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Abstract. We extend the Malliavin calculus from the classical finite variance setting to generalized pro-
cesses with infinite variance and their test processes. The domain and the range of the basic Malliavin
operators is characterized in terms of test processes and generalized processes. Various properties are
proved such as the duality of the integral and the derivative in strong and in weak sense, the product rule
with respect to ordinary and Wick multiplication and the chain rule in classical and in Wick sense.

1. Introduction

Stochastic processes with infinite variance (e.g. the white noise process) appear in many cases as
solutions to stochastic differential equations. The Hida spaces and the Kondratiev spaces (see e.g. [3, 4])
have been introduced as the stochastic analogues of the Schwartz spaces of tempered distributions in
order to provide a strict theoretical meaning for these kind of processes. The spaces of the test processes
contain highly regular processes which are needed as windows through which one can detect the action of
generalized processes.

The Malliavin derivative, the Skorokhod integral and the Ornstein-Uhlenbeck operator are fundamental
for the stochastic calculus of variations. Each of them has a meaning also in quantum theory: they represent
the annihilation, the creation and the number operator respectively. In stochastic analysis, the Malliavin
derivative charachterizes densities of distributions, the Skorokhod integral is an extension of the Itô integral
to non-adapted processes, and the Ornstein-Uhlenbeck operator plays the role of the stochastic Laplacian.

In the classical setting followed by [2, 13, 15], the domain of these operators is a strict subset of the
set of processes with finite second moments (L)2, leading to Sobolev type normed spaces. A more general
characterization of the domain of these operators in Kondratiev generalized function spaces has been
derived in [5, 6, 9, 10]. The range of the operators for generalized processes for ρ = 1 has been studied
in [8]. As a conclusion to this series of papers, in the current paper we provide a setting for the domains
of these operators for ρ ∈ [0, 1] and a similar setting for test processes: first we construct a subset of the
Kondratiev space which will be the domain of the operators, then we prove that the operators are linear,
bounded, non-injective within the corresponding spaces and develop a representation of their range. In
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the second part of the paper we fully develop the calculus including the integration by parts, Leibnitz rule
and chain rule etc. using the interplay of generalized processes with their test processes and different types
of dual pairings.

The Malliavin derivative of generalized stochastic processes has first been considered in [1] using the
S-transform of stochastic exponentials and chaos expansions with n-fold Itô integrals with some vague
notion of the Itô integral of a generalized function. Our approach is different, it relies on chaos expansions
via Hermite polynomials and it provides more precise results: a fine gradation of generalized and test
functions is followed where each level has a Hilbert structure and consequently each level of singularity
has its own domain, range, set of multipliers etc.

The organisation of the paper is the following: After a short preview of the basic setting and notions of
chaos expansions (Subsection 2.1), spaces of generalized stochastic processes and test stochastic processes
(Subsection 2.2-2.3), we turn to the question of their multiplication in Subsection 2.4. In Section 3 we provide
the characterisation of the domains of the basic operators of Malliavin calculus and prove their linearity
and boundedness. In Section 4 we provide explicit solutions to the equations Ru = 1, Du = h, δu = f .
In Section 5 we prove some rules of the Malliavin calculus for generalized and test processes, such as the
duality between the derivative D and the integral operator δ (integration by parts formula), the product
rule for D and R both for ordinary multiplication and Wick multiplication, and eventually we prove the
chain rule. Some accompanying examples, applications and supplementary material to our results are
provided in [11].

2. Preliminaries

Consider the Gaussian white noise probability space (S′(R),B, µ), where S′(R) denotes the space of
tempered distributions,B the Borel σ−algebra generated by the weak topology on S′(R) and µ the Gaussian

white noise measure corresponding to the characteristic function
∫

S′(R)
ei〈ω,φ〉dµ(ω) = e−

1
2 ‖φ‖

2
L2(R) , φ ∈ S(R),

given by the Bochner-Minlos theorem.

Denote by hn(x) = (−1)ne
x2
2 dn

dxn (e−
x2
2 ), n ∈N0,N0 =N∪{0}, the family of Hermite polynomials and ξn(x) =

1
4√π
√

(n−1)!
e−

x2
2 hn−1(

√
2x), n ∈ N, the family of Hermite functions. The family of Hermite functions forms a

complete orthonormal system in L2(R). We follow the characterization of the Schwartz spaces in terms of
the Hermite basis: The space of rapidly decreasing functions as a projective limit space S(R) =

⋂
l∈N0

Sl(R)
and the space of tempered distributions as an inductive limit space S′(R) =

⋃
l∈N0

S−l(R) where

Sl(R) = { f =

∞∑
k=1

ak ξk : ‖ f ‖2l =

∞∑
k=1

a2
k(2k)l < ∞}, l ∈ Z, Z = −N ∪N0.

Note that Sl(R) is a Hilbert space endowed with the scalar product 〈·, ·〉l given by

〈ξk, ξi〉l =

{
0, k , i

‖ξk‖
2
l = (2k)l, k = i. , l ∈ Z.

2.1. The Wiener chaos spaces
Let I = (NN0 )c denote the set of sequences of nonnegative integers which have only finitely many

nonzero components α = (α1, α2, . . . , αm, 0, 0 . . .), αi ∈ N0, i = 1, 2, ...,m, m ∈ N. The kth unit vector
ε(k) = (0, · · · , 0, 1, 0, · · · ), k ∈ N is the sequence of zeros with the only entry 1 as its kth component. The
multi-index 0 = (0, 0, 0, 0, . . .) has all zero entries. The length of a multi-indexα ∈ I is defined as |α| =

∑
∞

k=1 αk.
Operations with multi-indices are carried out componentwise e.g. α + β = (α1 + β1, α2 + β2, . . .),

α! =
∏
∞

k=1 αk! and
(α
β

)
= α!

β!(α−β)! . Note that α > 0 (equivalently |α| > 0) if there is at least one compo-
nent αk > 0. We adopt the convention that α − β exists only if α − β > 0 and otherwise it is not defined.

Let (2N)α =
∏
∞

k=1(2k)αk . Note that
∑
α∈I(2N)−pα < ∞ for p > 1 (see e.g. [4]).
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Lemma 2.1. The following estimates hold:

1◦
(α
β

)
≤ 2|α| ≤ (2N)α, α ∈ I,

2◦ (θ + β)! ≤ θ!β! (2N)θ+β, θ, β ∈ I.

Proof. 1◦ Since
(n

k
)
≤ 2n, for all n ∈N0 and 0 ≤ k ≤ n, it follows that(

α
β

)
=

∏
i∈N

(
αi

βi

)
≤

∏
i∈N

2αi = 2|α| ≤
∏
i∈N

(2i)αi = (2N)α,

for all α ∈ I and 0 ≤ β ≤ α.
2◦ From

(α
β

)
= α!

β! (α−β)! and (i) it follows that α! ≤ β! (α − β)! (2N)α. By substituting θ = α − β, we obtain
(θ + β) ≤ θ! β! (2N)θ+β, for all θ, β ∈ I.

Let (L)2 = L2(S′(R),B, µ) be the Hilbert space of random variables with finite second moments. Then

Hα(ω) =

∞∏
k=1

hαk (〈ω, ξk〉), α ∈ I, (1)

forms the Fourier-Hermite orthogonal basis of (L)2 such that ‖Hα‖
2
(L)2 = α!. In particular, H0 = 1 and for the

kth unit vector Hε(k) (ω) = 〈ω, ξk〉, k ∈ N. The prominent Wiener-Itô chaos expansion theorem states that each
element F ∈ (L)2 has a unique representation of the form

F(ω) =
∑
α∈I

cα Hα(ω), ω ∈ S′(R), cα ∈ R, α ∈ I,

such that ‖F‖2(L)2 =
∑
α∈I

c2
α α! < ∞.

2.2. Kondratiev spaces and Hida spaces

The stochastic analogue of Schwartz spaces as generalized function spaces are the Kondratiev spaces of
generalized random variables. Let ρ ∈ [0, 1].

Definition 2.2. The space of the Kondratiev test random variables (S)ρ consists of elements f =
∑
α∈I cαHα ∈ (L)2,

cα ∈ R, α ∈ I, such that

‖ f ‖2ρ,p =
∑
α∈I

c2
α(α!)1+ρ(2N)pα < ∞, for all p ∈N0.

The space of the Kondratiev generalized random variables (S)−ρ consists of formal expansions of the form
F =

∑
α∈I bαHα, bα ∈ R, α ∈ I, such that

‖F‖2−ρ,−p =
∑
α∈I

b2
α(α!)1−ρ(2N)−pα < ∞, for some p ∈N0.

This provides a sequence of spaces (S)ρ,p = { f ∈ (L)2 : ‖ f ‖ρ,p < ∞}, ρ ∈ [0, 1], such that

(S)1,p ⊆ (S)ρ,p ⊆ (S)0,p ⊆ (L)2
⊆ (S)0,−p ⊆ (S)−ρ,−p ⊆ (S)−1,−p,

(S)ρ,p ⊆ (S)ρ,q ⊆ (L)2
⊆ (S)−ρ,−q ⊆ (S)−ρ,−p,
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for all p ≥ q ≥ 0, the inclusions denote continuous embeddings and (S)0,0 = (L)2. Thus, (S)ρ =
⋂

p∈N0

(S)ρ,p, can

be equipped with the projective topology, while (S)−ρ =
⋃

p∈N0

(S)−ρ,−p as its dual with the inductive topology.

Note that (S)ρ is nuclear and the following Gel’fand triple

(S)ρ ⊆ (L)2
⊆ (S)−ρ

is obtained. Especially, the case ρ = 0 corresponds to the Hida spaces.
We will denote by � ·, · �ρ the dual pairing between (S)−ρ and (S)ρ. Its action is given by

� A,B �ρ=�
∑
α∈I aαHα,

∑
α∈I bαHα �ρ=

∑
α∈I α!aαbα. In case of random variables with finite variance

it reduces to the scalar product� A,B �(L)2= E(AB). Especially, the Hida case will be of importance, thus
note that for any fixed p ∈ Z, (S)0,p, p ∈ Z, is a Hilbert space (we identify the case p = 0 with (L)2) endowed
with the scalar product

� Hα,Hβ �0,p=

{
0, α , β,

α!(2N)pα, α = β,
, for p ∈ Z,

extended by linearity and continuity to

� A,B�0,p=
∑
α∈I

α!aαbα(2N)pα, p ∈ Z.

In the framework of white noise analysis, the problem of pointwise multiplication of generalized
functions is overcome by introducing the Wick product. It is well defined in the Kondratiev spaces of test
and generalized stochastic functions (S)ρ and (S)−ρ; see for example [3, 4].

Definition 2.3. Let F,G ∈ (S)−ρ be given by their chaos expansions F(ω) =
∑
α∈I fαHα(ω) and G(ω) =

∑
β∈I 1βHβ(ω),

for unique fα, 1β ∈ R. The Wick product of F and G is the element denoted by F♦G and defined by

F♦G(ω) =
∑
α∈I

∑
β∈I

fα 1β Hα+β(ω) =
∑
γ∈I

 ∑
α+β=γ

fα1β

 Hγ(ω).

The same definition is provided for the Wick product of test random variables belonging to (S)ρ.
For the Fourier-Hermite polynomials (1), for all α, β ∈ I it holds Hα♦Hβ = Hα+β.
The nth Wick power is defined by F♦n = F♦(n−1)♦F, F♦0 = 1. Note that Hnε(k) = H ♦n

ε(k) for n ∈N0, k ∈N.
Note that the Kondratiev spaces (S)ρ and (S)−ρ are closed under the Wick multiplication [4], while the

space (L)2 is not closed under it. The most important property of the Wick multiplication is its relation to the
Itô-Skorokhod integration [3, 4], since it reproduces the fundamental theorem of calculus. It also represents
a renormalization of the ordinary product and the highest order stochastic approximation of the ordinary
product [14].

In the sequel we will need the notion of Wick-versions of analytic functions.

Definition 2.4. If ϕ : R→ R is a real analytic function at the origin represented by the power series

ϕ(x) =

∞∑
n=0

an xn, x ∈ R,

then its Wick version ϕ♦ : (S)−ρ → (S)−ρ, for ρ ∈ [0, 1], is given by

ϕ♦(F) =

∞∑
n=0

an F♦n, F ∈ (S)−ρ.
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2.3. Generalized stochastic processes

Let X̃ be a Banach space endowed with the norm ‖ · ‖X̃ and let X̃′ denote its dual space. In this section
we describe X̃−valued random variables. Most notably, if X̃ is a space of functions on R, e.g. X̃ = Ck([a, b]),
−∞ < a < b < ∞ or X̃ = L2(R), we obtain the notion of a stochastic process. We will also define processes
where X̃ is not a normed space, but a nuclear space topologized by a family of seminorms, e.g. X̃ = S(R)
(see e.g. [16]).

