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Abstract. In this paper we introduce the notion of TL-fuzzy set valued homomorphisms of groups and
investigate related properties. We also investigate the properties of the generalized (I,T )-L-fuzzy rough
sets constructed by TL-fuzzy set valued homomorphisms of groups.

1. Introduction

The rough set theory is proposed by Pawlak [18] as a new intelligent soft computing tool for dealing
with vagueness or uncertainty. In Pawlak’s rough set model the equivalence relations are employed to
construct the lower and upper approximations as key notations. Biswas and Nanda [4] applied the notion
of rough sets to algebra and introduced the concept of rough subgroups. Kuroki [14] investigated some
properties of the lower and upper approximations on semigroups by use of the congruence relations. Us-
ing arbitrary relations for different universal sets, Yao [29] developed the generalized rough sets. Since
the congruence relations are not suitable for working on an algebraic structure in Yao’s model, Davvaz
[5] introduced the set-valued homomorphisms of groups and used them to construct the approximation
operators. Yamak et al. [27, 28] investigated some properties of the generalized rough sets with respect to
set-valued homomorphisms of rings and modules. And also see [1, 2, 10, 26].

Rough set theory and fuzzy set theory (see [30]) are two distinct but complementary, powerful mathe-
matical tools for studying incomplete and vague information. Fuzzy rough sets is the hybridization of the
rough sets and fuzzy sets. By replacing crisp binary relations with fuzzy relations in the universe, Dubois
and Prade [6] proposed the concept of fuzzy rough set. Radzikowska and Kerre [19] presented a more
general approach to the fuzzification of rough sets and defined (I,T )-fuzzy rough set by using t-norms
and implications via fuzzy similarity relation. Li et al. [16] studied (I,T )-fuzzy rough approximation
operators on a ring as a universal set with respect to a TL-fuzzy ideal of a ring. Recently, Li and Yin [15]
investigated the properties of ν-lower and T -upper fuzzy rough approximation operators with respect to a
T -congruence L-fuzzy relation on a semigroup as a universal set. Wu, Leung and Mi [22] expanded (I,T )-
fuzzy rough set into two different universal sets. Since T -congruence L-fuzzy relations are not suitable for
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generalized (I,T )-fuzzy rough set, Ekiz et al. [7] applied generalized (I,T )-fuzzy rough set to the theory of
ring viaTL-fuzzy relational morphism introduced by Ignjatović et al. [11]. TL-fuzzy relational morphisms
and TL-fuzzy set valued homomorphisms are related closely. Obviously, a TL-fuzzy relational morphism
can define a TL-fuzzy set valued homomorphism and vice versa. TL-fuzzy set valued homomorphisms
are the fuzzification of the set valued homomorphisms in the sense of Davvaz’s definition. This paper
denotes some properties of generalized (I,T )-fuzzy rough sets constructed on two different groups using
TL-fuzzy set valued homomorphisms. This paper, in one respect, is an extension in the sense of fuzzy of
the generalized rough sets constructed by set-valued homomorphisms [5, 27, 28].

The rest of the paper is organized as follows. Section 2, reviews some preliminary concepts. Section
3, introduces the TL-fuzzy set valued homomorphisms of groups. Section 4, analyzes the generalized
(I,T )-fuzzy rough sets with respect to TL-fuzzy set valued homomorphisms of groups.

2. Preliminaries

The following definitions and preliminaries are required in the sequel of our work and hence presented
brief. Let (L,∧,∨, 0, 1) be a complete lattice with the least element 0 and the greatest element 1.

A triangular norm (see [13]), or t-norm in short, is an increasing, associative and commutative mapping
T : L × L → L that satisfies the boundary condition: for all α ∈ L, T (α, 1) = α. The minimum t-norm TM
and drastic product t-norm TD on L are defined as follows:

TM(α, β) = α ∧ β, TD(α, β) =


β, if α = 1;
α, if β = 1;
0, otherwise

, ∀α, β ∈ L

A t-norm T on L is called ∨-distributive if T (α, β1 ∨ β2) = T (α, β1) ∨ T (α, β2) for all α, β1, β2 ∈ L. T is also
called infinitely ∨-distributive if T (α,

∨
i∈J βi) =

∨
i∈J T (α, βi) for all α, βi ∈ L, where J is an index set. Any

a ∈ L is called an idempotent element of L with respect to the t-norm T if T (a, a) = a. All of the idempotent
elements of L are denoted by the set DT = {a ∈ L | T (a, a) = a} and for any t-norm T , the operation T is a
binary operation on DT .

A function I : L × L→ L is an implication if it fulfills the following, for all x, y, z ∈ L

1 x ≤ z implies I(z, y) ≤ I(x, y),

2 y ≤ z implies I(x, y) ≤ I(x, z),

3 I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

An implicator I defined as

I(x, y) =
∨

T (x,α)≤y

α, α ∈ L

for all x, y ∈ L is called an R-implication (residual implication) based on the t-norm T (see [3, 8]).
2.1. L-fuzzy subsets

