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Abstract. We investigate a second order infinitesimal bending of curves in a three-dimensional Euclidean
space in this paper. We give the necessary and sufficient conditions for the vector fields to be infinitesimal
bending fields of the corresponding order, as well as explicit formulas which determine these fields. We
examine the first and the second variation of some geometric magnitudes which describe a curve, specially
a change of the curvature. Two illustrative examples (a circle and a helix) are studied not only analytically
but also by drawing curves using computer program Mathematica.

1. Introduction

The problem of infinitesimal bending of curves and surfaces is a special part of the theory of bending
which also considers the bending of curves and surfaces as well as the isometric deformations and presents
one of the main consisting parts of global differential geometry. The main characteristics of the infinitesimal
bending is an appropriate precision. Namely, under an infinitesimal bending arc length is stationary with
a given precision, which is described with the condition

ds2
ε − ds2 = o(εm), m ≥ 1, ε ≥ 0, ε→ 0.

The fundamental tasks at infinitesimal bending problems are: to check the flexibility of surfaces, to
find as many surfaces which represent the class of uniquely defined, rigid, surfaces, as well as to find
these ones which represent the class of bendable, flexible surfaces. A very important question is to find an
application of an infinitesimal bending in different realistic areas and physical situations because it is well
known that this theory is in close connection with thin elastic shell theory. The word ”rigidity” has a proper
mechanical meaning, although applications can also be found in biology, medicine, etc (see [15], [16]). A
nice application in the architecture and roof constructions was given in [17].

H. Liebman [6] had obtained the first results of the infinitesimal bending theory of non-convex surfaces.
He proved that the torus and analytic surfaces which contain a convex strip are rigid in the sense of
infinitesimal bending. Later, Efimov [2] introduced PDEs as a tool for studying of the infinitesimal bending.
Infinitesimal bending theory was also developed thanks to the works of leading mathematicians of the
considered area like A. D. Alexandrov, W. Blaschke, S. Conh-Vossen, V. T. Fomenko, I. Kh. Sabitov, I. I.
Karatopraklieva, I. N. Vekua, V. A. Alexandrov and many others.
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M. S. Najdanović, Lj. S. Velimirović / Filomat 31:13 (2017), 4127–4137 4128

Infinitesimal bending of curves was widely studied in [2], [7], [11]-[13]. The graphical tool CurveBend,
developed in Object Oriented language C++ for graphical presentation of non rigid curves, was presented
in [8]. Infinitesimal deformations of curves in the spaces with linear connection were considered in [18]. In
[1], the geometry of embedded curves in three dimensional space was described, as well as the effect of a
small deformation of the curve on its geometry.

The next step in the theory of infinitesimal bending of curves is to study high order infinitesimal
bending and the change of important geometric magnitudes of curves under such infinitesimal bending.
Some papers related to the high order infinitesimal bending of surfaces are [4], [9], [14].

This paper is organized as follows: In Section 2, some used notations and preliminaries are introduced.
A few properties of an arbitrary order variation are examined. In Section 3, necessary and sufficient
conditions for infinitesimal bending fields of the first and the second order are given, as well as their
explicit formulas. In Section 4 the behavior of some geometric magnitudes of curves under infinitesimal
bending of the second order is described, specially the change of the curvature. Finally, in Section 5, some
examples are analytically and graphically studied. It is interesting to see the influence of infinitesimal
bending field on flexible curves and their corresponding bent shapes. The computer program Mathematica
[3] is used for this purpose.

2. Infinitesimal Bending of a Curve in R3

Let us consider a regular curve

C : r = r(u), u ∈ J ⊆ R (1)

of a class Cα, α ≥ 3, included in a family of the curves

Cε : r̃(u, ε) = rε(u) = r(u) + ε
(1)
z (u) + ε2(2)

z (u) + . . . + εm(m)
z (u), m ≥ 1, (2)

where ε ≥ 0, ε → 0 and we get C for ε = 0 (C = C0). The fields
( j)
z (u) ∈ Cα, α ≥ 3, j = 1, . . .m, are vector

functions defined in the points of C.