Definition 2.5. Let f have the formal expansion

f =
∑
α∈I

fα ⊗Hα , where fα ∈ X, α ∈ I. (2)

Let ρ ∈ [0, 1]. Define the following spaces:

X ⊗ (S)ρ,p = { f : ‖ f ‖2X⊗(S)ρ,p
=

∑
α∈I

α!1+ρ
‖ fα‖2X(2N)pα < ∞},

X ⊗ (S)−ρ,−p = { f : ‖ f ‖2X⊗(S)−ρ,−p
=

∑
α∈I

α!1−ρ ‖ fα‖2X(2N)−pα < ∞},

where X denotes an arbitrary Banach space (allowing both possibilities X = X̃, X = X̃′). Especially, for ρ = 0 and
p = 0, X ⊗ (S)0,0 will be denoted by

X ⊗ (L)2 = { f : ‖ f ‖2X⊗(L)2 =
∑
α∈I

α!‖ fα‖2X < ∞}.

We will denote by E(F) = f0 the generalized expectation of the process F.

Definition 2.6. Generalized stochastic processes and test stochastic processes in Kondratiev sense are elements
of the spaces

X ⊗ (S)−ρ =
⋃

p∈N0

X ⊗ (S)−ρ,−p, X ⊗ (S)ρ =
⋂

p∈N0

X ⊗ (S)ρ,p, ρ ∈ [0, 1]

respectively.

Remark 2.7. The symbol ⊗ denotes the projective tensor product of two spaces, i.e. X̃′ ⊗ (S)−ρ is the completion of
the tensor product with respect to the π-topology.

The Kondratiev space (S)ρ is nuclear and thus (X̃ ⊗ (S)ρ)′ � X̃′ ⊗ (S)−ρ. Note that X̃′ ⊗ (S)−ρ is isomorphic to
the space of linear bounded mappings X̃→ (S)−ρ, and it is also isomporphic to the space of linear bounded mappings
(S)ρ → X̃′.

In [19] and [20] a general setting of S′-valued generalized stochastic process is provided: S′(R)-valued
generalized stochastic processes are elements of X ⊗ S′(R) ⊗ (S)−ρ and they are given by chaos expansions
of the form

f =
∑
α∈I

∑
k∈N

aα,k ⊗ ξk ⊗Hα =
∑
α∈I

bα ⊗Hα =
∑
k∈N

ck ⊗ ξk, (3)

where bα =
∑

k∈N aα,k ⊗ ξk ∈ X ⊗ S′(R), ck =
∑
α∈I aα,k ⊗Hα ∈ X ⊗ (S)−ρ and aα,k ∈ X. Thus,

X ⊗ S−l(R) ⊗ (S)−ρ,−p =

 f =
∑
α∈I

∑
k∈N

aα,k ⊗ ξk ⊗Hα : ‖ f ‖2X⊗S−l(R)⊗(S)−ρ,−p
=

∑
α∈I

∑
k∈N

α!1−ρ‖aα,k‖2X (2k)−l(2N)−pα < ∞
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and

X ⊗ S′(R) ⊗ (S)−ρ =
⋃

p,l∈N0

X ⊗ S−l(R) ⊗ (S)−ρ,−p.

The generalized expectation of an S′-valued stochastic process f is given by E( f ) =
∑

k∈N
a(0,0,...),k ⊗ ξk = b0.

In an analogue way, we define S-valued test processes as elements of X ⊗ S(R) ⊗ (S)ρ, which are given
by chaos expansions of the form (3), where bα =

∑
k∈N aα,k ⊗ ξk ∈ X⊗S(R), ck =

∑
α∈I aα,k ⊗Hα ∈ X⊗ (S)ρ and

aα,k ∈ X. Thus,

X ⊗ Sl(R) ⊗ (S)ρ,p =

 f =
∑
α∈I

∑
k∈N

aα,k ⊗ ξk ⊗Hα : ‖ f ‖2X⊗Sl(R)⊗(S)ρ,p
=

∑
α∈I

∑
k∈N

α!1+ρ
‖aα,k‖2X (2k)l(2N)pα < ∞


and

X ⊗ S(R) ⊗ (S)ρ =
⋂

p,l∈N0

X ⊗ Sl(R) ⊗ (S)ρ,p.

The Hida spaces are obtained for ρ = 0. Especially, for p = l = 0, one obtains the space of processes with
finite second moments and square integrable trajectories X⊗L2(R)⊗ (L)2. It is isomporphic to X⊗L2(R×Ω)
and if X is a separable Hilbert space, then it is also isomorphic to L2(R ×Ω; X).

2.4. Multiplication of stochastic processes
We generalize the definition of the Wick product of random variables to the set of generalized stochastic

processes in the way as it is done in [7, 17] and [18]. For this purpose we will assume that X is closed under
multiplication, i.e. that x · y ∈ X, for all x, y ∈ X.

Definition 2.8. Let F,G ∈ X ⊗ (S)±ρ, ρ ∈ [0, 1], be generalized (resp. test) stochastic processes given in chaos
expansions of the form (2). Then the Wick product F♦G is defined by

F♦G =
∑
γ∈I

 ∑
α+β=γ

fα1β

 ⊗Hγ. (4)

Theorem 2.9. Let ρ ∈ [0, 1] and let the stochastic processes F and G be given in their chaos expansion forms
F =

∑
α∈I

fα ⊗ Hα and G =
∑
α∈I
1α ⊗ Hα.

1◦ If F ∈ X ⊗ (S)−ρ,−p1 and G ∈ X ⊗ (S)−ρ,−p2 for some p1, p2 ∈ N0, then F♦G is a well defined element in
X ⊗ (S)−ρ,−q, for q ≥ p1 + p2 + 4.

2◦ If F ∈ X ⊗ (S)ρ, p1 and G ∈ X ⊗ (S)ρ, p2 for p1, p2 ∈ N0, then F♦G is a well defined element in X ⊗ (S)ρ, q, for
q ≤ min{p1, p2} − 4.

Proof. 1◦ By the Cauchy-Schwartz inequality, the following holds

‖F♦G‖2X⊗(S)−ρ,−q
=

∑
γ∈I

‖

∑
α+β=γ

fα1β‖2X (γ!)1−ρ(2N)−qγ
≤

∑
γ∈I

‖

∑
α+β=γ

fα1β‖2X (γ!)1−ρ(2N)−(p1+p2+4)γ

=
∑
γ∈I

‖

∑
α+β=γ

fα1β(α + β)!
1−ρ

2 (2N)−
p1+1

2 γ(2N)−
p2+1

2 γ
‖

2
X(2N)−2γ

≤

∑
γ∈I

‖

∑
α+β=γ

fα1β(α!β!(2N)α+β)
1−ρ

2 (2N)−
p1+1

2 α(2N)−
p2+1

2 β
‖

2
X(2N)−2γ

≤

∑
γ∈I

‖

∑
α+β=γ

fα1βα!
1−ρ

2 β!
1−ρ

2 (2N)−
p1+ρ

2 α(2N)−
p2+ρ

2 β
‖

2
X(2N)−2γ

≤

∑
γ∈I

(2N)−2γ
‖

∑
α+β=γ

fα1βα!
1−ρ

2 β!
1−ρ

2 (2N)−
p1α

2 (2N)−
p2β

2 ‖
2
X
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≤

∑
γ∈I

(2N)−2γ

 ∑
α+β=γ

‖ fα‖2X(α!)1−ρ(2N)−p1α


 ∑
α+β=γ

‖1β‖
2
X(β!)1−ρ(2N)−p2β


≤

∑
γ∈I

(2N)−2γ

∑
α∈I

‖ fα‖2X(α!)1−ρ(2N)−p1α


∑
β∈I

‖1β‖
2
X(β!)1−ρ(2N)−p2β


= M · ‖F‖2X⊗(S)−ρ,−p1

· ‖G‖2X⊗(S)−ρ,−p2
< ∞,

since M =
∑
γ∈I(2N)−2γ < ∞. We also applied Lemma 2.1 part 1◦, inequalities (2N)−

p1+1
2 γ
≤ (2N)−

p1+1
2 α and

(2N)−
p2+1

2 γ
≤ (2N)−

p2+1
2 β since γ ≥ α, γ ≥ β, as well as (2N)−

p1+ρ
2 α
≤ (2N)−

p1α
2 because ρ ∈ [0, 1].

2◦ Let now F ∈ X ⊗ (S)ρ,p1 and G ∈ X ⊗ (S)ρ,p2 for all p1, p2 ∈ N0. Then the chaos expansion form of F♦G
is given by (4) and

‖F♦G‖2X⊗(S)ρ,q
=

∑
γ∈I

γ!1+ρ
‖

∑
α+β=γ

fα1β‖2X(2N)qγ =
∑
γ∈I

(2N)−2γ
‖

∑
α+β=γ

γ!
1+ρ

2 fα1β(2N)
q+2

2 γ
‖

2
X

≤

∑
γ∈I

(2N)−2γ
‖

∑
α+β=γ

α!
1+ρ

2 β!
1+ρ

2 (2N)
1+ρ

2 (α+β) fα1β(2N)
q+2

2 (α+β)
‖

2
X

≤ M

 ∑
α+β=γ

α!1+ρ
‖ fα‖2X(2N)p1α


 ∑
α+β=γ

β!1+ρ
‖1β‖

2
X(2N)p2β


≤ M

∑
α∈I

α!1+ρ
‖ fα‖2X(2N)(q+4))α


∑
β∈I

β!1+ρ
‖1β‖

2
X(2N)(q+4)β


= M · ‖F‖2X⊗(S)ρ,p1

· ‖G‖2X⊗(S)ρ,p2
< ∞,

if q ≤ p1 − 4 and q ≤ p2 − 4. We used the Cauchy-Schwartz inequality along with the estimate (α + β)! ≤
α! β! (2N)α+β, from Lemma 2.1.

Remark 2.10. A test stochastic process u ∈ X ⊗ (S)ρ,p, p ≥ 0 can be considered as a generalized stochastic process
from X ⊗ (S)−ρ,−q, q ≥ 0 since ‖u‖2X⊗(S)−ρ,−q

≤ ‖u‖2X⊗(S)ρ,p
. Therefore, if F ∈ X ⊗ (S)ρ,p1 and G ∈ X ⊗ (S)−ρ,−p2 for some

p1, p2 ∈ N0, then F♦G is a well defined element in X ⊗ (S)−ρ,−q, for q ≥ p2 + 4. This follows from Theorem 2.9 part
1◦ by letting p1 = 0.

Applying the well-known formula for the Fourier-Hermite polynomials (see [4])

Hα ·Hβ =
∑

γ≤min{α,β}

γ!
(
α
γ

) (
β
γ

)
Hα+β−2γ (5)

one can define the ordinary product F · G of two stochastic processes F and G. Thus, by applying formally
(5) we obtain

F · G =
∑
α∈I

∑
β∈I

fα 1β ⊗ Hα ·Hβ =
∑
α∈I

∑
β∈I

fα 1β ⊗
∑

0≤γ≤min{α,β}

γ!
(
α
γ

)(
β
γ

)
Hα+β−2γ

= F♦G +
∑
α∈I

∑
β∈I

fα 1β ⊗
∑

0<γ≤min{α,β}

γ!
(
α
γ

)(
β
γ

)
Hα+β−2γ.

After a change of variables δ = α − γ, θ = β − γ, we obtain Hα ·Hβ =
∑
γ,δ,θ

γ+θ=β,γ+δ=α

α!β!
γ!δ!θ!

Hδ+θ.
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Hα ·Hβ =
∑

0≤τ<δ+β
γ+τ=δ+β,γ+δ=α

α!β!
γ!δ!(τ − δ)!

Hτ =
∑

0≤τ<δ+β
α+τ=β+2δ

α!β!
γ!δ!(τ − δ)!

Hτ, α, β ∈ I

After another change of variables τ = δ + θ we finally obtain the chaos expansion of Hα ·Hβ in (L)2 :

Hα ·Hβ =
∑
τ∈I

∑
γ∈I,δ≤τ

γ+τ−δ=β,γ+δ=α

α!β!
γ!δ!(τ − δ)!

Hτ = Hα+β +
∑
τ∈I

∑
γ>0,δ≤τ

γ+τ−δ=β,γ+δ=α

α!β!
γ!δ!(τ − δ)!