Let X be a non-empty set called universe of discourse. An L-fuzzy subset of X is any function from X
into L (see [9, 30]). The class of all subsets and L-fuzzy subsets of X will be denoted by P(X) and F(X,L),
respectively. In particular, if L = [0, 1] (where [0, 1] is the unit interval), then it is appropriate to replace fuzzy
subset with L-fuzzy subset. In this case the set of all fuzzy subsets of X is denoted by F(X). Let α ∈ L. Then
the sets µα = {x ∈ X | µ(x) ≥ α}, µTα = {x ∈ X | µ(x)Tα ≥ α} and [µTα ] = {x ∈ X | µ(x)Tλ ≥ α for some λ ∈ L}
are called α-, (α,T )- and [α,T ]-cut (or level) subsets of µ, respectively. It is easy to see that µα ⊆ µTα ⊆ [µTα ]
if α ∈ DT . Let ∅ , B ⊆ X and α ∈ L. Then (α, β)B will denote an L-fuzzy subset of X with value β if x ∈ B
and α elsewhere. Then (0, 1)B is called the characteristic function of a set B ⊆ X and it is denoted by 1B.
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Let X,Y be non-empty sets, µ ∈ F(X,L), ν ∈ F(Y,L) and f : X → Y be a function. Then f (µ) ∈ F(Y,L) and
f−1(ν) ∈ F(X,L) are defined by

f (µ)(y) =
∨

f (x)=y

µ(x), (∀y ∈ Y), f−1(ν) = ν ◦ f

Let µ and ν be any two L-fuzzy subsets of X and let ” ∗ ” be a binary relation on L. Then µ ∗ ν is a binary
relation on F(X,L) and µ ∗ ν is defined by (µ ∗ ν)(x) = µ(x) ∗ ν(x) for all x ∈ X.

An L-fuzzy subset R ∈ F(X × Y,L) is called an L-fuzzy relation from X to Y. R(x, y) is the degree of
relation between x and y, where (x, y) ∈ X × Y. If X = Y, then R is referred to as an L-fuzzy relation
on X. An L-fuzzy relation R is called reflexive if R(x, x) = 1 for all x ∈ X, symmetric if R(x, y) = R(y, x)
for all x, y ∈ X and T -transitive if R(x, z) ≥

∨
y∈X(R(x, y)TR(y, z)) for all x, z ∈ X. A reflexive, symmetric

and T -transitive L-fuzzy relation is called a T -equivalence L-fuzzy relation. Let R : X → F(Y,L) be
a function and x ∈ X. Then R(x) denotes as an L-fuzzy set of Y. Let X,Y,X′,Y′ be non-empty sets
and R : X → F(Y,L), P : X′ → F(Y′,L), 1 : Y → Y′, f : X → X′ be functions. Then R−1 : Y →
F(X,L), R( f ,1) : X′ → F(Y′,L), P−1

( f ,1) : X → F(Y,L) and P f : X → F(Y′,L), respectively, are defined by

R−1(y)(x) = R(x)(y), R( f ,1)(x′)(y′) =
∨

f (x)=x′,1(y)=y′ R(x)(y), P−1
( f ,1)(x)(y) = P( f (x))(1(y)), P f (x)(y′) = P( f (x))(y′)

for all x ∈ X, x′ ∈ X′, y ∈ Y, y′ ∈ Y. The T -compositions of the L-fuzzy set valued functions R : X → F(Y,L)
and P : Y → F(Z,L) is a L-fuzzy set valued functions P ∗T R : X → F(Z,L) defined by (P ∗T R)(x)(z) =∨

y∈Y R(x)(y)TP(y)(z) for all x ∈ X, z ∈ Z (see [12, 21]).
2.2. Generalized rough approximation operators

Let X and Y be two non-empty sets. Let T be a set valued mapping given by T : X → P(Y). Then
the triple (X,Y,T) is referred to as a generalized approximation space or generalized rough set. Any set
valued function from X to P(Y) defines a binary relation by setting ϕT = {(x, y) | y ∈ T(x)}. Obviously, if
ϕ is an arbitrary binary relation from X to Y, then it can define a set valued mapping Tϕ : X → P(Y) by
Tϕ(x) = {y ∈ Y | (x, y) ∈ ϕ} where x ∈ X. For any set A ⊆ Y a pair of lower and upper approximations T(A)
and T(A) are defined by T(A) = {x ∈ X | T(x) ⊆ A} and T(A) = {x ∈ X | T(x) ∩ A , ∅}. The pair (T(A),T(A))
is referred to as a generalized rough set, and T and T are referred to as lower and upper generalized
approximation operators, respectively (see [1, 29]).
2.3. Generalized L-fuzzy rough approximation operators

Let X and Y be two non-empty sets and R be an L-fuzzy relation from X to Y. The triple (X,Y,R) is
called a generalized L-fuzzy approximation space. If R is an L-fuzzy relation on X, then (X,R) is called an
L-fuzzy approximation space. Let T be a t-norm and I be an implication on L. For any L-fuzzy subset µ of

Y, the T -upper and I-lower L-fuzzy rough approximations of µ denoted by R
T

(µ) and R
I

(µ) respectively,
are two L-fuzzy sets of X whose membership functions are defined by

R
T

(µ)(x) =
∨
y∈Y

T (R(x)(y), µ(y)), R
I

(µ)(x) =
∧
y∈Y

I(R(x)(y), µ(y)), (∀x ∈ X).