Definition 2.1. [2] Family of curves Cε is an infinitesimal bending of the order m of the curve C if

ds2
ε − ds2 = o(εm). (3)

The field
( j)
z =

( j)
z (u) is the infinitesimal bending field of the order j, j = 1, . . .m, of the curve C.

The previous condition is equivalent to the system of equations ([2], [5]):

dr · d
(1)
z = 0, 2dr · d

( j)
z +

j−1∑
l=1

d
(l)
z · d

( j−l)
z = 0, for j = 2, . . . ,m. (4)

where · stands for the scalar product in R3.
Under an infinitesimal bending, geometric magnitudes of the curve are changed which is described

with variations of these geometric magnitudes.

Definition 2.2. [10] Let A = A(u) be a magnitude which characterizes a geometric property on the curve C and
Aε = Aε(u) the corresponding magnitude on the curve Cε being infinitesimal bending of the curve C, and let the
equation

∆A=Aε −A=ε δA + ε2 δ2
A + . . . + εn δn

A + . . . (5)

be a valid one. The coefficients δA, δ2
A, . . . , δn

A, . . . are the first, the second, ..., the n-th variation of the
geometric magnitudeA, respectively under the infinitesimal bending Cε of the curve C.
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Let us mark some properties of the variations:
I. For the variations of the product of geometric magnitudes it is effective the equation

δn
AB =

n∑
i=0

δi
A δn−i

B, n ≥ 0, (δ0
A

de f
= A). (6)

According to Def. (2.2), the variations of geometric magnitudesA and B, as well as of the productAB
are:

∆A=Aε −A=ε δA + ε2 δ2
A + . . . + εn δn

A + . . . (7)

∆B=Bε − B=ε δB + ε2 δ2
B + . . . + εn δn

B + . . . (8)

∆AB=AεBε −AB=ε δ(AB) + ε2 δ2(AB) + . . . + εn δn(AB) + . . . (9)

respectively. On the other hand, the following equalities are satisfied:

∆AB=AεBε −AB=AεBε −AεB +AεB −AB=Aε(Bε − B) + (Aε − A)B (10)

Substituting (7) and (8) into the equation (9) we obtain it is satisfied the result

∆AB=ε(AδB + BδA) + ε2(Aδ2B + δA δB + Bδ2A) + . . . + εn
n∑

i=0

δi
A δn−i

B + . . . (11)

As the left sides of the last equation and of the equation (9) are equal, the equation (6) is a valid one.
II. An arbitrary order variation of a derivative is the derivative of the variation, i. e.

δn(
dA
du

) =
d(δn
A)

du
, n ≥ 0. (12)

For

dA
du

= B, (13)

using (5) we obtain it holds the equation

4
dA
du

=4B=ε δB + ε2 δ2
B + . . . + εn δn

B + . . .=ε δ
dA
du

+ ε2 δ2 dA
du

+ . . . + εn δn dA
du

+ . . . (14)

It is also valid

4
dA
du

=4B=Bε(u) − B(u)=
dAε(u)

du
−

dA(u)
du

=
d

du
[Aε(u) −A(u)]=

d4A
du

=
d(ε δA + ε2 δ2

A + . . . + εn δn
A + . . .)

du

=ε
d(δA)

du
+ ε2 d(δ2

A)
du

+ . . . + εn d(δn
A)

du
+ . . .

(15)

By comparing the equations (14) and (15), we confirm validity of the equation (12). The same case is for the
differential, i. e.