Hτ.

Similarly, we can rearrange the sums for F · G to obtain

F · G = F♦G +
∑
τ∈I

∑
α∈I

∑
β∈I

fα1β
∑
γ>0,δ≤τ

γ+τ−δ=β,γ+δ=α

α!β!
γ!δ!(τ − δ)!

Hτ =
∑
τ∈I

∑
α∈I

∑
β∈I

fα1β aα,β,τ Hτ, (6)

where

aα,β,τ =
∑
γ∈I,δ≤τ,

γ+τ−δ=β,γ+δ=α

α!β!
γ!δ!(τ − δ)!

(7)

Note the following facts: for each α, β, τ ∈ I fixed there exists a unique pair of multi-indices γ, δ ∈ I
such that δ ≤ τ and γ+ τ− δ = β, γ+ δ = α. Moreover, both α+ β and |α− β| are odd (resp. even) if and only
if τ is odd (resp. even). Also, α + β ≥ τ ≥ |α − β|. Thus,

aα,β,τ =
α!β!

(α+β−τ
2 )!(α−β+τ2 )!( β−α+τ

2 )!
.

For example, if τ = (2, 0, 0, 0, . . .), then the coefficient next to Hτ in (6) is f(0,0,0,...)1(2,0,0,...) + f(1,0,0,...)1(1,0,0,...) +
f(2,0,0,...)1(0,0,0,...) + 3 f(1,0,0,...)1(3,0,0,...) + 4 f(2,0,0,...)1(2,0,0,...) + 3 f(3,0,0,...)1(1,0,0,...) + 18 f(3,0,0,...)1(3,0,0,...) + · · · .

Lemma 2.11. Let α, β, τ ∈ I and aα,β,τ be defined as in (7). Then

aα,β,τ ≤ (2N)α+β.

Proof. From the estimate α! =
(2α)!
2|α| ≥

(2α)!
(2N)α , which follows from Lemma 2.1 part 1◦, we obtain

aα,β,τ =
α!β!

(α+β−τ
2 )!(α−β+τ2 )!( β−α+τ

2 )!
≤

α!β!
(α + β − τ)!(α − β + τ)!(β − α + τ)!(2N)−(α+β−τ)

.

Without loss of generality we may assume that α ≤ β. The case β ≤ α can be considered similarly.
First case, if α ≤ β ≤ τ. Then, β ≤ τ implies that α!

(α−β+τ)! ≤ 1, while α ≤ τ implies that β!
(β−α+τ)! ≤ 1. Thus

aα,β,τ ≤
(2N)α+β−τ

(α + β − τ)!
≤ (2N)α+β.

Second case, if α ≤ τ ≤ β. Then, α ≤ τ implies again β!
(β−α+τ)! ≤ 1, while τ ≤ β now implies that α!

(α+β−τ)! ≤ 1.
Thus,

aα,β,τ ≤
(2N)α+β−τ

(α − β + τ)!
≤ (2N)α+β.
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Third case, if τ ≤ α ≤ β. Then β − α + τ ≤ β and α − β + τ ≤ τ. Thus, we obtain

aα,β,τ ≤
∏
i∈N

αi! βi!
(αi + βi − τi)! (αi − βi + τi)! (βi − αi + τi)! (2i)−(αi+βi−τi)

=
∏
i∈N

(αi − βi + τi)! · (αi − βi + τi + 1) . . . (αi − 1) · αi (βi − αi + τi)! · (βi − αi + τi + 1) . . . (βi − 1) · βi

(αi − βi + τi)! (βi − αi + τi)! (αi + βi − τi)! (2i)−(αi+βi−τi)

≤ 1 · (2N)α+β−τ
≤ (2N)α+β

Theorem 2.12. The following holds:

1◦ If F ∈ X ⊗ (S)ρ,r1 and G ∈ X ⊗ (S)ρ,r2 , for some r1, r2 ∈ N0, then the ordinary product F · G is a well defined
element in X ⊗ (S)ρ,q for q ≤ min{r1, r2} − 8.

2◦ If F ∈ X ⊗ (S)ρ,r1 and G ∈ X ⊗ (S)−ρ,−r2 , for r1 − r2 > 8, then their ordinary product F · G is well defined and
belongs to X ⊗ (S)−ρ,−q for r2 ≤ q ≤ r1 − 8.

Proof. 1◦ Let q = p − 8, where p ≤ min{p1, p2} − 8. By Lemma 2.11, Lemma 2.1 and the Cauchy-Schwartz
inequality we have

‖F · G‖2X⊗(S)ρ,q
=

∑
τ∈I

τ!1+ρ
‖

∑
α,β∈I

fα1βaα,β,τ‖2X(2N)qτ

≤

∑
τ∈I

τ!1+ρ
‖

∑
α,β∈I
τ≤α+β

fα1β(2N)α+β
‖

2
X(2N)(p−8)τ

=
∑
τ∈I

(2N)−2τ
‖

∑
α,β∈I
τ≤α+β

fα1β τ!
1+ρ

2 (2N)α+β (2N)
p−6

2 τ
‖

2
X

≤

∑
τ∈I

(2N)−2τ
‖

∑
α,β∈I
τ≤α+β

fα1β α!
1+ρ

2 β!
1+ρ

2 (2N)
1+ρ

2 (2N)α+β (2N)
p−6

2 (α+β)
‖

2
X

≤

∑
τ∈I

(2N)−2τ
‖

∑
α,β∈I

α!
1+ρ

2 fα(2N)
pα
2 (2N)−ββ!

1+ρ
2 1β (2N)

pβ
2 (2N)−α‖2X

=
∑
τ∈I

(2N)−2τ
( ∑
α,β∈I

α!1+ρ
‖ fα‖2X(2N)pα (2N)−2β

∑
α,β∈I

β!1+ρ
‖1β‖

2
X (2N)pβ (2N)−2α

)
≤

∑
τ∈I

(2N)−2τ
(∑
β∈I

(2N)−2β
∑
α∈I

α!1+ρ
‖ fα‖2X(2N)pα

)(∑
α∈I

(2N)−2α
∑
β∈I

β!1+ρ
‖1β‖

2
X (2N)pβ

)
≤M C1C2

∑
α∈I

α!2‖ fα‖2X(2N)pα
∑
β∈I

α!2‖1β‖2X(2N)pβ

= M C1C2‖F‖2X⊗(S)ρ,p
‖G‖2X⊗(S)ρ,p

< ∞,

where M =
∑
τ∈I(2N)−2τ < ∞, C1 =

∑
β∈I(2N)−2β < ∞ and C2 =

∑
α∈I(2N)−2α < ∞.

2◦ Letϕ ∈ (S)ρ,q and F ∈ X⊗(S)ρ,r1 . Then by Theorem 2.12 part 1◦, F ·ϕ ∈ (S)ρ,s for s ≤ min{r1, q}−8 = r1−8.
Also, G ∈ (S)−ρ,r2 implies that G ∈ (S)−ρ,−c for c ≥ r2. Thus for any c such that r2 ≤ c ≤ s ≤ r1 − 8 we have
F · ϕ ∈ (S)ρ,c and G ∈ (S)−ρ,−c. Now,

‖F · G‖2−ρ,−q = sup
‖ϕ‖q≤1

| � F · G, ϕ�ρ | = sup
‖ϕ‖q≤1

| � G, F · ϕ�ρ |

≤ sup
‖ϕ‖q≤1

‖G‖−ρ,−c · ‖F · ϕ‖ρ,c ≤ sup
‖ϕ‖q≤1

‖G‖−ρ,−c · ‖F‖ρ,r1 · ‖ϕ‖ρ,q.
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This implies

‖F · G‖2−ρ,−q ≤M · ‖G‖−ρ,−r2 · ‖F‖ρ,r1 ,

for some M > 0.

Remark 2.13. Note, for F,G ∈ X ⊗ (L)2 the ordinary product F · G will not necessarily belong to X ⊗ (L)2 (for a
counterexample see [11]), but due to the Hölder inequality it will belong to X ⊗ (L)1.

3. Operators of the Malliavin Calculus

In the classical literature [2, 12, 13, 15] the Malliavin derivative and the Skorokhod integral are defined
on a subspace of (L)2 so that the resulting process after application of these operators necessarily remains
in (L)2. We will recall of these classical results and denote the corresponding domains with a ”zero” in
order to retain a nice symmetry between test and generalized processes. In [6, 7, 9, 10] we allowed values
in the Kondratiev space (S)−1 and thus obtained larger domains for all operators. These domains will be
denoted by a ”minus” sign to reflect the fact that they correspond to generalized processes. In this paper
we introduce also domains for test processes. These domains will be denoted by a ”plus” sign.

Definition 3.1. Let a generalized stochastic process u ∈ X ⊗ (S)−ρ be of the form u =
∑
α∈I uα ⊗Hα. If there exists

p ∈N0 such that∑
α∈I

|α|1+ρ α!1−ρ ‖uα‖2X(2N)−pα < ∞, (8)

then the Malliavin derivative of u is defined by

Du =
∑
α∈I

∑
k∈N

αk uα ⊗ ξk ⊗Hα−ε(k) =
∑
α∈I

∑
k∈N

(αk + 1) uα+ε(k) ⊗ ξk ⊗Hα, (9)

where by convention α − ε(k) does not exist if αk = 0, i.e. Hα−ε(k) =

{
0, αk = 0

H(α1,α2,...,αk−1,αk−1,αk+1,...,αm,0,0,...), αk ≥ 1 , for

α = (α1, α2, ..., αk−1, αk, αk+1, ..., αm, 0, 0, ...) ∈ I.

For two processes u =
∑
α∈I uα ⊗ Hα, v =

∑
α∈I vα ⊗ Hα and constants a, b the linearity property holds,

i.e. D(au + bv) = aD(u) + bD(v). The set of generalized stochastic processes u ∈ X ⊗ (S)−ρ which satisfy (8)
constitutes the domain of the Malliavin derivative, denoted by Domρ

−
(D). Thus the domain of the Malliavin

derivative is given by

Domρ
−

(D) =
⋃

p∈N0

Domρ
−p(D) =

⋃
p∈N0

u ∈ X ⊗ (S)−ρ :
∑
α∈I

|α|1+ρ α!1−ρ ‖uα‖2X(2N)−pα < ∞

 .
A process u ∈ Domρ

−
(D) is called a Malliavin differentiable process.

Theorem 3.2. The Malliavin derivative of a process u ∈ X ⊗ (S)−ρ is a linear and continuous mapping

D : Domρ
−p(D)→ X ⊗ S−l(R) ⊗ (S)−ρ,−p,

for l > p + 1 and p ∈N0.
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Proof. Let u =
∑
α∈I

uα ⊗Hα ∈ Domρ
−

(D). Then,

‖Du‖2X⊗S−l(R)⊗(S)−ρ,−p
=

∑
α∈I

(∑
k∈N

(αk + 1)2
‖uα+ε(k)‖

2
X (2k)−l

)
α!1−ρ(2N)−pα

=
∑
|β|≥1

(∑
k∈N

β2
k ‖uβ‖

2
X (2k)−l

(
β!
βk

)1−ρ

(2k)p
)

(2N)−pβ

=
∑
|β|≥1

(∑
k∈N

β
1+ρ
k (2k)−(l−p)

)
‖uβ‖2X (β!)1−ρ (2N)−pβ

≤

∑
β∈I

( ∞∑
k=1

βk

)1+ρ ( ∞∑
k=1

(2k)−(l−p)
)
‖uβ‖2X (β!)1−ρ(2N)−pβ

= c
∑
β∈I

|β|1+ρ(β!)1−ρ
‖uβ‖2X (2N)−pβ = c‖u‖2

Domρ
−p(D)

< ∞,

where c =
∑

k∈N(2k)−(l−p) < ∞ for l − p > 1 and where we used (α − ε(k))! = α!
αk

, αk > 0 and the estimate∑
k∈N α

1+ρ
k ≤ (

∑
k∈N αk)1+ρ = |α|1+ρ.

For all α ∈ I we have |α| < α!. Thus, the smallest domain of the spaces Domρ
−

(D) is obtained for ρ = 0
and the largest is obtained for ρ = 1. In particular we have Dom0

−
(D) ⊂ Dom1

−
(D). Moreover if p ≤ q then

Domρ
−p(D) ⊆ Domρ

−q(D).
For square integrable stochastic process u ∈ X ⊗ (L)2 the domain is given by

Dom0(D) =

u ∈ X ⊗ (L)2 :
∑
α∈I

|α|α! ‖uα‖2X < ∞

 .
Theorem 3.3. The Malliavin derivative of a process u ∈ Dom0(D) is a linear and continuous mapping

D : Dom0(D) → X ⊗ L2(R) ⊗ (L)2.