The operators R
T

and R
I

from F (Y,L) to F (X,L) are referred to as T -upper and I-lower fuzzy rough

approximation operators of (X,Y,R) respectively, and the pair (R
I

(µ),R
T

(µ)) is called the (I,T )-L-fuzzy
rough set of µ with respect to (X,Y,R) (see [15, 22–25]).
2.4. Set valued homomorphisms

Let G,H be groups. A mapping T : G → P(H) satisfying T(a)T(b) ⊆ T(ab) and (T(a))−1
⊆ T(a−1) for all

a, b ∈ G is called set valued homomorphism of groups (see [2, 5, 10, 26–28]).
2.5. TL-fuzzy subgroups

Let G be a group and µ ∈ F (G,L). If, for all x, y ∈ G, µ(x)Tµ(y) ≤ µ(xy) and µ(x) ≤ µ(x−1), then µ is
called a TL-fuzzy subgroup of G. If µ satisfies the supplementary condition µ(xy) = µ(yx) for all x, y ∈ G,
then it is called a normal TL-fuzzy subgroup of G. µ is a normal TL-fuzzy subgroup of G if and only if
µ(xyx−1) = µ(y) for all x, y ∈ G. Let µ, ν ∈ F (G,L). Then T -product of µ and ν denoted by µ ·T ν is defined
by (µ ·T ν)(x) =

∨
x=ab µ(a)T ν(b) and µ−1

∈ F(G,L) is defined by µ−1(x) = µ(x−1) for all x ∈ G. Let µ be a
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TL-fuzzy subgroup of G and a be any element in G. Then the L-fuzzy subset of G defined by aµ(x) = µ(a−1x)
for all x ∈ G is called a L-fuzzy left coset of µ in G. Similarly, the L-fuzzy right coset of µ in G is defined
by µa(x) = µ(xa−1) for all x ∈ G. If µ be a normal TL-fuzzy subgroup of G, then aµ = µa. The set of all the
L-fuzzy left cosets of G with respect to µ is the set G/µ = {aµ | a ∈ G}. If µ is an normal TL-fuzzy subgroup
of G, then G/µ is a group under the binary operation (aµ)(bµ) = abµ for all a, b ∈ G. A T -equivalence
L-fuzzy relation R on G is called a T -congruence L-fuzzy relation if it satisfies R(x, y)TR(a, b) ≤ R(xa, yb)
(see [12, 17, 20, 21, 31]).

Throughout this paper L will be denote a complete lattice and T will be referred as a t-norm on L, and
Iwill be referred as an R-implication based on T .

3. T L-fuzzy Set Valued Homomorphism of Groups

In this section, the notion of TL-fuzzy set valued homomorphism of groups is introduced and some
related properties are investigated.
Definition 3.1. Let G and H be two groups. A mapping R : G→ F (H,L) satisfying for all x, a ∈ G,

(i) R(x) ·T R(a) ≤ R(xa),

(ii) (R(x))−1
≤ R(x−1)

is called TL-fuzzy set valued homomorphism. The set of all of the TL-fuzzy set valued homomorphism
from G to H is denoted by HomT (G,F (H,L)). If T = ∧, then R is called L-fuzzy set valued homomorphism
and HomT (G,F (H,L)) is replaced by Hom(G,F (H,L)). If L = [0, 1], then R is called T -fuzzy set valued
homomorphism, and in this case HomT (G,F (H,L)) is replaced by HomT (G,F (H)). It is clear that if
R ∈ HomT (G,F (H,L)), then R−1

∈ HomT (H,F (G,L)).
Example 3.2. Let L = N5 whose Hasse diagram depicted in the figure 1.

0

α __

γ
OO

1??

β??

1 WW

Figure 1: N5

R \ {0} is a group under ordinary multiplication. For an x ∈ R \ {0}, let R(x) : R \ {0} → L be defined by

R(x)(y) =


1, if xy = 1;
γ, if xy > 0, xy , 1;
α, if xy < 0.

for all y ∈ R \ {0}. Then R : R \ {0} → F (R \ {0},L) is a TL-fuzzy set valued homomorphism for any t-norm
T on L.
Example 3.3. However, the set of all of the homomorphisms of group is Hom(Z2,Z3) = {0}, while the set of
all of the set valued homomorphism from Z2 to Z3 is {T1,T2,T3,T4}where

T1(x) =

{0}, if x = 0;
∅, if x = 1.

, T2(x) =

Z3, if x = 0;
∅, if x = 1.

, T3(x) = {0}, T4(x) = Z3.

Let L = {0, α, β, 1} be a lattice whose Hasse diagram depicted as follows:



C. Ekiz et al. / Filomat 31:13 (2017), 4153–4166 4157

0

α __

1??

β??

1 __

Figure 2: Lattice L

Then all of the L-fuzzy set valued homomorphism from Z2 to Z3 are;

x R1(x) R2(x) R3(x) R4(x) R5(x) R6(x) R7(x) R8(x) R9(x) R10(x) R11(x) R12(x) R13(x)

0 µ1 µ1 µ1 µ1 µ2 µ2 µ2 µ2 µ3 µ3 µ3 µ3 µ4

1 µ1 µ5 µ7 µ9 µ2 µ5 µ8 µ9 µ3 µ6 µ7 µ9 µ4

x R14(x) R15(x) R16(x) R17(x) R18(x) R19(x) R20(x) R21(x) R22(x) R23(x) R24(x) R25(x)

0 µ4 µ4 µ4 µ5 µ5 µ6 µ6 µ7 µ7 µ8 µ8 µ9

1 µ6 µ8 µ9 µ5 µ9 µ6 µ9 µ7 µ9 µ8 µ9 µ9

where µi ∈ F (Z3,L), i = 1, 2, ..., 9 as follows:

x µ1(x) µ2(x) µ3(x) µ4(x) µ5(x) µ6(x) µ7(x) µ8(x) µ9(x)

0 1 1 1 1 α α β β 0
1 1 α β 0 α 0 β 0 0
2 1 α β 0 α 0 β 0 0

Example 3.4. Let G,H,X and Y be groups.