III. δn(dA) = d(δn
A), n ≥ 0.

In this paper we will consider the first and the second variation under infinitesimal bending of the
second order. For this reason, we can represent the magnitudeAε as



M. S. Najdanović, Lj. S. Velimirović / Filomat 31:13 (2017), 4127–4137 4130

Aε = A + ε δA + ε2δ2
A,

by neglecting the terms in εn, n ≥ 3. The previous considered properties are reduced to
Ia. δAB = A δB +B δA, δ2

AB = A δ2
B +B δ2

A + δA δB

IIa. δ( dA
du ) =

d(δA)
du , δ2( dA

du ) =
d(δ2
A)

du

IIIa. δ(dA) = d(δA), δ2(dA) = d(δ2
A)

Let

Cε : r̃(u, ε) = rε(u) = r(u) + ε
(1)
z (u) + ε2(2)

z (u) (16)

be a second order infinitesimal bending of a curve C. Then the system (4) is reduced to

dr · d
(1)
z = 0, 2dr · d

(2)
z + d

(1)
z · d

(1)
z = 0, (17)

which is equivalent to the next system of differential equations:

ṙ ·
(1)
ż = 0, 2ṙ ·

(2)
ż +

(1)
ż ·

(1)
ż = 0. (18)

Here dot denotes a derivative with respect to u. Based on these equations we obtain it holds the following:

dsε = ‖ṙε(u)‖ du = ‖ṙ(u) + ε
(1)
ż (u) + ε2

(2)
ż (u)‖ du

= (‖ṙ(u)‖2 + 2ε3
(1)
ż (u) ·

(2)
ż (u) + ε4

‖
(2)
ż (u)‖2)

1
2 du

= ‖ṙ(u)‖
(
1 +

2ε3
(1)
ż (u) ·

(2)
ż (u) + ε4

‖
(2)
ż (u)‖2

‖ṙ(u)‖2
) 1

2 du

(19)

Further, we get

dsε = ds
(
1 +

2ε3
(1)
ż (u) ·

(2)
ż (u) + ε4

‖
(2)
ż (u)‖2

2‖ṙ(u)‖2
−

(2ε3
(1)
ż (u) ·

(2)
ż (u) + ε4

‖
(2)
ż (u)‖2)2

8‖ṙ(u)‖4
+ . . .

)
i.e.

dsε = ds + ε3

(1)
ż (u) ·

(2)
ż (u)

‖ṙ(u)‖2
ds + ε4 ‖

(2)
ż (u)‖2

2‖ṙ(u)‖2
ds − ε6 . . . + ε7 . . . + . . . ,

wherefrom

δ ds = 0, δ2 ds = 0, δ3 ds =

(1)
ż (u) ·

(2)
ż (u)

‖ṙ(u)‖2
ds, δ4 ds =

‖
(2)
ż (u)‖2

2‖ṙ(u)‖2
ds, . . .

Therefore, we proved one more property of the variation.
IVa. Under a second order infinitesimal bending of a curve, the first and the second variations of the

line element ds are equal to zero.

3. Determination of the Infinitesimal Bending Field

Consider a curve

C : r = r(s) = r[u(s)], s ∈ I ⊆ R, (20)
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parameterized by the arc length s. The unit tangent to the curve is t = r′, where prime denotes a derivative
with respect to the arc length s. Clearly, t′ is orthogonal to t, but t′′ is not. The classical Frenet equations

t′ = kn1,

n′1 = −kt + τn2,

n′2 = −τn1,

(21)

describe the construction of an orthonormal basis {t,n1,n2} along the curve, where n1 and n2 are respectively
unit principal normal and binormal vector field of the curve. We choose an orientation with n2 = t × n1. k
and τ are respectively the curvature and the torsion.

Consider an infinitesimal bending of the second order of the curve (20):

Cε : r̃(s, ε) = rε(s) = r(s) + ε
(1)
z (s) + ε2(2)

z (s). (22)

As the vector fields
(1)
z and

(2)
z are defined in the points of the curve (20), they can be presented in the form

( j)
z =

( j)
z t +

( j)
z1n1 +

( j)
z2n2, j = 1, 2, (23)

where
( j)
z t is a tangential and

( j)
z1n1 +

( j)
z2n2 is a normal component,

( j)
z ,

( j)
z1,

( j)
z2 are the functions of s.