Proof. Let u ∈ Dom0(D) , i.e.
∑
α∈I
|α|α!‖uα‖2X < ∞. Then,

‖Du‖2X⊗L2(R)⊗(L)2 =
∑
α∈I

∑
k∈N

α2
k (α − ε(k))! ‖uα‖2X =

∑
α∈I

∑
k∈N

αk α! ‖uα‖2X =
∑
α∈I

|α|α! ‖uα‖2X < ∞.

In general, for ρ ∈ [0, 1] the domain ofD in X ⊗ (S)ρ is

Domρ
+ =

⋂
p∈N0

Domρ
p(D) =

⋂
p∈N0

u ∈ X ⊗ (S)ρ :
∑
α∈I

|α|1−ρ (α!)1+ρ
‖uα‖2X(2N)pα < ∞

 .
Theorem 3.4. Let ρ ∈ [0, 1]. The Malliavin derivative of a test stochastic process v ∈ X ⊗ (S)ρ is a linear and
continuous mapping

D : Domρ
p(D)→ X ⊗ Sl(R) ⊗ (S)ρ, p,

for l < p − 1 and p ∈N0.
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Proof. Let v =
∑
α∈I

vα ⊗Hα ∈ Domρ
p(D). Then, from (9) and

‖Dv‖2X⊗Sl(R)⊗(S)ρ,p
=

∑
α∈I

‖

∑
k∈N

(αk + 1) vα+ε(k)ξk‖
2
X⊗Sl(R) α!1+ρ(2N)pα

=
∑
α∈I

(∑
k∈N

(αk + 1)2
‖vα+ε(k)‖

2
X (2k)l

)
α!1+ρ(2N)pα

=
∑
|β|≥1

(∑
k∈N

β2
k ‖vβ‖

2
X (2k)l

(
β!
βk

)1+ρ

(2k)−p
)

(2N)pβ

=
∑
|β|≥1

(∑
k∈N

β
1−ρ
k (2k)−(p−l)

)
‖vβ‖2X β!1+ρ (2N)pβ

≤ c1−ρ
∑
β∈I

|β|1−ρ(β!)1+ρ
‖vβ‖2X (2N)pβ < ∞,

the assertion follows, where we used∑
k∈N

β
1−ρ
k (2k)l−p

≤

(∑
k∈N

βk

)1−ρ(∑
k∈N

(2k)
l−p
1−ρ

)1−ρ
≤ |β|1−ρ · c1−ρ,

and c =
∑

k∈N (2k)
l−p
1−ρ ≤

∑
k∈N (2k)l−p < ∞, for p > l+1. We also used βk (β−ε(k))! = β!, β ∈ I and (2N)ε

(k)
= (2k),

k ∈N.

Note that Domρ
p(D) ⊆ Dom0(D) ⊆ Domρ

−p(D) for all p ∈N. Therefore, Domρ
+(D) ⊆ Dom0(D) ⊆ Domρ

−
(D).

Moreover, using the estimate |α| ≤ (2N)α it follows that

X ⊗ (S)−ρ,−(p−2) ⊆ Domρ
−p(D) ⊆ X ⊗ (S)−ρ,−p, p > 3, and

X ⊗ (S)ρ,p+1 ⊆ Domρ
p(D) ⊆ X ⊗ (S)ρ,p, p > 0.

Remark 3.5. For u ∈ Domρ
+(D) and u ∈ Dom0(D) it is usual to write

Dtu =
∑
α∈I

∑
k∈N

αk uα ⊗ ξk(t) ⊗Hα−ε(k) ,

in order to emphasise that the Malliavin derivative takes a random variable into a process, i.e. thatDu is a function
of t. Moreover, the formula

DtF(ω) = lim
h→0

1
h

(
F(ω + h · κ[t,∞)) − F(ω)

)
, ω ∈ S′(R),

justifies the name stochastic derivative for the Malliavin operator. Since generalized functions do not have point
values, this notation would be somewhat misleading for u ∈ Domρ

−
(D). Therefore, for notational uniformity, we omit

the index t inDt that usually appears in the literature and writeD.

The Skorokhod integral, as an extension of the Itô integral for non-adapted processes, can be regarded
as the adjoint operator of the Malliavin derivative in (L)2-sense. In [6] we have extended the definition of
the Skorokhod integral from Hilbert space valued processes to the class of S′-valued generalized processes.

Definition 3.6. Let F =
∑
α∈I fα ⊗Hα ∈ X⊗ S′(R)⊗ (S)−ρ, be a generalized S′(R)-valued stochastic process and let

fα ∈ X ⊗ S′(R) be given by the expansion fα =
∑

k∈N fα,k ⊗ ξk, fα,k ∈ X. If there exist p ≥ 0, l ≥ 0 such that∑
α∈I

∑
k∈N

(
α! (αk + 1)

)1−ρ
‖ fα,k‖2X (2k)−l (2N)−pα < ∞,
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then the Skorokhod integral of F is given by

δ(F) =
∑
α∈I

∑
k∈N

fα,k ⊗Hα+ε(k) =
∑
α>0

∑
k∈N

fα−ε(k),k ⊗Hα. (10)

A linear combination of two Skorokhod integrable processes F,G is again Skorokhod integrable process
aF + bG, a, b ∈ R such that δ(aF + bG) = aδ(F) + bδ(G).

In general, the domain Domρ
−

(δ) of the Skorokhod integral is

Domρ
−

(δ) =
⋃

(l,p)∈N2

p>l+1

Domρ
(−l,−p)(δ) =

⋃
(l,p)∈N2

p>l+1

F ∈ X ⊗ S′(R) ⊗ (S)−ρ :
∑
α∈I

∑
k∈N

(
α! (αk + 1)

)1−ρ
‖ fα,k‖2X (2k)−l (2N)−pα < ∞

 .
Theorem 3.7. Letρ ∈ [0, 1]. The Skorokhod integral δ of a S−l(R)-valued stochastic process is a linear and continuous
mapping

δ : Domρ
(−l,−p)(δ)→ X ⊗ (S)−ρ,−p, p > l + 1.

Proof. This statement follows from

‖δ(F)‖2X⊗(S)−ρ,−p
=

∑
|α|≥1

α!1−ρ‖
∑
k∈N

fα−ε(k),k‖
2
X (2N)−pα =

∑
|α|≥1

‖

∑
k∈N

α!
1−ρ

2 fα−ε(k),k‖
2
X (2N)−pα

=
∑
β∈I

‖

∑
k∈N

(β + ε(k))!
1−ρ

2 fβ,k (2k)−
p
2 ‖

2
X (2N)−pβ

=
∑
β∈I

‖

∑
k∈N

(β + ε(k))!
1−ρ

2 fβ,k (2k)−
l
2 (2k)−

p−l
2 ‖

2
X (2N)−pβ

≤

∑
β∈I

(∑
k∈N

(β + ε(k))!1−ρ‖ fβ,k‖2X (2k)−l
∑
k∈N

(2k)−(p−l)
)

(2N)−pβ

≤ c
∑
β∈I

∑
k∈N

(β! (βk + 1))1−ρ
‖ fβ,k‖2X (2k)−l (2N)−pβ = c ‖F‖2

Domρ
(−l,−p)(δ)

< ∞,

where c =
∑

k∈N
(2k)−(p−l) < ∞ for p > l + 1.

Note that for ρ = 1 it holds that Dom1
−

(δ) = X ⊗ S′(R) ⊗ (S)−1.
Now we characterize the domains Domρ

+(δ) and Dom0(δ) of the Skorokhod integral for test processes
from X ⊗ S(R)⊗ (S)ρ and square integrable processes from X ⊗ L2(R)⊗ (L)2. The form of the derivative is in
all cases given by the expression (10).

For square integrable stochastic processes T ∈ X ⊗ L2(R)⊗ (L)2 of the form T =
∑
α∈I

∑
k∈N tα,k ⊗ ξk ⊗Hα,

tα,k ∈ X, we define

Dom0(δ) =

T ∈ X ⊗ L2(R) ⊗ (L)2 :
∑
α∈I

(∑
k∈N

(αk + 1)
1
2α!

1
2 ‖tα,k‖X

)2
< ∞

 .
Theorem 3.8. The Skorokhod integral δ of an L2(R)-valued stochastic process is a linear and continuous mapping

δ : Dom0(δ) → X ⊗ (L)2.
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Proof. Let T =
∑
α∈I

∑
k∈N

tα,k ⊗ ξk ⊗Hα ∈ Dom0(δ). Then,

‖δ(T)‖2X⊗(L)2 =
∑
|α|≥1

‖

∑
k∈N

tα−ε(k),k‖
2
X α! =

∑
|α|≥1

‖

∑
k∈N

α!
1
2 tα−ε(k),k‖

2
X

=
∑
β∈I

‖

∑
k∈N

(β + ε(k))!
1
2 tβ,k‖2X ≤

∑
β∈I

(∑
k∈N

(β + ε(k))!
1
2 ‖tβ,k‖X

)2

=
∑
β∈I

(∑
k∈N

β!
1
2 (βk + 1)

1
2 ‖tβ,k‖X

)2
= ‖T‖2Dom0(δ) < ∞.

In general, for any ρ ∈ [0, 1], the domain Domρ
+(δ) of the Skorokhod integral in X ⊗ S(R) ⊗ (S)ρ is

Domρ
+(δ) =

⋂
(l,p)∈N2

l>p+1

Domρ
(l,p)(δ) =

⋂
(l,p)∈N2

l>p+1

F ∈ X ⊗ Sl(R) ⊗ (S)ρ,p :
∑
α∈I

∑
k∈N

(αk + 1)1+ρα!1+ρ
‖ fα,k‖2X(2k)l(2N)pα < ∞

 .
Theorem 3.9. The Skorokhod integral δ of an Sl(R)-valued stochastic test process is a linear and continuous mapping

δ : Domρ
(l,p)(δ)→ X ⊗ (S)ρ,p, l > p + 1.

Proof. Let U =
∑
α∈I uα ⊗ Hα ∈ Domρ

(l,p)(δ), uα =
∑
∞

k=1 uα,k ⊗ ξk ∈ X ⊗ Sl(R), uα,k ∈ X, for l > p + 1. Then we
obtain

‖δ(U)‖2X⊗(S)ρ,p
=

∑
β∈I

‖

∑
k∈N

(β + ε(k))!
1+ρ

2 uβ,k (2k)
p
2 ‖

2
X (2N)pβ

≤

∑
β∈I

(∑
k∈N

(β!(βk + 1))1+ρ
‖uβ,k‖2X (2k)l

∑
k∈N

(2k)−(l−p)
)

(2N)pβ
≤ c ‖U‖2

Domρ
(l,p)(δ)

< ∞,

where c =
∑

k∈N(2k)−(l−p) < ∞ for l > p + 1.

Using the estimates αk + 1 ≤ 2|α|, which holds for all α ∈ I except for α = 0, and |α| ≤ (2N)α, α ∈ I we
obtain∑

α∈I

∑
k∈N

α!1+ρ
‖ fα,k‖2X(2k)l(2N)pα

≤

∑
α∈I

∑
k∈N

(αk + 1)1+ρα!1+ρ
‖ fα,k‖2X(2k)l(2N)pα

≤

∑
k∈N

‖ f0,k‖2X(2k)l + 4
∑
α>0

∑
k∈N

|α|2α!1+ρ
‖ fα,k‖2X(2k)l(2N)pα

≤ ‖ f0‖2X⊗Sl(R) + 4
∑
α>0

∑
k∈N

α!1+ρ
‖ fα,k‖2X(2k)l(2N)(p+2)α

≤ 4‖F‖2X⊗Sl(R)⊗(S)ρ,p+2
.

Thus,

X ⊗ Sl(R) ⊗ (S)ρ,p+2 ⊆ Domρ
(l,p)(δ) ⊆ X ⊗ Sl(R) ⊗ (S)ρ,p, for l > p + 1 and

X ⊗ S−l(R) ⊗ (S)−ρ,−(p−1) ⊆ Domρ
(−l,−p)(δ) ⊆ X ⊗ S−l(R) ⊗ (S)−ρ,−p, for p > l + 1.

The third main operator of the Malliavin calculus is the Ornstein-Uhlenbeck operator.