(1) Let Θ ∈ F (G × G,L) be a T -congruence L-relation. For an x ∈ G, let R(x) : G → L be defined by
R(x)(y) = Θ(x, y) for all y ∈ G. Then R : G→ F (G,L) is a TL-fuzzy set valued homomorphism.

(2) Let f : G → H be homomorphism of groups. For an x ∈ G, let R( f )(α,β) : G → F (H,L) be defined by

R( f )(α,β)(x)(y) =

β, if f (x) = y;
α, if f (x) , y;

for all y ∈ H. If α ≤ β, then R( f )(α,β) is a TL-fuzzy set valued homomorphism.

(3) Let T : G → P(H) be a set valued homomorphism, α, β ∈ L, α ≤ β. Then R : G → F (H,L) defined by
R(x) = (α, β)T(x) for all x ∈ G is a TL-fuzzy set valued homomorphism.

(4) Let R : G → F (H,L) be a TL-fuzzy set valued homomorphism, x ∈ G, α ∈ L and β ∈ DT . Then
T1(x) = R(x)Tα ,T2(x) = R(x)β and T3(x) = [R(x)Tβ ] are set valued homomorphisms from G to P(H).

(5) Let f : G→ H be homomorphism of groups and µ be a normalTL-fuzzy subgroup of H. For an x ∈ G,
let R(x) : H → L be defined by R(x)(y) = µ( f (x)y−1) for all y ∈ H. Then R : G→ F (H,L) is a TL-fuzzy
set valued homomorphism.

(6) Let f : G → H be homomorphism of groups and µ be a TL-fuzzy subgroup of H. For an x ∈ G, let
R(x) : H→ L be defined by R(x)(y) = µ( f (x))Tµ(y−1) for all y ∈ H. Then R : G→ F (H,L) is aTL-fuzzy
set valued homomorphism.
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Proposition 3.5. Let G,H be groups and R : G→ F (H,L).

(i) Let x, a ∈ G. If R ∈ HomT (G,F (H,L)), then R(x)(y)TR(a)(b) ≤ R(xa−1)(yb−1) for all y, b ∈ H.

(ii) If R(eG)(eH) = 1 and R(x)(y)TR(a)(b) ≤ R(xa−1)(yb−1) for all x, a ∈ G and y, b ∈ H, then R ∈
HomT (G,F (H,L)).

Proof.

(i) It is straightforward.

(ii) Let x, a ∈ G and y, b ∈ H. Then (R(a))−1(b) = R(a)(b−1) = R(eG)(eH)TR(a)(b−1) ≤ R(a−1)(b). Hence we
have (R(a))−1

≤ R(a−1). Thus (R(x) ·T R(a))(u) =
∨

u=yb R(x)(y)TR(a)(b)
=

∨
u=yb R(x)(y)T (R(a))−1(b−1) ≤

∨
u=yb R(x)(y)TR(a−1)(b−1) ≤

∨
u=yb R(xa)(yb) = R(xa)(u). We obtain

that R(x) ·T R(a) ≤ R(xa). Therefore R ∈ HomT (G,F (H,L)).

Theorem 3.6. Let G,H and K be groups and T be an infinitely ∨-distributive t-norm on L. If R ∈
HomT (G,F (H,L)) and P ∈ HomT (H,F (K,L)), then P ∗T R ∈ HomT (G,F (K,L)).
Proof. Let x, a ∈ G and k ∈ K. Thus(

(P ∗T R)(x) ·T (P ∗T R)(a)
)
(k) =

∨
k=yb

(P ∗T R)(x)(y)T (P ∗T R)(a)(b)

=
∨
k=yb

( ∨
h1∈H

R(x)(h1)TP(h1)(y)
)
T

( ∨
h2∈H

R(a)(h2)TP(h2)(b)
)

=
∨

h1,h2∈H

(
R(x)(h1)TR(a)(h2)T (

∨
k=yb

P(h1)(y)TP(h2)(b))
)

=
∨

h1,h2∈H

(
R(x)(h1)TR(a)(h2)T (P(h1) ·T P(h2))(k)

)
≤

∨
h1,h2∈H

(
(R(x) ·T R(a))(h1h2)T (P(h1) ·T P(h2))(k)

)
≤

∨
h1h2∈H

R(xa)(h1h2)TP(h1h2)(k) =
∨
h∈H

R(xa)(h)T (P(h)(k) = (P ∗T R)(xa)(k).

((P ∗T R)(x))−1(k) = (P ∗T R)(x)(k−1) =
∨
h∈H

R(x)(h)TP(h)(k−1)

=
∨
h∈H

(R(x))−1(h−1)T (P(h))−1(k) ≤
∨
h∈H

R(x−1)(h−1)TP(h−1)(k)

= (P ∗T R)(x−1)(k).

So P ∗T R is a TL-set valued homomorphisms of groups.

Theorem 3.7. Let f : G→ G′ and 1 : H→ H′ be homomorphisms of groups.