In this case the system of differential equations (18) has the form

r′ ·
(1)
z ′ = 0, 2r′ ·

(2)
z ′ +

(1)
z ′ ·

(1)
z ′ = 0. (24)

Using the equations (24), the expressions (23) for the infinitesimal bending fields of the first and the
second order respectively, as well as Frenet equations (21), we proved the next theorem.

Theorem 3.1. Necessary and sufficient conditions for the fields
( j)
z , j = 1, 2, (23) to be infinitesimal bending fields of

the corresponding order of a curve C (20) are

(1)
z ′ − k

(1)
z1 = 0,

(2)
z ′ − k

(2)
z1 = −

1
2

{
[k

(1)
z +

(1)
z1
′
− τ

(1)
z2]2 + [τ

(1)
z1 +

(1)
z2
′]2

} (25)

where k is the curvature and τ is the torsion of C.

The next theorem is related to determination of the infinitesimal bending field of a curve C.

Theorem 3.2. Infinitesimal bending fields of the first and the second order for the curve C (20) are respectively

(1)
z =

∫
[p(s)n1 + q(s)n2] ds + C1, (26)

(2)
z =

∫
[−

p2(s) + q2(s)
2

t + r(s)n1 + 1(s)n2] ds + C2, (27)

where p(s), q(s), r(s), 1(s) are arbitrary integrable functions and vectors t, n1, n2 are unit tangent, principal normal
and binormal vector fields, respectively, of the curve C. C1 and C2 are constants.

Proof. According to the first equation of the (24), we conclude that
(1)
z ′ lies in the normal plane of the curve

C, i. e.

(1)
z ′ = p(s)n1 + q(s)n2, (28)
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where p(s) and q(s) are arbitrary integrable functions. Integrating the previous equation we obtain the
equation (26). If we put the equation (28) into the second equation in (24) we obtain

2r′ ·
(2)
z ′ + p2(s) + q2(s) = 0,

wherefrom we have

t ·
(2)
z ′ = −

p2(s) + q2(s)
2

.

Therefore,

(2)
z ′ = −

p2(s) + q2(s)
2

t + r(s)n1 + 1(s)n2, (29)

where r(s) and 1(s) are arbitrary integrable functions.

4. Change of Geometric Magnitudes under Second Order Infinitesimal Bending of Curves

Let us describe the behavior of some geometric magnitudes under second order infinitesimal bending
of a curve, specially the change of the curvature.

Theorem 4.1. Under second order infinitesimal bending of a curve C, the first and the second variation of the unit
tangent vector respectively are:

δt = (k
(1)
z +

(1)
z1
′
− τ

(1)
z2) n1 + (

(1)
z2
′ + τ

(1)
z1) n2, (30)

δ2t = (
(2)
z ′ − k

(2)
z1) t + (k

(2)
z +

(2)
z1
′
− τ

(2)
z2) n1 + (

(2)
z2
′ + τ

(2)
z1) n2, (31)

Proof. According to IIa, we have it holds δt = δr′ = (δr)′ =
(1)
z ′ and δ2t = δ2r′ = (δ2r)′ =

(2)
z ′. Then, using the

equations (23), (25) and the Frenet equations we obtain it is valid the equations (30) and (31).