Definition 3.10. The composition of the Malliavin derivative and the Skorokhod integral is denoted by R = δ ◦D
and called the Ornstein-Uhlenbeck operator.
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Therefore, for u ∈ X ⊗ (S)−ρ given in the chaos expansion form u =
∑
α∈I

uα ⊗Hα, the Ornstein-Uhlenbeck

operator is given by

R(u) =
∑
α∈I

|α|uα ⊗Hα. (11)

The Orstein-Uhlenbeck operator is linear, i.e. by (11) R(au + bv) = aR(u) + bR(v), a, b ∈ R holds.
Let

Domρ
−

(R) =
⋃

p∈N0

Domρ
−p(R) =

⋃
p∈N0

u ∈ X ⊗ (S)−ρ :
∑
α∈I

|α|2 ‖uα‖2X (α!)1−ρ(2N)−pα < ∞

 .
Theorem 3.11. The operator R is a linear and continuous mapping

R : Domρ
−p(R)→ X ⊗ (S)−ρ,−p, p ∈N0.

Moreover, Domρ
−

(R) ⊆ Domρ
−

(D).

Proof. Let v =
∑
α∈I vα ⊗Hα ∈ Domρ

−p(R), for some p ∈N0. Then, from (11) it follows that

‖Rv‖2X⊗(S)−ρ,−p
=

∑
α∈I

|α|2 ‖vα‖2X (α!)1−ρ (2N)−pα < ∞.

For v ∈ Domρ
−

(D) we obtain∑
α∈I

|α|1+ρ
‖vα‖2X (α!)1−ρ (2N)−pα

≤

∑
α∈I

|α|2 ‖vα‖2X (α!)1−ρ (2N)−pα,

and the last assertion follows. Note that for ρ = 1, Dom1
−p(R) = Dom1

−p(D).

For square integrable processes we define

Dom0(R) =

w ∈ X ⊗ (L)2 :
∑
α∈I

α! |α|2 ‖wα‖
2
X < ∞

 .
Theorem 3.12. The operator R is a linear and continuous operator

R : Dom0(R) → X ⊗ (L)2.

Moreover, Dom0(R) ⊆ Dom0(D).

Proof. Let w =
∑
α∈I

wα ⊗Hα ∈ Dom0(R). Then R(w) =
∑
α∈I
|α|wα ⊗Hα and

‖R(w)‖2X⊗(L)2 =
∑
α∈I

|α|2 ‖wα‖
2
X = ‖w‖2Dom0(R) < ∞.

Now from |α| ≤ |α|2 for α ∈ I it follows that Dom0(R) ⊆ Dom0(D).

For test processes, we define

Domρ
+(R) =

⋂
p∈N0

Domρ
p(R) =

⋂
p∈N0

v ∈ X ⊗ (S)ρ,p :
∑
α∈I

(α!)1+ρ
|α|2 ‖vα‖2X (2N)pα < ∞

 .
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Theorem 3.13. The operator R is a linear and continuous mapping

R : Domρ
p(R)→ X ⊗ (S)ρ, p, p ∈N.

Moreover, Domρ
p(R) ⊆ Domρ

p(D).

Proof. Let v =
∑
α∈I

vα ⊗Hα ∈ Domρ
p(R). Then,

‖Rv‖2X⊗(S)ρ, p
=

∑
α∈I

‖vα‖2X |α|
1+ρ α!2 (2N)pα = ‖v‖2

Domρ
p (R)

< ∞.

From∑
α∈I

|α|1−ρ α!1+ρ
‖vα‖2X (2N)pα

≤

∑
α∈I

|α|2 α!1+ρ
‖vα‖2X (2N)pα

follows that Domρ
p(R) ⊆ Domρ

p(D).

Note also that

X ⊗ (S)ρ,p+2 ⊆ Domρ
p(R) ⊆ X ⊗ (S)ρ,p, p ∈N, and

X ⊗ (S)−ρ,−(p−2) ⊆ Domρ
−p(R) ⊆ X ⊗ (S)−ρ,−p.

In [8] we have proven that the mappings δ : Domρ
−

(δ)→ X ⊗ (S)−ρ, R : Domρ
−

(R)→ X ⊗ (S)−ρ, for ρ = 1,
are surjective on the subspace of centered random variables (random variables with zero expectation). In
the next section we prove the same type of surjectivity of the mappings for ρ ∈ [0, 1) as well, i.e. that the
mappings δ : Domρ

+(δ)→ X ⊗ (S)ρ, R : Domρ
+(R)→ X ⊗ (S)ρ, δ : Dom0(δ)→ X ⊗ (L)2, R : Dom0(R)→ X ⊗ (L)2

have the corresponding range of centered generalized random variables. The mappings D : Domρ
−

(D) →
X ⊗ S′(R) ⊗ (S)−ρ, D : Domρ

+(D) → X ⊗ S(R) ⊗ (S)ρ, D : Dom0(D) → X ⊗ L2(R) ⊗ (L)2 are surjective on
the subspace of generalized stochastic processes satisfying a certain symmetry condition which will be
discussed in detail.

4. Range of the Malliavin Operators

Theorem 4.1. (The Ornstein-Uhlenbeck operator) Let 1 have zero generalized expectation. The equation

Ru = 1, Eu = ũ0 ∈ X,

has a unique solution u represented in the form

u = ũ0 +
∑

α∈I,|α|>0

1α

|α|
⊗ Hα.

Moreover, the following holds:

1◦ If 1 ∈ X ⊗ (S)−ρ,−p, p ∈N, then u ∈ Domρ
−p(R).

2◦ If 1 ∈ X ⊗ (S)ρ,p, p ∈N, then u ∈ Domρ
p(R).

3◦ If 1 ∈ X ⊗ (L)2, then u ∈ Dom0(R).
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Proof. Let us seek for a solution in form of u =
∑
α∈I

uα ⊗Hα. From Ru = 1 it follows that∑
α∈I

|α|uα ⊗Hα =
∑
α∈I

1α ⊗Hα,

i.e., uα =
1α

|α| for all α ∈ I, |α| > 0. From the initial condition we obtain u(0,0,0,0,...) = Eu = ũ0.

1◦ Let 1 ∈ X ⊗ (S)−ρ,−p. Then u ∈ Domρ
−p(R) since

‖u‖2
Domρ

−p(R)
= ‖u0‖

2
X +

∑
|α|>0

|α|2 (α!)1−ρ
‖uα‖2X(2N)−pα = ‖u0‖

2
X +

∑
|α|>0

|α|2 (α!)1−ρ ‖1α‖
2
X

|α|2
(2N)−pα

= ‖u0‖
2
X +

∑
|α|>0

(α!)1−ρ
‖1α‖

2
X (2N)−pα = ‖u0‖

2
X + ‖1‖2X⊗(S)−ρ,−p

< ∞.

2◦ Assume that 1 ∈ X ⊗ (S)ρ,p. Then u ∈ Domρ
p(R) since

‖u‖2
Domρ

p (R)
= ‖u0‖

2
X +

∑
|α|>0

|α|2 (α!)1+ρ
‖uα‖2X(2N)pα = ‖u0‖

2
X +

∑
|α|>0

(α!)1+ρ
‖1α‖

2
X(2N)pα

= ‖u0‖
2
X + ‖1‖2X⊗(S)ρ,p

< ∞.

3◦ If 1 is square integrable, then u ∈ Dom0(R) since

‖u‖2Dom0(R) = ‖u0‖
2
X +

∑
|α|>0

|α|2 α! ‖uα‖2X = ‖u0‖
2
X +

∑
|α|>0

α! ‖1α‖2X = ‖1‖2X⊗(L)2 < ∞.

Corollary 4.2. Let ρ ∈ [0, 1]. Each process 1 ∈ X ⊗ (S)±ρ, resp. 1 ∈ X ⊗ (L)2 can be represented as 1 = E1 + R(u),
for some u ∈ Domρ

±
(R), resp. u ∈ Dom0(R).

In [10] we provided one way for solving equation Du = h: Using the chaos expansion method we
transformed equation (15) into a system of infinitely many equations of the form

uα+ε(k) =
1

αk + 1
hα,k, for all α ∈ I, k ∈N, (12)

from which we calculated uα, by induction on the length of α.
Denote by r = r(α) = min{k ∈ N : αk , 0}, for a nonzero multi-index α ∈ I, i.e. let r be the position

of the first nonzero component of α. Then the first nonzero component of α is the rth component αr, i.e.
α = (0, ..., 0, αr, ..., αm, 0, ...). Denote by αε(r) the multi-index with all components equal to the corresponding
components of α, except the rth, which is αr − 1. With the given notation we call αε(r) the representative of α
and write α = αε(r) + ε(r). For α ∈ I, |α| > 0 the set

Kα = {β ∈ I : α = β + ε( j), for those j ∈N, such that α j > 0}

is a nonempty set, because it contains at least the representative of α, i.e. αε(r) ∈ Kα. Note that, if α = nε(r),
n ∈N then Card(Kα) = 1 and in all other cases Card(Kα) > 1. Further, for |α| > 0,Kα is a finite set because α
has finitely many nonzero components and Card(Kα) is equal to the number of nonzero components ofα. For
example, the first nonzero component ofα = (0, 3, 1, 0, 5, 0, 0, ...) is the second one. It follows that r = 2, αr = 3
and the representative ofα isαε(r) = α−ε(2) = (0, 2, 1, 0, 5, 0, 0, ...). The multi-indexαhas three nonzero compo-
nents, thus the setKα consists of three elements: Kα = {(0, 2, 1, 0, 5, 0, ...), (0, 3, 0, 0, 5, 0, ...), (0, 3, 1, 0, 4, 0, ...)}.

In [10] we obtained the coefficients uα of the solution of (12) as functions of the representative αε(r) of a
nonzero multi-index α ∈ I in the form

uα =
1
αr

hα
ε(r) , r, for |α| , 0, α = αε(r) + ε(r).
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Theorem 4.3. ([10]) Let h =
∑
α∈I

∑
k∈N

hα,k ⊗ ξk ⊗Hα ∈ X ⊗ S−p(R) ⊗ (S)−1,−p, p ∈N0, with hα,k ∈ X such that

1
αr

hα
ε(r) ,r =

1
α j

hβ, j , (13)

for the representative αε(r) of α ∈ I, |α| > 0 and all β ∈ Kα, such that α = β + ε( j), for j ≥ r, r ∈ N. Then, equation
(15) has a unique solution in X⊗ (S)−1,−2p. The chaos expansion of the generalized stochastic process, which represents
the unique solution of equation (15) is given by

u = ũ0 +
∑

α=α
ε(r) +ε(r)∈I

1
αr

hα
ε(r) ,r ⊗ Hα. (14)

Here we provide another way of solving equationDu = h using the Skorokod integral operator.

Theorem 4.4. (The Malliavin derivative) Let h have the chaos expansion h =
∑
α∈I

∑
k∈N

hα,k ⊗ ξk ⊗Hα and assume that

condition (13) holds. Then the equation

Du = h, Eu = ũ0, ũ0 ∈ X, (15)

has a unique solution u represented in the form

u = ũ0 +
∑

α∈I,|α|>0

1
|α|

∑
k∈N

hα−ε(k),k ⊗ Hα. (16)

Moreover, the following holds:
1◦ If h ∈ X ⊗ S−p(R) ⊗ (S)−ρ,−q, q > p + 1, then u ∈ Domρ

−q(D).
2◦ If h ∈ X ⊗ Sp(R) ⊗ (S)ρ,q, p > q + 1, then u ∈ Domρ

q (D).
3◦ If h ∈ Dom0(δ), then u ∈ Dom0(D).

Proof. 1◦ The proof is similar as for case 2◦, so we present the proof of 2◦.
2◦ Let h ∈ X⊗ Sp(R)⊗ (S)ρ,q. Then h ∈ Domρ

(p,q−2)(δ). Now, applying the Skorokhod integral on both sides
of (15) one obtains

Ru = δ(h).

From the initial condition it follows that the solution u is given in the form u = ũ0 +
∑

α∈I,|α|>0
uα ⊗Hα and its

coefficients are obtained from the system

|α|uα =
∑
k∈N

hα−ε(k),k, |α| > 0, (17)

where by conventionα−ε(k) does not exist ifαk = 0. Condition (13) ensures that δ is injective i.e. δ(Du) = δ(h)
impliesDu = h.

It remains to prove that the solution u ∈ Domρ
q (D). Clearly,

‖u − ũ0‖
2
Domρ

q (D)
=

∑
α∈I

|α|1−ρ (α!)1+ρ
‖uα‖2X (2N)qα =

∑
α∈I,|α|>0

|α|1−ρ
(α!)1+ρ

|α|2
‖

∑
k∈N

hα−ε(k),k‖
2
X (2N)qα

=
∑
β∈I

‖

∑
k∈N

hβ,k
(β + ε(k))!