(1) LetT be an infinitely∨-distributive t-norm and R ∈ HomT (G,F (H,L)). Then R( f ,1) ∈ HomT (G′,F (H′,L)).

(2) If P ∈ HomT (G′,F (H′,L)), then P−1
( f ,1) ∈ HomT (G,F (H,L)).

(3) If S ∈ HomT (G′,F (H,L)), then S f ∈ HomT (G,F (H,L)).

Proof.
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(1) Let x′, a′ ∈ G′ and y′ ∈ H′. Thus

(R( f ,1)(x′) ·T R( f ,1)(a′))(h′) =
∨

h′=y′b′
R( f ,1)(x′)(y′)TR( f ,1)(a′)(b′)

=
∨

h′=y′b′

( ∨
f (xa)=x′a′,1(yb)=y′b′

R(x)(y)TR(a)(b)
)

≤

∨
h′=y′b′

(
∨

f (xa)=x′a′,1(s)=y′b′
(R(x) ·T R(a))(s))

= (
∨

f (xa)=x′a′,1(s)=h′
(R(x) ·T R(a))(s))

≤

∨
f (xa)=x′a′,1(s)=h′

R(xa)(s)

= R( f ,1)(x′a′)(h′).

(R( f ,1)(x′))−1(y′) = (R( f ,1)(x′))((y′)−1) =
∨

f (x)=x′,1(y)=(y′)−1

R(x)(y)

=
∨

f (x)=x′,1(y−1)=y′
R(x)(y) =

∨
f (x)=x′,1(y−1)=y′

(R(x))−1(y−1)

≤

∨
f (x)=x′,1(y−1)=y′

R(x−1)(y−1) =
∨

f (x−1)=(x′)−1,1(y−1)=y′
R(x−1)(y−1)

= R( f ,1)(x′)−1(y′).

(2) Let x, a ∈ G and h ∈ H. Thus

(P−1
( f ,1)(x) ·T P−1

( f ,1)(a))(h) =
∨
h=yb

P−1
( f ,1)(x)(y)TP−1

( f ,1)(a)(b) =
∨
h=yb

P( f (x))(1(y))TP( f (a))(1(b))

≤

∨
1(h)=1(y)1(b)

P( f (x))(1(y))TP( f (a))(1(b)) = (P( f (x)) ·T P( f (a)))(1(h))

≤ (P( f (xa))(1(h)) = P−1
( f ,1)(xa)(h).

(P−1
( f ,1)(x))−1(y) = (P−1

( f ,1)(x))(y−1) = P( f (x))(1(y−1)) = P( f (x))(1(y)−1)

= (P( f (x))−1(1(y)) ≤ P( f (x−1))(1(y)) = P−1
( f ,1)(x

−1)(y).

(3) Let x, a ∈ G and h ∈ H. Thus

(S f (x) ·T S f (a))(h) =
∨
h=yb

S f (x)(y)TS f (a)(b) =
∨
h=yb

S( f (x))(y)TS( f (a))(b)

= (S( f (x)) ·T S( f (a)))(h) ≤ S( f (xa))(h) = S f (xa)(h).

(S f (x))−1(y) = (S f (x))(y−1) = S( f (x))(y−1) = (S( f (x))−1(y)

≤ P( f (x−1))(y) = S f (x−1)(y).

Definition 3.8. Let R ∈ HomT (G,F (H,L)). Then the kernel and image of R denoted by KerR and ImR,
respectively are L-fuzzy subsets of G and H, respectively that are defined as KerR(x) = R(x)(e) and ImR(y) =∨

x∈G R(x)(y) for all x ∈ G, y ∈ H.
Remark Let f ∈ Hom(G,H). Then KerR( f )(α,β) = (α, β)Ker f and ImR( f )(α,β) = (α, β)Im f , where R( f )(α,β) is in the
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Example 3.4 (2).
Proposition 3.9. Let R ∈ HomT (G,F (H,L)),P ∈ HomT (G′,F (H′,L)), f ∈ Hom(G,G′) and 1 ∈ Hom(H,H′).
Then

(1) f (KerR) ≤ KerR( f ,1),

(2) If 1 is a monomorphism, then f (KerR) = KerR( f ,1),

(3) KerP−1
( f ,1) = KerP f ,

(4) ImR( f ,1) ≤ 1(ImR),

(5) If f is an epimorphism, then ImR( f ,1) = 1(ImR),

(6) ImR−1
( f ,1) = Im((R f )−1

1 )−1.

Proof.

(1) Let x′ ∈ G′. Then

f (KerR)(x′) =
∨

f (x)=x′
KerR(x) =

∨
f (x)=x′

R(x)(e) ≤
∨

f (x)=x′,1(y)=e

R(x)(y) = R( f ,1)(x′)(e) = KerR( f ,1)(x′).

(2) Since 1 is a monomorphism, then it follows immediately from (1).

(3) Let x ∈ G. Then

KerP−1
( f ,1)(x) = P−1

( f ,1)(x)(e) = P( f (x))(1(e)) = P( f (x))(e) = P f (x)(e) = KerP f (x).

(4) Let y′ ∈ H′. Then

ImR( f ,1)(y′) =
∨

x′∈G′
R( f ,1)(x′)(y′) =

∨
x′∈G′

(
∨

f (x)=x′,1(y)=y′
R(x)(y))

≤

∨
1(y)=y′

(
∨
x∈G

R(x)(y)) =
∨
1(y)=y′

ImR(y) = 1(ImR)(y′).