Obviously, using the equations (25), (30) and (31), we obtain the connection between the first and the
second variation of t:

δ2t = −
1
2
‖δt‖2 t + (k

(2)
z +

(2)
z1
′
− τ

(2)
z2) n1 + (

(2)
z2
′ + τ

(2)
z1) n2. (32)

Theorem 4.2. Under second order infinitesimal bending of a curve C, the first variation of the unit normal and
binormal vectors respectively are:

δn1 = −(k
(1)
z +

(1)
z1
′
− τ

(1)
z2)t +

1
k

(kτ
(1)
z + 2τ

(1)
z1
′ + τ′

(1)
z1 +

(1)
z2
′′
− τ2(1)

z2)n2, (33)

δn2 = −(
(1)
z2
′
− τ

(1)
z1)t −

1
k

(kτ
(1)
z + 2τ

(1)
z1
′ + τ′

(1)
z1 +

(1)
z2
′′
− τ2(1)

z2)n1, (34)

Proof. The unit normal vector remains unit after infinitesimal bending, which means (n1 + εδn1 + ε2δ2n1) ·
(n1 + εδn1 + ε2δ2n1) = 1. This fact gives the following equations:

n1 · δn1 = 0, (35)

n1 · δ
2n1 = −

1
2
δn1 · δn1. (36)

Also, the unit normal vector remains a perpendicular one to the unit tangent vector, i. e. (n1 + εδn1 +
ε2δ2n1) · (t + εδt + ε2δ2t) = 0, wherefrom we conclude

t · δn1 = −n1 · δt = −(k
(1)
z +

(1)
z1
′
− τ

(1)
z2), (37)
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t · δ2n1 = −n1 · δ
2t − δn1 · δt. (38)

Further, we take a first variation of the first equation of (21),

δt′ = n1δk + kδn1. (39)

Dotting this equation with n2 we obtain

n2 · δn1 =
1
k

n2 · δt′.

To compute δt′ we apply commutativity of the variation and the derivative. For this reason, we obtain it

holds δt′ = (δt)′. Based on the equation (30), the Frenet equations and
(1)
z ′ = k

(1)
z1 (due to the (25)), one obtains

it holds

δt′ = − k(k
(1)
z +

(1)
z1
′
− τ

(1)
z2) t + (k′

(1)
z +

(1)
z1
′′ + (k2

− τ2)
(1)
z1 − 2τ

(1)
z2
′
− τ′

(1)
z2) n1

+ (kτ
(1)
z + 2τ

(1)
z1
′ + τ′

(1)
z1 +

(1)
z2
′′
− τ2(1)

z2) n2.
(40)

Now we have

n2 · δn1 =
1
k

(kτ
(1)
z + 2τ

(1)
z1
′ + τ′

(1)
z1 +

(1)
z2
′′
− τ2(1)

z2) (41)

Comparing the equations (35), (37) and (41) we obtain the equation (33) is a valid one. Similarly, from the
conditions n2ε · n2ε = 1, n2ε · tε = 0 and n2ε · n1ε = 0 we confirm the validity of the equation (34).

Theorem 4.3. Under a second order infinitesimal bending of a curve C, a unit vector of the orthonormal basis and
its first variation are orthogonal, i. e.

t · δt = 0, n1 · δn1, n2 · δn2 = 0. (42)

A unit vector of the orthonormal basis and its second variation are not orthogonal, i. e.

t · δ2t = −
1
2
‖δt‖2 =

(2)
z ′ − k

(2)
z1, (43)

n1 · δ
2n1 = −

1
2

[(k
(1)
z +

(1)
z1
′
− τ

(1)
z2)2 +

1
k2 (kτ

(1)
z + 2τ

(1)
z1
′ + τ′

(1)
z1 +

(1)
z2
′′
− τ2(1)

z2)2], (44)

n2 · δ
2n2 = −

1
2

[(
(1)
z2
′
− τ

(1)
z1)2 +

1
k2 (kτ

(1)
z + 2τ

(1)
z1
′ + τ′

(1)
z1 +

(1)
z2
′′
− τ2(1)

z2)2] (45)

Proof. The previous result comes directly from the equations (30), (33), (34), (36) and the same for n2 as
(36).