1+ρ
2

|β + ε(k)|
1+ρ

2

(2k)
q
2 ‖

2
X (2N)qβ

≤

∑
β∈I

‖

∑
k∈N

hβ,k β!
1+ρ

2 (2k)
p
2 (2k)

q−p
2 ‖

2
X (2N)qβ

≤

∑
β∈I

(∑
k∈N

‖hβ,k‖2X β!1+ρ (2k)p
∑
k∈N

(2k)q−p
)

(2N)qβ
≤ c

∑
β∈I

∑
k∈N

‖hβ,k‖2X β!1+ρ (2k)p (2N)qβ

= c ‖h‖2X⊗Sp(R)⊗(S)ρ,q
< ∞,
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since c =
∑

k∈N(2k)q−p < ∞, for p > q + 1. In the fourth step of the estimation we used that
(β + ε(k))!
|β + ε(k)|

≤ β!.

Thus,

‖u‖2
Domρ

q (D)
≤ 2

(
‖ũ0‖

2
X + c ‖h‖2X⊗Sp(R)⊗(S)ρ,q

)
< ∞

3◦ In this case we have that u given in (16) satisfies

‖u‖2Dom0(D) =
∑
α∈I

|α|α! ‖uα‖2X =
∑

α∈I,|α|>0

α!
|α|
‖

∑
k∈N

hα−ε(k),k‖
2
X ≤

∑
α∈I

α!‖
∑
k∈N

hα−ε(k),k‖
2
X = ‖h‖2Dom0(δ) < ∞.

Corollary 4.5. IfD(u) = 0, then u = Eu, i.e. u is constant almost surely.

Remark 4.6. The form of the solution (16) can be transformed to the form (14) obtained in [10]. First we express all
hβ,k in condition (13) in terms of hα

ε(r) , r, i.e.

hβ,k =
α j

αr
hα

ε(r) , r,

where β ∈ Kα correspond to the nonzero components of α in the following way: β = α − ε(k), k ∈ N, and r ∈ N
is the first nonzero component of α. Note that the set Kα has as many elements as the multi-index α has nonzero
components. Therefore, from the form of the coefficients (17) obtained in Theorem 4.4 we have

1
|α|

∑
β∈Kα

hβ,k =
1
|α|

∑
j∈N, α j,0

α j

αr
hα

ε(r) , r =
1
|α|

∑
j∈N

α j

αr
hα

ε(r) , r =
1
αr

hα
ε(r) , r.

Theorem 4.7. (The Skorokhod integral) Let f be a process with zero expectation and chaos expansion representation
of the form f =

∑
α∈I,|α|≥1

fα ⊗Hα, fα ∈ X. Then the integral equation

δ(u) = f , (18)

has a unique solution u in the class of processes satisfying condition (13) given by

u =
∑
α∈I

∑
k∈N

(αk + 1)
fα+ε(k)

|α + ε(k)|
⊗ ξk ⊗ Hα. (19)

Moreover, the following holds:

1◦ If f ∈ X ⊗ (S)−ρ,−p, then u ∈ Domρ
(−l,−p)(δ), for l > p + 1.

2◦ If f ∈ X ⊗ (S)ρ,p, p ∈N, then u ∈ Domρ
(l,p)(δ), for l < p − 1.

3◦ If f ∈ X ⊗ (L)2, then u ∈ Dom0(δ).

Proof. 1◦ Since the proof of 1◦ and 2◦ are analogous, we will conduct only the proof of one of them.
2◦ We seek for the solution in Ran1eρ+(D). It is clear that u ∈ Ran1eρ+(D) is equivalent to u = D(ũ), for

some ũ. Thus, equation (18) is equivalent to the system of equations

u = D(ũ), R (ũ) = f .

The solution to R(ũ) = f is given by

ũ = ũ0 +
∑

α∈I, |α|≥1

fα
|α|
⊗ Hα,
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where ũ(0,0,0,...) = ũ0 can be chosen arbitrarily. Now, the solution of the initial equation (18) is obtained after
applying the operatorD, i.e.

u = D (ũ) =
∑

α∈I, |α|≥1

∑
k∈N

αk
fα
|α|
⊗ ξk ⊗ Hα−ε(k) =

∑
α∈I

∑
k∈N

(αk + 1)
fα+ε(k)

|α + ε(k)|
⊗ ξk ⊗ Hα.

One can directly check that this u satisfies (13): Indeed with uα,k = (αk + 1)
f
α+ε(k)

|α+ε(k) |
we have 1

αk
uα−ε(k),k =

fα
|α| for

all k ∈N.
It remains to prove the convergence of the solution (19) in in the space Domρ

(l,p)(δ). First we prove that

ũ ∈ Domρ
p(D) and then u ∈ Domρ

(l,p)(δ) for appropriate l ∈N. We obtain

‖ũ‖2
Domρ

p (D)
=

∑
α∈I

|α|1−ρ (α!)1+ρ
‖uα‖2X (2N)pα = ‖ũ0‖

2
X +

∑
α∈I,|α|>0

|α|1−ρ (α!)1+ρ
‖ fα‖2X
|α|2

(2N)pα

≤ ‖ũ0‖
2
X +

∑
α∈I,|α|>0

(α!)1+ρ
‖ fα‖2X (2N)pα = ‖ũ0‖

2
X + ‖ f ‖2X⊗(S)ρ,p

< ∞

and thus ũ ∈ Domρ
+(D). Now,

‖u‖2
Domρ

(l,p)(δ)
=

∑
α∈I

∑
k∈N

(α!)1+ρ (αk + 1)3+ρ
‖ fα+ε(k)‖

2
X

|α + ε(k)|2
(2k)l (2N)pα =

∑
α∈I,|α|>0

∑
k∈N

(α!)1+ρ α2
k

‖ fα‖2X
|α|2

(2k)l (2N)p(α−ε(k))

≤

∑
α∈I,|α|>0

(α!)1+ρ
‖ fα‖2X (2N)pα

∑
k∈N

α2
k

|α|2
(2k)l (2k)−p

 ≤ c ‖ f ‖2X⊗(S)ρ,p
< ∞,

since c =
∑

k∈N(2k)l−p < ∞ for p > l + 1. In the second step we used that (α − ε(k))! αk = α!, and in the fourth
step we used αk ≤ |α|.

3◦ In this case we have

‖ũ‖2Dom0(D) =
∑
α∈I

|α|α! ‖uα‖2X = ‖ũ0‖
2
X +

∑
α∈I,|α|>0

|α|α!
‖ fα‖2X
|α|2

≤ ‖ũ0‖
2
X +

∑
α∈I,|α|>0

α! ‖ fα‖2X = ‖ũ0‖
2
X + ‖ f ‖2X⊗(L)2 < ∞

and thus ũ ∈ Dom0(D). Also,

‖u‖2Dom0(δ) =
∑
α∈I

α!‖
∑
k∈N

(αk + 1)
1
2 (αk + 1)

fα+ε(k)

|α + ε(k)|
‖

2
X =

∑
|β|≥1

‖

∑
k∈N

β
3
2
k (β − ε(k))!

1
2

fβ
|β|
‖

2
X =

∑
|β|≥1

‖

∑
k∈N

βk β!
1
2

fβ
|β|
‖

2
X

=
∑
|β|≥1

β!
|β|2
‖ fβ‖2X

(∑
k∈N

βk

)2
=

∑
|β|≥1

β! ‖ fβ‖2X = ‖ f ‖2X⊗(L)2 < ∞.

Corollary 4.8. Each process f ∈ X ⊗ (S)±ρ, resp. f ∈ X ⊗ (L)2 can be represented as f = E f + δ(u) for some
u ∈ X ⊗ S(R) ⊗ (S)±ρ, resp. u ∈ X ⊗ L2(R) ⊗ (L)2.

The latter result reduces to the celebrated Itô representation theorem (see e.g. [4]) in case when f is a
square integrable adapted process.



T. Levajković, D. Seleši / Filomat 31:13 (2017), 4231–4259 4251

5. Properties of the Malliavin Operators

In the classical (L)2 setting it is known that the Skorokhod integral is the adjoint of the Malliavin
derivative. We extend this result in the next theorem and prove their duality by pairing a generalized
process with a test process. The classical result is revisited in part 3◦ of the theorem.

Theorem 5.1. (Duality) Assume that either of the following holds:

1◦ F ∈ Domρ
−

(D) and u ∈ Domρ
+(δ)

2◦ F ∈ Domρ
+(D) and u ∈ Domρ

−
(δ)

3◦ F ∈ Dom0(D) and u ∈ Dom0(δ)

Then the following duality relationship between the operatorsD and δ holds:

E (F · δ(u)) = E (〈DF, u〉) , (20)

where (20) denotes the equality of the generalized expectations of two objects in X ⊗ (S)−ρ and 〈·, ·〉 denotes the dual
pairing of S′(R) and S(R).

Proof. First we show that the duality relationship (20) betweenD and δ holds formally. Let u ∈ Dom(δ) be
given in its chaos expansion form u =

∑
β∈I

∑
j∈N

uβ, j ⊗ξ j ⊗ Hβ. Then δ(u) =
∑
β∈I

∑
j∈N

uβ, j ⊗Hβ+ε( j) . Let F ∈ Dom(D)

be given as F =
∑
α∈I

fα ⊗Hα. ThenD(F) =
∑
α∈I

∑
k∈N

(αk + 1) fα+ε(k) ⊗ ξk ⊗Hα. Therefore we obtain

F · δ(u) =
∑
α∈I

∑
β∈I

∑
j∈N

fαuβ, j ⊗Hα ·Hβ+ε( j)

=
∑
α∈I

∑
β∈I

∑
j∈N

fαuβ, j ⊗
∑

γ≤min{α,β+ε( j)}

γ! ·
(
α
γ

) (
β + ε( j)

γ

)
Hα+β+ε( j)−2γ.

The generalized expectation of F · δ(u) is the zeroth coefficient in the previous sum, which is obtained
when α + β + ε( j) = 2γ and γ ≤ min{α, β + ε( j)

}, i.e. only for the choice β = α − ε( j) and γ = α, j ∈N. Thus,

E (F · δ(u)) =
∑

α∈I,|α|>0

∑
j∈N

fαuα−ε( j), j · α! =
∑
α∈I

∑
j∈N

fα+ε( j) uα, j · (α + ε( j))! .

On the other hand,

〈D(F),u〉 =
∑
α∈I

∑
β∈I

∑
k∈N

∑
j∈N

(αk + 1) fα+ε(k) uβ, j 〈ξk, ξ j〉Hα ·Hβ

=
∑
α∈I

∑
β∈I

∑
j∈N

(α j + 1) fα+ε( j) uβ, j
∑

γ≤min{α,β}

γ! ·
(
α
γ

)(
β
γ

)
·Hα+β−2γ

and its generalized expectation is obtained for α = β = γ. Thus

E (〈D(F),u〉) =
∑
α∈I

∑
j∈N

(α j + 1) fα+ε( j) uα, j · α! =
∑
α∈I

∑
j∈N

fα+ε( j) uα, j · (α + ε( j))! = E (F · δ(u)) .

1◦ Let ρ ∈ [0, 1] be fixed. Let F ∈ Domρ
−p(D) and u ∈ Domρ

(r,s)(δ), for some p ∈N and all r, s ∈N, r > s + 1.
Then DF ∈ X ⊗ S−l(R) ⊗ (S)−ρ,−p for l > p + 1. Since r is arbitrary, we may assume that r = l and denote by
〈·, ·〉 the dual pairing between S−l(R) and Sl(R). Moreover, 〈DF,u〉 is well defined in X ⊗ (S)−ρ,−p. On the
other hand, δ(u) ∈ X ⊗ (S)ρ,s and thus by Theorem 2.12, F · δ(u) is also defined as an element in X ⊗ (S)−ρ,−k,
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for k ∈ [p, s− 8], s > p + 8. Since s was arbitrary, one can take any k ≥ p. This means that both objects, F · δ(u)
and 〈DF,u〉 exist in X⊗ (S)−ρ,−k, for k ≥ p. Taking generalized expectations of 〈DF,u〉 and F · δ(u) we showed
that the zeroth coefficients of the formal expansions are equal. Therefore the duality formula is valid for
this case.