(5) Since 1 is an epimorphism, then it follows immediately from (4).

(6) Let y ∈ H. Then

ImR−1
( f ,1)(y) =

∨
x∈G

R−1
( f ,1)(x)(y) =

∨
x∈G

R( f (x))(1(y)) =
∨
x∈G

R f (x)(1(y))

=
∨
x∈G

(R f )−1(1(y))(x) =
∨
x∈G

((R f )−1
1 )−1(x)(y) = Im((R f )−1

1 )−1(y).

Proposition 3.10. Let R ∈ HomT (G,F (H,L)). Then

(1) KerR is a TL-fuzzy subgroup of G,

(2) Let x ∈ G. If R(x) ∈ F (H,L) and there exists an element y ∈ H such that R(x)(y) = 1, then KerR is a
normal TL-fuzzy subgroup of G,

(3) If T is an infinitely ∨-distributive t-norm, then ImR is a TL-fuzzy subgroup of H,

(4) R(e) is a TL-fuzzy subgroup of H.
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Proof.

(1) Let x, a ∈ G. Since

KerR(x)TKerR(a) = R(x)(e)TR(a)(e) ≤ (R(x) ·T R(a))(e) ≤ R(xa)(e) = KerR(xa),
KerR(x) = R(x)(e) = R(x)(e−1) = (R(x))−1(e) ≤ R(x−1)(e) = KerR(x−1).

Then KerR is a TL-fuzzy subgroup of G.

(2) Let x, a ∈ G. For each x ∈ G, there exists an element y ∈ H such that R(x)(y) = 1. Hence

KerR(xa) = R(xa)(e) = 1TR(xa)(e)T 1 = R(x)(y)TR(xa)(e)TR(x)(y)
= (R(x))−1(y−1)TR(xa)(e)TR(x)(y) ≤ R(x−1)(y−1)TR(xa)(e)TR(x)(y)

≤

(
(R(x−1) ·T R(xa))(y−1)

)
TR(x)(y) ≤ R(a)(y−1)TR(x)(y)

≤ (R(a) ·T R(x))(e) ≤ R(ax)(e) = KerR(ax).

Thus KerR is a normal TL-fuzzy subgroup of G if for each x ∈ G, there exists an element y ∈ H such
that R(x)(y) = 1.

(3) Let y, b ∈ H. Since

ImR(y)T ImR(b) =
∨
x∈G

R(x)(y)T
∨
a∈G

R(a)(b) =
∨

x,a∈G

R(x)(y)TR(a)(b)

≤

∨
x,a∈G

(R(x) ·T R(a))(yb) ≤
∨
t∈G

R(t)(yb) = ImR(yb),

ImR(x) =
∨
x∈G

R(x)(y) =
∨
x∈G

(R(x))−1(y−1) ≤
∨
x∈G

R(x−1)(y−1) = ImR(y−1).

Then ImR is a TL-fuzzy subgroup of H if T is an infinitely ∨-distributive t-norm,

(4) Let y, b ∈ H. Since

R(e)(y)TR(e)(b) ≤ (R(e) ·T R(e))(yb) ≤ R(e)(yb),
R(e)(y) = R(e)−1(y−1) ≤ R(e)(y−1).

Then R(e) is a TL-fuzzy subgroup of H.

Theorem 3.11. Let µ be a normal TL-fuzzy subgroup of G and R : G→ F (G/µ,L) be defined by R(x)(yµ) =
µ(xy−1) for all x, y ∈ G. Then R ∈ HomT (G,F (G/µ,L)) and KerR = µ.
Proof. Let x, a ∈ G and yµ, bµ ∈ G/µ. Then

(R(a) ·T R(b))(uµ) =
∨

uµ=(yµ)(bµ)

R(x)(yµ)TR(a)(bµ) =
∨

uµ=(yµ)(bµ)

µ(xy−1)Tµ(ab−1) =
∨

uµ=(yµ)(bµ)

µ(y−1x)Tµ(ab−1)

≤

∨
uµ=(yµ)(bµ)

µ(y−1xab−1) =
∨

uµ=(yµ)(bµ)

µ(xab−1y−1) =
∨

uµ=(yµ)(bµ)

ybµ(xa)

=
∨

uµ=(yµ)(bµ)

R(xa)(ybµ) =
∨

uµ=(yµ)(bµ)

R(xa)((yµ)(bµ)) =
∨

uµ=(yµ)(bµ)

R(xa)(uµ)).

(R(x))−1(yµ) = R(x)((yµ)−1) = µ(x−1y−1) = R(x−1)(yµ).