Theorem 4.4. Under a second order infinitesimal bending of a curve C, the first and the second variation of the
curvature are respectively

δk = k′
(1)
z +

(1)
z1
′′ + (k2

− τ2)
(1)
z1 − 2τ

(1)
z2
′
− τ′

(1)
z2, (46)

δ2k = −
k
2

(τ
(1)
z1 +

(1)
z2
′)2 +

1
2k

(kτ
(1)
z + 2τ

(1)
z1
′ + τ′

(1)
z1 +

(1)
z2
′′
− τ2(1)

z2)2 + (k
(2)
z +

(2)
z1
′
− τ

(2)
z2)′ − τ(

(2)
z2
′ + τ

(2)
z1). (47)



M. S. Najdanović, Lj. S. Velimirović / Filomat 31:13 (2017), 4127–4137 4134

Proof. Dotting Eq. (39) with n1 and using Theorem 4.3, we obtain δk = n1 · δt′. This leads to Eq. (46) after
using (40).

Let us take a second variation of the first Frenet equation. We obtain it holds δ2t′ = n1δ2k+kδ2n1 +δkδn1.
After scalar product with n1 we obtain

δ2k = n1 · δ
2t′ − kn1 · δ

2n1 − δkn1 · δn1 (48)

As it is δ2t′ = (δ2t)′, applying the equation (31), Frenet equations and dotting with n1 we get

n1 · δ
2t′ = k(

(2)
z ′ − k

(2)
z1) + (k

(2)
z +

(2)
z1
′
− τ

(2)
z2)′ − τ(

(2)
z2
′ + τ

(2)
z1). (49)

Using the previous equation, Theorem 4.3 and the second equation in Eq. (25) we complete the proof of
this theorem .

Directly from Theorem 4.4, in the case of a plane curve (τ = 0), we obtain the next corollary.

Corollary 4.5. Under a second order infinitesimal bending of a plane curve, the first and the second variation of the
curvature are respectively

δk = k′
(1)
z +

(1)
z1
′′ + k2(1)

z1, (50)

δ2k = −
k
2

(
(1)
z2
′)2 +

1
2k

(
(1)
z2
′′)2 + (k

(2)
z +

(2)
z1
′)′. (51)

5. Examples

Example 5.1 Let us examine a second order infinitesimal bending of a circle

r = (cos u, sin u, 0), (or x2 + y2 = 1). (52)

Here is R = 1 and u = s, i. e. the curve can be parameterized by the arc length and we have

t = r′ = (− sin s, cos s, 0), n1 =
r′′

‖r′′‖
= (− cos s,− sin s, 0), n2 = t × n1 = (0, 0, 1).

According to (26) we have
(1)
z =

∫
[p(s)(− cos s i − sin s j) + q(s) k] ds + C1,

where p(s) and q(s) are arbitrary functions. For instance, for p(s) = C1 = 0, q(s) = 1, an infinitesimal bending
field of the first order is

(1)
z = (0, 0, s) = s k = s n2. (53)

Now according to the equation (27) for r(s) = C2 = 0 and 1(s) = 1, we obtain it holds:

(2)
z =

∫
(
1
2

sin s i −
1
2

cos s j + k) ds,

(2)
z = (−

1
2

cos s,−
1
2

sin s, s) = −
1
2

cos s i −
1
2

sin s j + s k,

or after determination of this vector field via the vectors of the Frenet frame {t,n1,n2},

(2)
z =

1
2

n1 + sn2. (54)
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Thus the curves we got under infinitesimal bending of the second order of a circle with these infinitesimal
bending fields present a family of helices

rε = (cos s −
1
2

cos s ε2, sin s −
1
2

sin s ε2, sε + sε2) (55)

that are not on the cylinder x2 + y2 = 1. Let us examine if the relation (3) is a valid one. According to u = s
we have ds2 = du2 and also

ds2
ε = drε · drε = du2 + 2ε3du2 +

5
4
ε4du2,

wherefrom we get

ds2
ε − ds2 = 2ε3du2 +

5
4
ε4du2 = o(ε2),

i. e. the fields (53) and (54) are corresponding fields of a second order infinitesimal bending of the circle (52).
The resulting deformation is shown in Figure 1. The influence of ε ∈ {0, 0.01, 0.02, 0.03, 0.05, 0.07, 0.1, 0.2} to
the circle is presented. On the last picture we have the family of deformed curves Cε for given values of ε.
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Figure 1: Infinitesimal bending of the second order of a circle to a helix for ε ∈ {0, 0.01, 0.02, 0.03, 0.05, 0.07, 0.1, 0.2}