2◦ Let F ∈ Domρ
p(D) and u ∈ Domρ

(−r,−s)(δ), for some r, s ∈ N, s > r + 1, and all p ∈ N. Then DF ∈
X⊗Sl(R)⊗ (S)ρ,p, l < p− 1, but since p is arbitrary, so is l. Now, 〈DF,u〉 is a well defined object in X⊗ (S)−ρ,−s.
On the other hand, δ(u) ∈ X ⊗ (S)−ρ,−s and thus by Theorem 2.12, F · δ(u) is also well defined and belongs to
X ⊗ (S)−ρ,−k, for k ∈ [s, p − 8], p > s + 8. Thus, both processes F · δ(u) and 〈DF,u〉 belong to X ⊗ (S)−ρ,−k for
k ≥ s.

3◦ For F ∈ Dom0(D) and u ∈ Dom0(δ) the dual pairing 〈DF,u〉 represents the inner product in L2(R) and
the product Fδ(u) is an element in X ⊗ (L)1 (see Remark 2.13). The classical duality formula is clearly valid
for this case.

The next theorem states a higher order duality formula, which connects the kth order iterated Skorokhod
integral and the Malliavin derivative operator of kth order, k ∈N. For the definition of higher order iterated
operators we refer to [8].

Theorem 5.2. Let f ∈ Domρ
+(D(k)) and u ∈ Domρ

−
(δ(k)), or let f ∈ Domρ

−
(D(k)) and u ∈ Domρ

+ (δ(k)), k ∈ N. Then
the duality formula

E
(

f · δ(k)(u)
)

= E
(
〈D(k) ( f ), u〉

)
holds, where 〈·, ·〉 denotes the duality pairing of S′(R)⊗k and S(R)⊗k.

Proof. The assertion follows by induction and applying Theorem 5.1 successively k times.

Remark 5.3. The previous theorems are special cases of a more general identity. It can be proven, under suitable
assumptions that make all the products well defined, that the following formulae hold:

F δ(u) = δ(Fu) + 〈D(F),u〉, (21)

F δ(k)(u) =

k∑
i=0

(
k
i

)
δ(k−i)(〈D(i)F,u〉), k ∈N.

Taking the expectation in (21) and using the fact that δ(Fu) = 0, the duality formula (20) follows.

Example 5.4. Let ψ ∈ L2(R). In [6] we have shown that the stochastic exponentials exp♦{δ(ψ)} are eigenvalues of
the Malliavin derivative, i.e. D(exp♦{δ(ψ)}) = ψ · exp♦{δ(ψ)}. We will prove that they are also eigenvalues of the
Ornstein-Uhlenbeck operator. Indeed, using (21) we obtain

R(exp♦{δ(ψ)}) = δ(ψ · exp♦{δ(ψ)}) = δ(ψ) exp♦{δ(ψ)} − 〈D(exp♦{δ(ψ)}), ψ〉
= δ(ψ) exp♦{δ(ψ)} − 〈ψ · exp♦{δ(ψ)}, ψ〉
= (δ(ψ) − ‖ψ‖2L2(R)) exp♦{δ(ψ)}.

In the next theorem we prove a weaker type of duality instead of (20) which holds if F ∈ Dom0
−

(D) and
u ∈ Dom0

−
(δ) are both generalized processes. Recall that�, ·, · �r denotes the scalar product in (S)0,r.

Lemma 5.5. Let u ∈ Dom0
−q(D) and ϕ ∈ S−n(R), n < q − 1. Then u · ϕ ∈ Dom0

(−n,−q)(δ).

Proof. Let u =
∑
α∈I uαHα and ϕ =

∑
k∈N ϕk ξk. Then, u · ϕ =

∑
α∈I

∑
k∈N uα ϕk ξk Hα and

‖u · ϕ‖2Dom0
(−n,−q)(δ) =

∑
α∈I

∑
k∈N

α! (αk + 1)‖uα‖2X ϕ
2
k (2k)−n(2N)−qα =

∑
α∈I

α! ‖uα‖2X
(∑

k∈N

(αk + 1)(2k)−n ϕ2
k

)
(2N)−qα

≤

(
‖u0‖

2
X + 2

∑
|α|>0

α! |α|‖uα‖2X(2N)−qα
)
·

∑
k∈N

ϕ2
k(2k)−n =

(
‖u0‖

2
X + 2‖u‖2Dom0

−q(D)

)
· ‖ϕ‖2−n < ∞.

We used the estimate αk + 1 ≤ 2 |α|, for |α| > 0, k ∈N.
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Theorem 5.6. (Weak duality) Let ρ = 0 and consider the Hida spaces. Let F ∈ Dom0
−p(D) and u ∈ Dom0

−q(D) for
p, q ∈N. For any ϕ ∈ S−n(R), n < q − 1, it holds that

� 〈DF, ϕ〉−r,u�0,−r =� F, δ(ϕu)�0,−r,

for r > max{q, p + 1}.

Proof. Let F =
∑
α∈I fαHα ∈ Dom0

−p(D), u =
∑
α∈I uαHα ∈ Dom0

−q(D) and ϕ =
∑

k∈N ϕkξk ∈ S−n(R). Then, for
k > p + 1, DF ∈ X ⊗ S−k(R) ⊗ (S)0,−p ⊆ X ⊗ S−r(R) ⊗ (S)0,−r if r > p + 1. Also, by Lemma 5.5 it follows that
ϕu ∈ Dom0

(−n,−q)(δ) and since q > n + 1, this implies that δ(ϕu) ∈ X ⊗ (S)0,−q ⊆ X ⊗ (S)0,−r, for r ≥ q. Therefore
we let r > max{p + 1, q}. Thus,

〈DF, ϕ〉−r = 〈

∑
k∈N

∑
α∈I

(αk + 1) fα+ε(k) Hα ⊗ ξk,
∑
k∈N

ϕkξk〉−r

=
∑
k∈N

ϕk

∑
α∈I

(αk + 1) fα+ε(k) Hα (2k)−r,

and consequently

� 〈DF, ϕ〉−r,u�0,−r = �

∑
α∈I

∑
k∈N

ϕk(αk + 1) fα+ε(k) (2k)−rHα,
∑
α∈I

uαHα �0,−r

=
∑
α∈I

α!uα
∑
k∈N

ϕk(αk + 1) fα+ε(k) (2k)−r(2N)−rα.

On the other hand, ϕu =
∑
α∈I

∑
k∈N

uαϕkξk ⊗Hα and δ(ϕu) =
∑
α>0

∑
k∈N

uα−ε(k)ϕkHα. Thus,

� F, δ(ϕu)�0,−r = �

∑
α∈I

fαHα,
∑
α>0

∑
k∈N

uα−ε(k)ϕkHα �0,−r

=
∑
α>0

α! fα
∑
k∈N

uα−ε(k)ϕk(2N)−rα

=
∑
β∈I

∑
k∈N

(β + ε(k))! fβ+ε(k) uβϕk(2N)−r(β+ε(k))

=
∑
β∈I

∑
k∈N

β!(βk + 1) fβ+ε(k) uβϕk(2k)−r(2N)−rβ,

which completes the proof.

The following theorem states the product rule for the Ornstein-Uhlenbeck operator. Its special case for
F,G ∈ Dom0(R) and F · G ∈ Dom0(R) states that (22) holds (see e.g. [2]). We extend the classical (L)2 case
to multiplying a generalized process with a test process. The product rule also holds if we multiply two
generalized processes, but in this case the ordinary product has to be replaced by the Wick product.
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Theorem 5.7. (Product rule for R)

1◦ Let F ∈ Domρ
+(R) and G ∈ Domρ

−
(R), or vice versa. Then F · G ∈ Domρ

−
(R) and

R(F · G) = F · R(G) + G · R(F) − 2 · 〈DF,DG〉, (22)

holds, where 〈·, ·〉 is the dual pairing between S′(R) and S(R).
2◦ Let F,G ∈ Domρ

−
(R). Then F · G ∈ Domρ

−
(R) and

R(F♦G) = F♦R(G) + R(F)♦G. (23)

Proof. 1◦ Let F =
∑
α∈I

fα ⊗ Hα ∈ Domρ
+(R) and G =

∑
β∈I
1β ⊗ Hβ ∈ Domρ

−
(R). Then, R(F) =

∑
α∈I
|α| fα ⊗ Hα and

R(G) =
∑
β∈I
|β| 1β ⊗Hβ.

The left hand side of (22) can be written in the form

R(F · G) = R

∑
α∈I

∑
β∈I

fα 1β
∑

γ≤min{α,β}

γ!
(
α
γ

) (
β
γ

)
Hα+β−2γ


=

∑
α∈I

∑
β∈I

fα 1β
∑

γ≤min{α,β}

γ!
(
α
γ

) (
β
γ

)
|α + β − 2γ|Hα+β−2γ

=
∑
α∈I

∑
β∈I

fα 1β
∑

γ≤min{α,β}

γ!
(
α
γ

) (
β
γ

) (
|α| + |β| − 2|γ|

)
Hα+β−2γ.

On the other hand, the first two terms on the right hand side of (22) are

R(F) · G =
∑
α∈I

∑
β∈I

fα 1β ⊗
∑

γ≤min{α,β}

γ!
(
α
γ

) (
β
γ

)
|α|Hα+β−2γ (24)

and

F · R(G) =
∑
α∈I

∑
β∈I

fα 1β ⊗
∑

γ≤min{α,β}

γ!
(
α
γ

) (
β
γ

)
|β|Hα+β−2γ. (25)

Since F ∈ Domρ
+(R) ⊆ Domρ

+(D) and G ∈ Domρ
−

(R) ⊆ Domρ
−

(D) we have D(F) =
∑
α∈I

∑
k∈N αk fα ⊗ ξk ⊗

Hα−ε(k) andD(G) =
∑
β∈I

∑
j∈N β j 1β ⊗ ξ j ⊗Hβ−ε(k) . Thus, the third term on the right hand side of (22) is

〈D(F),D(G)〉 = 〈
∑

α∈I,|α|>0

∑
k∈N

αk fα ⊗ ξk ⊗Hα−ε(k) ,
∑

β∈I,|β|>0

∑
j∈N

β j 1β ⊗ ξ j ⊗Hβ−ε( j)〉

=
∑
|α|>0

∑
|β|>0

∑
k∈N

∑
j∈N

αk β j fα 1β 〈ξk, ξ j〉 ⊗ Hα−ε(k) ·Hβ−ε( j)

=
∑
|α|>0

∑
|β|>0

∑
k∈N

αkβk fα1β ⊗
∑

γ≤min{α−ε(k),β−ε(k)}

γ!
(
α − ε(k)

γ

)(
β − ε(k)

γ

)
Hα+β−2ε(k)−2γ,

where we used the fact that 〈ξk, ξ j〉 = 0 for k , j and 〈ξk, ξ j〉 = 1 for k = j. Now we put θ = γ + ε(k) and use
the identities

αk ·

(
α − ε(k)

γ

)
= αk ·

(
α − ε(k)

θ − ε(k)

)
= θk ·

(
α
θ

)
, k ∈N,



T. Levajković, D. Seleši / Filomat 31:13 (2017), 4231–4259 4255

and θk · (θ − ε(k))! = θ!. Thus we obtain

〈D(F),D(G)〉 =
∑
α∈I

∑
β∈I

∑
k∈N

fα 1β
∑

θ≤min{α,β}

θ2
k (θ − ε(k))!

(
α
θ

) (
β

θ

)
Hα+β−2θ

=
∑
α∈I

∑
β∈I

∑
k∈N

fα 1β
∑

θ≤min{α,β}

θkθ!
(
α
θ

) (
β

θ

)
Hα+β−2θ

=
∑
α∈I

∑
β∈I

fα 1β
∑

θ≤min{α,β}

∑
k∈N

θk

 θ!
(
α
θ

) (
β

θ

)
Hα+β−2θ

=
∑
α∈I

∑
β∈I

fα 1β
∑

θ≤min{α,β}

|θ|θ!
(
α
θ

) (
β

θ

)
Hα+β−2θ.

