
α1

2
(α + 1)F0(z + a(1 − α)) +

α1

2
(α − 1)F0(z + a(1 + α)) = 0 (19)

Let K1(z) =
∫
∞

z
(α2Kx(0, t) − α1K(0, t)) dt

We can rewrite (19) as follows

K1(z) −
∫
∞

a(1−α)
K1(t)F0(t + z)dt = αφ(z), (0 ≤ z < ∞) (20)

where

φ(z) = −
1 − α
1 + α

∫ 2a−z

a(1−α)

(
α2Kx(0, y) − α1K(0, y)

)
dy

+
α1

2
[(α + 1)F0(z + a(1 − α)) − (α − 1)F0(z + a(1 + α))]
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Hence when E(0) = 0, K1(z) is bounded solution of the equation (20). Bounded solution of this equation
is integrable on the half axis [a(1 − α),∞). Now we have

E(λ) = iλ
{
α1

2iλ

(
1 −

1
α

) [
eiλa(1−α)

− eiλa(1+α)
]

+

∫
∞

a(1−α)
K1(t)eiλtdt + α2

1 + α
2

eiλa(1−α)

− α2
α − 1

2
eiλa(1+α) + iλβ2αK(0, a(1 − α))eiλa(1−α) +

1
2

iλβ1

(
1 +

1
α

)
eiλa(1+α)

+
1
2

iλβ2

(
1 −

1
α

)
eiλa(1+α)

− iλ
∫
∞

a(1−α)

(
β2Kx(0, t) − β1K(0, t)

)
eiλtdt

+λ2β2
α + 1
α

eiλa(1−α)
− λ2β2

α − 1
α

eiλa(1+α)
}

= iλK̂(λ) (21)

where

K̂(λ) =
α1

2iλ

(
1 −

1
α

) [
eiλa(1−α)

− eiλa(1+α)
]

+

∫
∞

a(1−α)
K1(t)eiλtdt + α2

1 + α
2

eiλa(1−α)

− α2
α − 1

2
eiλa(1+α) + iλβ2αK(0, a(1 − α))eiλa(1−α) +

1
2

iλβ1

(
1 +

1
α

)
eiλa(1+α)

+
1
2

iλβ2

(
1 −

1
α

)
eiλa(1+α)

− iλ
∫
∞

a(1−α)

(
β2Kx(0, t) − β1K(0, t)

)
eiλtdt

+ λ2β2
α + 1
α

eiλa(1−α)
− λ2β2

α − 1
α

eiλa(1+α)

Similarly we obtain
E(−λ) = −iλK̂(−λ)

Consequently,

S(λ) = −
K̂(−λ)

K̂(λ)
(22)

From Lemma 2.1 in [20], we have the identity

2iλw(x, λ)
(α2 + β2λ2) f ′(0, λ) − (α1 + β1λ2) f (0, λ)

= f (x, λ) − S(λ) f (x, λ) (23)

holds for all real λ , 0. Using (21) and (23), we can write

2w(x, λ) = K̂(λ)[ f (x, λ) − S(λ) f (x, λ)]

and from this we can clearly see that, K̂(λ) , 0. Otherwise w(x, 0) = 0, but this is not possible. So S(λ) is
continuous at λ = 0 and S(0) = −1.

3. Levinson Formula

Now, we give the Levinson type formula that expresses the relation between the increment of argument
of S(λ) and the number of eigenvalues of boundary value problem (3)-(4)

Theorem 3.1. The following formula is valid:

ln S(+0) − ln S(+∞)
2πi

+ C(β2) −
1 − S(0)

4
= n, (24)

where

C(β2) =

{
3
2 , β2 , 0,
1, β2 = 0. (25)
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Proof. Let us apply argument principle to the E(λ) function. This function is regular on the upper half plane
and continuous on the closed half plane =λ ≥ 0. When moving from −∞ to ∞ on the whole real axis and
passing origin from top along with half circle with radius ε, the change in the argument of E(λ) is equal to
number of its pole points times −2π:

∆ΓR,εar1E(λ) = 2πn

here ΓR,ε = C+
R ∪ [−R,−ε] ∪ C−ε ∪ [ε,R], C+

R and C−ε are circles centered at the origin with radius R and ε
respectively. Orientation on the C+

R is positive and on the C−ε is negative. On =λ ≥ 0 and for λ→∞

E(λ) ∼ C0λ
2C(β2) (26)

here C0 is constant and C(β2) is given by (25). From (26), on the half plane =λ ≥ 0, for λ→∞

1
2π

{
arg E(λ)

∣∣∣∣−ε
−∞

+ arg E(λ)
∣∣∣∣ε
−ε

+ arg E(λ)
∣∣∣∣∞
ε

}
+ C(β2) = n (27)

On the other hand, on the half plane =λ ≥ 0, for λ→ 0

E(λ) ∼
{

C1, E(0) , 0,
C2λ, E(0) = 0. (28)

here C0 and C1 are constants. Using this relation

lim
ε→0

arg E(λ)
∣∣∣∣ε
−ε

=

{
0, E(0) , 0,
−π, E(0) = 0. (29)

For all real λ, E(λ) = E(−λ). From this and (27), for ε→ 0

1
π

arg E(λ)
∣∣∣∣∞
+0

= n − C(β2) +

{
1
2 , E(0) , 0,
0, E(0) = 0. (30)

or

arg E(λ)
π

∣∣∣∣∞
+0

= n − C(β2) +
1 − S(0)

4
(31)

Since |S(λ)| = 1, arg S(λ) = −2 arg E(λ) and ln S(λ) = i arg S(λ) = −2i arg E(λ),

−
1

2π
arg S(λ)

∣∣∣∣∞
+0

= n − C(β2) +
1 − S(0)

4
or

1
2πi
{ln S(+0) − ln S(∞)} = n − C(β2) +

1 − S(0)
4

From that, (24) is obtained. This concludes the proof of the theorem.

(24) is called Levinson formula for the boundary value problem (3)-(4).
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[8] A. Çöl, Inverse spectral problem for Sturm-Liouville operator with discontinuous coefficient and cubic polynomials of spectral
parameter in boundary condition, Advances in Difference Equations (2015), 2015:132, doi:10.1186/s13662-015-0478-7.
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[25] Kh. R. Mamedov and A. Çöl, On an inverse scattering problem for a class Dirac operator with discontinuous coefficient and

nonlinear dependence on the spectral parameter in the boundary condition, Mathematical Methods in the Applied Sciences
Volume 35, Issue 14, pages 17121720, (2012)

[26] V. A. Marchenko, On reconstruction of the potential energy from phases of the scattered waves, Doklady Akademii Nauk SSSR,
104 (1955), 695-698.

[27] V. A. Marchenko, Sturm-Liouville Operators and Applications, vol. 22 of Operator Theory: Advances and Applications,
Birkhauser, Basel, Switzerland, (1986).

[28] M. McCarthy and W. Rundell: Eigenparameter dependent inverse Sturm-Liouville problems, Numer. Funct. Anal. Optim. 24,
(2003), no. 1-2, 85105

[29] E. A. Pocheykina-Fedotova, On the inverse problem of boundary problem for second order differential equation on the half line,
Izvestiya Vuzov, 17 (1972), 75-84.

[30] W. Rundell and P. Sacks, Numerical technique for the inverse resonance problem, Journal of Computational and Applied
Mathematics, 170(2) (2004), 337-347.

[31] V. A. Yurko, On the reconstruction of the pencils of differential operators on the half-line, Mathematical Notes, 67(2) (2000),
261-265.

[32] V. A. Yurko, An inverse problem for pencils of differential operators, Sbornik: Mathematics, 191(10) (2000), 1561-1586.
[33] V. A. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-Posed Problems Series, VSP, Utrecht,

The Netherlands, (2002).