Let us compute a variation of the curvature. Obviously, k = 1
R = ‖r′′‖ = 1, τ = 0 (plane curve).

As it is
(1)
z =

(1)
z 1 =

(2)
z = 0,

(1)
z 2 =

(2)
z 2 = s,

(2)
z 1 =

1
2
,

according to (50) and (51) we obtain δk = 0 and δ2k = − 1
2 .
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Example 5.2 Let us observe a helix

r = (a cos u, a sin u, bu), u ∈ R, a , 0, b , 0,

which lies on a cylinder x2 + y2 = a2. If we measure s from the point r(u) = (a, 0, 0), we get s =∫ u

0

√

a2 sin2 u + a2 cos2 u + b2 du =
√

a2 + b2 u, i.e. u = u(s) = s
√

a2+b2
. Substituting this result into the starting

equation gives the parametrization of the helix by the arc length

r =
(
a cos

s
√

a2 + b2
, a sin

s
√

a2 + b2
,

bs
√

a2 + b2

)
.

Specially, for a = b =
√

2
2 , we have a helix

r = (

√
2

2
cos s,

√
2

2
sin s,

√
2

2
s). (56)

The vectors of the Frenet frame {t,n1,n2} are

t = (−

√
2

2
sin s,

√
2

2
cos s,

√
2

2
), n1 = (− cos s,− sin s, 0), n2 = (

√
2

2
sin s,−

√
2

2
cos s,

√
2

2
).

For p(s) = 1, q(s) = r(s) = 0, 1(s) = 1
2 , C1 = C2 = 0, we get infinitesimal bending fields of the first and the

second order respectively

(1)
z = (− sin s, cos s, 0) = − sin s i + cos s j, (57)

(2)
z = (−

√
2

2
cos s,−

√
2

2
sin s, 0) = −

√
2

2
cos s i −

√
2

2
sin s j, (58)

i. e. in the basis {t,n1,n2}:

(1)
z =

√
2

2
t −

√
2

2
n2,

(2)
z =

√
2

2
n1. (59)

The curve obtained under this infinitesimal bending is

rε = (

√
2

2
cos s − ε sin s − ε2

√
2

2
cos s,

√
2

2
sin s + ε cos s − ε2

√
2

2
sin s,

√
2

2
s). (60)

Graphical presentation of the family of curves Cε is given in Figure 2. For the sake of illustration, we
have chosen large parameters for ε. More realistically, one has to choose a much smaller ε since we assume
o(ε2) in the definition of the infinitesimal bending.

It is easy to check the equations (24), so we conclude that the vector fields (57) and (58) are infinitesimal
bending fields of the first and the second order respectively of a given helix. Moreover, it is valid ds2

ε −ds2 =

ε4

2 du2 = o(ε3), which means that this infinitesimal bending is the bending of the third order (for
(3)
z = 0).

For the helix (56) we have k = τ =
√

2
2 . According to the equation (59), the relations

(1)
z 1 =

(2)
z =

(2)
z 2 = 0,

(1)
z =

(2)
z 1 = −

(1)
z 2 =

√
2

2

are valid. Using Theorem 4.4 we obtain it holds δk = δ2k = 0.
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Figure 2: Infinitesimal bending of the second order of a helix for ε ∈ {0, 0.05, 0.07, 0.1, 0.5, 0.7, 1, 1.5}
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