Therefore R ∈ HomT (G,F (G/µ,L)). Since KerR(x) = R(x)(µ) = µ(x) for all x ∈ G, then KerR = µ.
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4. I -Lower and T -Upper Fuzzy Rough Approximations with Respect to T L-Fuzzy Set Valued Homo-
morphism of Groups

In this section, some properties of the I-lower and T -upper fuzzy rough approximations constructed
on two different groups by using a TL-fuzzy relational morphism are investigated.
Theorem 4.1. Let µ, ν ∈ F (H,L) and T be an infinitely ∨-distributive t-norm on L. If R ∈ HomT (G,F (H,L)),

then R
T

(µ) ·T R
T

(ν) ≤ R
T

(µ ·T ν) .
Proof. Let x ∈ G. Thus

(
R
T

(µ) ·T R
T

(ν)
)
(x) =

∨
x=ab

R
T

(µ)(a)TR
T

(ν)(b)

=
∨
x=ab

(∨
k∈H

R(a)(k)Tµ(k)
)
T

(∨
t∈H

R(b)(t)T ν(t)
)

=
∨
x=ab

∨
k,t∈H

(R(a)(k)TR(b)(t))T (µ(k)T ν(t))

≤

∨
x=ab

∨
p∈H

(R(a) ·T R(b))(p)T (µ ·T ν)(p)

≤

∨
x=ab

∨
p∈H

R(ab)(p)T (µ ·T ν)(p)

=
∨
p∈H

R(x)(p)T (µ ·T ν)(p)

= R
T

(µ ·T ν)(x).

So we have R
T

(µ) ·T R
T

(ν) ≤ R
T

(µ ·T ν).
The following example shows that Theorem 4.1 may not be true for the I-lower fuzzy rough approxi-

mation of µ.
Example 4.2. Let L be the lattice which is given in Figure 2 and T = ∧. Let µ, ν ∈ F (Z3,L) and
R : Z4 → F (Z3,L) be defined by

µ(x) =


1, if x = 0;
α, if x = 1;
α, if x = 2.

ν(x) =


β, if x = 0;
0, if x = 1;
0, if x = 2.

R(x)(y) =


1, if x = 0;
0, if x = 1;
β, if x = 2;
0, if x = 3.

Then R ∈ HomT (Z4,F (Z3,L)). Let I be the residual implication of T . Then we obtain that

(R
I

(µ) ·T R
I

(ν))(x) =


1, if x = 0;
α, if x = 1;
1, if x = 2;
α, if x = 3.

R
I

(µ ·T ν)(x) =


0, if x = 0;
1, if x = 1;
α, if x = 2;
1, if x = 3.

Therefore R
I

(µ) ·T R
I

(ν) � R
I

(µ ·T ν) and R
I

(µ ·T ν) � R
I

(µ) ·T R
I

(ν).
Theorem 4.3. Let µ be a TL-fuzzy subgroup of H and T be an infinitely ∨-distributive t-norm on L. If

R ∈ HomT (G,F (H,L)), then R
T

(µ) is a TL-fuzzy subgroup of G.
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Proof. Let x, y any elements in G. Thus

R
T

(µ)(x)TR
T

(µ)(y) =
(∨

k∈H

R(x)(k)Tµ(k)
)
T

(∨
t∈H

R(y)(t)Tµ(t)
)

=
∨
k∈H

∨
t∈H

(R(x)(k)Tµ(k)TR(y)(t)Tµ(t))

≤

∨
k,t∈H

(R(x)·TR(y))(kt)Tµ(kt)) ≤
∨
p∈H

R(xy)(p)Tµ(p)

= R
T

(µ)(xy).

R
T

(µ)(x) =
∨
k∈H

R(x)(k)Tµ(k) =
∨
k∈H

(R(x))−1(k−1)Tµ(k)

≤

∨
k∈H

R(x−1)(k−1)Tµ(k−1) = R
T

(µ)(x−1).

So R
T

(µ) is a TL-fuzzy subgroup of G.

The following example shows that R
T

(µ) in the Theorem 4.3 may not a normal TL-fuzzy subgroup of
G.
Example 4.4. The set of all of the 2 × 2 invertible matrices over the field of real numbers, GL2(R), forms a

group under ordinary matrix multiplication. It is easy to see that H = {

(
x y
0 1

)
| x , 0} is a subgroup of

GL2(R). Let L = {0, α, β, γ, δ, 1} be a lattice whose Hasse diagram depicted as follows:

0

α __

δ??

β
OO

δOO

γ??

δ __

1OO

Figure 3: Lattice L

TD is an infinitely ∨-distributive t-norm on L. Let R : H→ F (Z,L) be defined by

R(
(

x y
0 1

)
)(z) =

1, if y = 0;
δ, if y , 0;

, ∀

(
x y
0 1

)
∈ H, z ∈ Z.

Then R is a TL-fuzzy set valued homomorphisms. Let a normal TL-fuzzy subgroup µ of Z be defined by

µ(z) =

δ, if z is even;
β, if z is odd.

, ∀z ∈ Z.

Thus we obtain that

R
T

(µ)(
(

x y
0 1

)
) =

δ, if y = 0;
0, if y , 0;

, ∀

(
x y
0 1

)
∈ H.

Since we have that

R
T

(µ)(
(

2 −2
0 1

) (
3 1
0 1

)
) = R

T

(µ)(
(

6 0
0 1

)
) = δ
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and

R
T

(µ)(
(

3 1
0 1

) (
2 −2
0 1

)
) = R

T

(µ)(
(

6 −5
0 1

)
) = 0,

then R
T

(µ) is not a normal TL-fuzzy subgroup of G.
The following example shows that Theorem 4.3 may not be true for the I-lower fuzzy rough approxi-

mation of µ.
Example 4.5. Let T = ∧ and let µ ∈ F (Z, [0, 1]) and R : Z→ F (Z, [0, 1]) be defined by

µ(x) =

 1
2 , if x is even;
1
5 , if x is odd,

R(x)(y) =

 1
3 , if x is even;
1
7 , if x is odd

,respectively. Then R ∈ HomT (Z,F (Z, [0, 1])). Let I be the residual implication of T . Then we obtain that

R
I

(µ)(x) =

 1
5 , if x is even;
1, if x is odd.

Since R
I

(µ)(1)TR
I

(µ)(1) = 1T 1 = 1 � 1
5 = R

I
(µ)(2). Then R

I
(µ) is not aTL-fuzzy subgroup ofZ. Theorem

4.6. Let R ∈ HomT (G,F (H,L)) and P ∈ HomT (H,F (K,L)). Then

(1) R(R(x))(a) ≤ KerR(ax−1) for all x, a ∈ G,

(2) R(KerP) = Ker(P ·T R),

(3) R(KerP) = Ker(P ·I R),

(4) P−1(KerR−1) = Ker(P ·T R)−1,

(5) P−1(KerR−1) = Ker(R−1
·I P−1),

(6) If T is an infinitely ∨-distributive t-norm, then R(ImP−1) = Im(P ·T R)−1,

(7) If T is an infinitely ∨-distributive t-norm, then P−1(ImR) = ImP ·T R,

(8) R(ImR−1) ≥ Im(P ·I R)−1,

(9) P−1(ImR) ≥ Im(P−1
·I R−1)−1.

Proof.

(1) Let x, a ∈ G. Then

R(R(x))(a) =
∨
b∈H

R(a)(b)TR(x)(b) =
∨
b∈H

R(a)(b)T (R(x))−1(b−1) ≤
∨
b∈H

R(a)(b)TR(x−1)(b−1)

= (R(a) ·T R(x−1))(e) ≤ R(ax−1)(e) = KerR(ax−1).

(2) Let x ∈ G. Then

R(KerP)(x) =
∨
h∈H

R(x)(h)TKerP(h) =
∨
h∈H

R(x)(h)TP(h)(e) = (P ·T R)(x)(e) = Ker(P ·T R).

(3) Let x ∈ G. Then

R(KerP)(x) =
∧
h∈H

R(x)(h)IKerP(h) =
∧
h∈H

R(x)(h)IP(h)(e) = (P ·I R)(x)(e) = Ker(P ·I R)(x)
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(4) Let k ∈ K. Then

P−1(KerR−1)(k) =
∨
h∈H

P−1(k)(h)TKerR−1(h) =
∨
h∈H

P(h)(k)TR−1(h)(e)

=
∨
h∈H

P(h)(k)TR(e)(h) = (P ·T R)(e)(k) = Ker(P ·T R)−1(k)

(5) Let k ∈ K. Then

P−1(KerR−1)(k) =
∧
h∈H

P−1(k)(h)IKerR−1(h) =
∧
h∈H

P−1(k)(h)IR−1(h)(e) = Ker(R−1
·I P−1)(k)

(6) Let x ∈ G. Then

R(ImP−1)(x) =
∨
h∈H

R(x)(h)T ImP−1(h) =
∨
h∈H

R(x)(h)T (
∨
k∈K

P−1(k)(h)) =
∨

h∈H,k∈K

R(x)(h)IP(h)(k)

=
∨
k∈H

∨
h∈H

R(x)(h)IP(h)(k) =
∨
k∈K

(P ·T R)(x)(k) = Im(P ·T R)−1(k)

(7) Let k ∈ K. Then

P−1(ImR)(k) =
∨
h∈H

P−1(k)(h)T ImR(h) =
∨
h∈H

P(h)(k)T (
∨
1∈G

R(1)(h)) =
∨

h∈H,1∈G

R(1)(h)IP(h)(k)

=
∨
1∈G

∨
h∈H

R(x)(h)IP(h)(k) =
∨
1∈H

(P ·T R)(1)(k) = Im(P ·T R)(k)

(8) Let x ∈ G. Then

R(ImR−1)(x) =
∧
h∈H

R(x)(h)IImP−1(h) =
∧
h∈H

R(x)(h)I(
∨
k∈K

P−1(k)(h)) =
∧
h∈H

R(x)(h)I(
∨
k∈K

P(h)(k))

=
∨
h∈H

(
∨
k∈K

R(x)(h)IP(h)(k)) ≥
∨
k∈K

(
∨
h∈H

R(x)(h)IP(h)(k)) =
∨
k∈K

(P ·T R)(x)(k) = Im(P ·T R)−1(k)

(9) Let k ∈ K. Then

P−1(ImR)(k) =
∧
h∈H

P−1(k)(h)IImR(h) =
∧
h∈H

P−1(k)(h)I(
∨
1∈G

R(1)(h))

≥

∧
h∈H

(
∨
1∈G

P−1(k)(h)IR−1(h)(1)) ≥
∨
1∈G

(
∧
h∈H

P−1(k)(h)IR−1(h)(1))

=
∨
1∈G

(R−1
·I P−1)(k)(1) =

∨
1∈G

(R−1
·I P−1)−1(1)(k) = Im(R−1

·I P−1)−1(k)

5. Conclusions

The generalized rough sets on algebraic sets such as group, ring, and module were mainly studied by
set valued homomorphism [5, 10, 27, 28]. It is an interesting topic to research the generalized (I,T )-L-fuzzy
rough sets which are constructed on two different groups instead of the universe of discourse. In this paper,
we gave a definition for the fuzzification of set valued homomorphism to provide opportunity putting
reasonable interpretations and explored the features of generalized (I,T )-L-fuzzy rough sets.
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