Combining all previously obtained results we now have

R(F · G) =
∑
α∈I

∑
β∈I

fα 1β
∑

γ≤min{α,β}

γ!
(
α
γ

) (
β
γ

) (
|α| + |β| − 2|γ|

)
Hα+β−2γ

=
∑
α∈I

∑
β∈I

fα 1β
∑

γ≤min{α,β}

γ!
(
α
γ

) (
β
γ

)
|α| Hα+β−2γ +

∑
α∈I

∑
β∈I

fα 1β
∑

γ≤min{α,β}

γ!
(
α
γ

) (
β
γ

)
|β| Hα+β−2γ

− 2
∑
α∈I

∑
β∈I

fα 1β
∑

γ≤min{α,β}

|γ|γ!
(
α
γ

) (
β
γ

)
Hα+β−2γ

= R(F) · G + F · R(G) − 2 · 〈D(F),D(G)〉

and thus (22) holds.
Assume that F ∈ Domρ

−p(R) and G ∈ Domρ
q (R). Then R(F) ∈ X ⊗ (S)−ρ,−p and R(G) ∈ X ⊗ (S)ρ,q. From

Theorem 2.12 it follows that F · R(G) and G · R(F) are both well defined and belong to X ⊗ (S)−ρ,−s, for
s ∈ [p, q − 8], q − p > 8. Similarly, 〈D(F),D(G)〉 belongs to X ⊗ (S)−ρ,−p, since D(F) ∈ X ⊗ S−l1 (R) ⊗ (S)−ρ,−p,
where l1 > p + 1 and D(G) ∈ X ⊗ Sl2 (R) ⊗ (S)ρ,q, where l2 < q − 1 and the dual pairing is obtained for any
l ∈ [l1, l2]. Thus, the right hand side of (22) is in X ⊗ (S)−ρ,−s, s ≥ p. Hence, F · G ∈ Domρ

−s(R).

2◦ From

G♦R(F) =
∑
γ∈I

∑
α+β=γ

|α| fα1β Hγ and F♦R(G) =
∑
γ∈I

∑
α+β=γ

fα|β|1β Hγ,

it follows that

G♦R(F) + F♦R(G) =
∑
γ∈I

|γ|
∑
α+β=γ

fα1β Hγ = R(F♦G).

If F ∈ Domρ
−p(R) and G ∈ Domρ

−q(R), then R(F) ∈ X ⊗ (S)−ρ,−p and R(G) ∈ X ⊗ (S)−ρ,−q. From Theorem 2.9
it follows that R(F)♦G ∈ X ⊗ (S)−ρ,−(p+q+4) and R(G)♦F ∈ X ⊗ (S)−ρ,−(p+q+4). Thus, the right hand side of (23) is
in X ⊗ (S)−ρ,−(p+q+4), i.e. F♦G ∈ Domρ

−r(R) for r = p + q + 4.

Corollary 5.8. Let F ∈ Domρ
+(R) and G ∈ Domρ

−
(R), or vice versa (including also the possibility F,G ∈ Dom0(R)).

Then the following property holds:

E(F · R(G)) = E (〈DF,DG〉) .
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Proof. From the chaos expansion form of R(F · G) it follows that ER(F · G) = 0. Moreover, taking the
expectations on both sides of (24) and (25) we obtain

E (R(F) · G) = E (F · R(G)) .

Now, from Theorem 5.7 it follows that

0 = 2E (F · R(G)) − 2E(〈DF,DG〉),

and the assertion follows.

In the classical literature ([2, 15]) it is proven that the Malliavin derivative satisfies the product rule with
respect to ordinary multiplication, i.e. if F,G ∈ Dom0(D) such that F · G ∈ Dom0(D) then (26) holds. The
following theorem recapitulates this result and extends it for multiplication of a generalized process with
a test processes, and extends it also for Wick multiplication.

Theorem 5.9. (Product rule forD)

1◦ Let F ∈ Domρ
−

(D) and G ∈ Domρ
+(D) or vice versa. Then F · G ∈ Domρ

−
(D) and the product rule

D(F · G) = F ·DG + DF · G (26)

holds.
2◦ Let F,G ∈ Domρ

−
(D). Then F♦G ∈ Domρ

−
(D) and

D(F♦G) = F♦DG + DF♦G.

Proof. 1◦

D(F · G) = D(
∑
α∈I

fαHα ·

∑
β∈I

1βHβ)

= D

∑
α∈I

∑
β∈I

fα 1β
∑

γ≤min{α,β}

γ!
(
α
γ

) (
β
γ

)
Hα+β−2γ


=

∑
α∈I

∑
β∈I

∑
k∈N

fα1β
∑

γ≤min{α,β}

γ!
(
α
γ

)(
β
γ

)
(αk + βk − 2γk) ξkHα+β−2γ−ε(k)

On the other side we have

F ·D(G) =
∑
α∈I

fαHα ·

∑
β∈I

∑
k∈N

βk 1βξk Hβ−ε(k)

=
∑
α∈I

∑
β∈I

∑
k∈N

fα1β
∑

γ≤min{α,β−ε(k)}

γ!
(
α
γ

)(
β − ε(k)

γ

)
βk ξkHα+β−2γ−ε(k)

and

G ·D(F) =
∑
α∈I

∑
β∈I

∑
k∈N

fα1β
∑

γ≤min{α−ε(k),β}

γ!
(
α − ε(k)

γ

)(
β
γ

)
αk ξkHα+β−2γ−ε(k) .

Summing up the chaos expansions for F ·D(G) and G ·D(F) and applying the identities

αk

(
α − ε(k)

γ

)
= αk ·

(α − ε(k))!
γ! (α − ε(k) − γ)!

=
α!

γ! (α − γ)!
· (αk − γk) =

(
α
γ

)
(αk − γk)
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and

βk

(
β − ε(k)

γ

)
=

(
β
γ

)
(βk − γk),

for all α, β ∈ I, k ∈N and γ ∈ I such that γ ≤ min{α, β} and the expression (αk−γk) + (βk−γk) = αk +βk−2γk
we obtain (26).

Assume that F ∈ Domρ
−p(D), G ∈ Domρ

q (D). Then D(F) ∈ X ⊗ S−l(R) ⊗ (S)−ρ,−p, l > p + 1, and D(G) ∈
X⊗ Sk(R)⊗ (S)ρ,q, k < q− 1. From Theorem 2.12 it follows that all products on the right hand side of (26) are
well defined, moreover F ·D(G) ∈ X⊗Sk(R)⊗(S)−ρ,−r,D(F) ·G ∈ X⊗S−l(R)⊗(S)−ρ,−r, for r ∈ [p, q−8], q > p+8.
Thus the right hand sifde of (26) can be embedded into X ⊗ S−l(R) ⊗ (S)−ρ,−r, r ≥ p. Thus, F · G ∈ Domρ

−r(D).
2◦ By definition of the Malliavin derivative and the Wick product it can be easily verified that

D(F)♦G + F♦D(G) =
∑
γ∈I

∞∑
k=1

∑
α+β−ε(k)=γ

αk fα1βHγ +
∑
γ∈I

∞∑
k=1

∑
α+β−ε(k)=γ

βk fα1βHγ

=
∑
γ∈I

∞∑
k=1

∑
α+β=γ

γk fα1βHγ−ε(k) = D(F♦G).

If F ∈ Domρ
−p(D) and G ∈ Domρ

−q(D), thenD(F) ∈ X⊗ S−l(R)⊗ (S)−ρ,−p, l > p + 1, andD(G) ∈ X⊗ S−k(R)⊗
(S)−ρ,−q, k > q + 1. From Theorem 2.9 it follows that D(F)♦G and F♦D(G) both belong to X ⊗ S−m(R) ⊗
(S)−ρ,−(p+q+4), m = max{l, k}. Thus, F♦G ∈ Domρ

−r(D) for r = p + q + 4.

A generalization of Theorem 5.9 for higher order derivatives, i.e. the Leibnitz formula is given in the
next theorem.

Theorem 5.10. Let F,G ∈ Domρ
−

(D(k)), k ∈N, then F♦G ∈ Domρ
−

(D(k)) and the Leibnitz rule holds:

D(k) (F♦G) =

k∑
i=0

(
k
i

)
D(i)(F)♦D(k−i)(G),

whereD(0)(F) = F andD(0)(G) = G.
Moreover, if G ∈ Domρ

+(D(k)) , then F · G ∈ Domρ
−

(D(k)) and

D(k) (F · G) =

k∑
i=0

(
k
i

)
D(i)(F) ·D(k−i)(G). (27)

Proof. The Leibnitz rule (27) follows by induction and applying Theorem 5.9. Clearly, (27) holds also if
F,G ∈ Dom0(D(k)) and F · G ∈ Dom0(D(k)).

Theorem 5.11. Assume that either of the following hold:

1◦ F ∈ Domρ
−

(D), G ∈ Domρ
+(D) and u ∈ Domρ

+(δ),

2◦ F,G ∈ Domρ
+(D) and u ∈ Domρ

−
(δ),

3◦ F,G ∈ Dom0(D) and u ∈ Dom0(δ).

Then the second integration by parts formula holds:

E(F〈DG,u〉) + E(G〈DF,u〉) = E(F G δ(u)).
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Proof. The assertion follows directly from the duality formula (20) and the product rule (26). Assume the
first case holds when F ∈ Domρ

−
(D), G ∈ Domρ

+(D) and u ∈ Domρ
+(δ). Then F · G ∈ Domρ

−
(D), too, and we

have

E(F G δ(u)) = E(〈D(F · G),u〉) = E(〈F ·D(G) + G ·D(F),u〉)
= E(F 〈D(G),u〉) + E(G 〈D(F),u〉).

The second and third case can be proven in an analogous way.

The next theorem states the chain rule for the Malliavin derivative. The classical (L)2-case has been
known throughout the literature as a direct consequence of the definition of Malliavin derivatives as
Fréchet derivatives. Here we provide an alternative proof suited to the setting of chaos expansions.

Theorem 5.12. (Chain rule) Let φ be a twice continuously differentiable function with bounded derivatives.

1◦ If F ∈ Domρ
+(D), resp. F ∈ Dom0(D), then φ(F) ∈ Domρ

+(D), resp. φ(F) ∈ Dom0(D), and the chain rule holds:

D (φ(F)) = φ′(F) · D(F). (28)

2◦ If F ∈ Domρ
−

(D) and φ is analytic, then φ♦(F) ∈ Domρ
−

(D) and

D (φ♦(F)) = φ′♦(F)♦D(F). (29)

Proof. 1◦ First we prove that (28) holds true when φ is a polynomial of degree n, n ∈ N. Then we use the
Stone-Weierstrass theorem and approximate a continuously differentiable function φ by a polynomial p̃n of
degree n, and since we assumed that φ is regular enough, p̃′n will also approximate φ′.

By Theorem 5.9 we obtain by induction on k ∈N that

D(Fk+1) = D(F · Fk)

= D(F) · Fk + F ·D(Fk) = D(F) · Fk + F · kFk−1
·D(F)

= (k + 1)Fk
·D(F).

SinceD is a linear operator, we have for any polynomial pn(x) =
∑n

k=0 akxk with real coefficients ak, k ∈N:

D(pn(F)) =

n∑
k=0

akD(Fk) =

n∑
k=1

ak kF(k−1)
·D(F) = p′n(F) ·D(F). (30)

Let φ ∈ C2(R) and F ∈ Domρ
p(D), p ∈ N. Then, by the Stone–Weierstrass theorem, there exists a

polynomial p̃n such that

‖φ(F) − p̃n(F)‖X⊗(S)ρ,p = ‖φ(F) −
n∑

k=0

akFk
‖X⊗(S)ρ,p → 0

and

‖φ′(F) − p̃n
′(F)‖X⊗(S)ρ,p = ‖φ′(F) −

n∑
k=1

akkFk−1
‖X⊗(S)ρ,p → 0

as n→∞.
From (30) and the fact thatD is a bounded operator, Theorem 3.2, we obtain (for l < p − 1)

‖D(φ(F)) − φ′(F) ·D(F)‖X⊗Sl(R)⊗(S)ρ,p = ‖D(φ(F)) −D(p̃n(F)) +D(p̃n(F)) − φ′(F) ·D(F)‖X⊗Sl(R)⊗(S)ρ,p

≤ ‖D(φ(F)) −D(p̃n(F))‖X⊗Sl(R)⊗(S)ρ,p + ‖D(p̃n(F)) − φ′(F) ·D(F)‖X⊗Sl(R)⊗(S)ρ,p

= ‖D(φ(F) − p̃n(F))‖X⊗Sl(R)⊗(S)ρ,p + ‖p̃n
′(F) ·D(F) − φ′(F) ·D(F)‖X⊗Sl(R)⊗(S)ρ,p

≤ ‖D‖ · ‖(φ(F) − p̃n(F))‖X⊗(S)ρ,p + ‖p̃n
′(F) − φ′(F)‖ · ‖D(F)‖X⊗(S)ρ,p → 0,
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as n→∞. From this follows (28) as well as the estimate

‖D(φ(F))‖X⊗Sl(R)⊗(S)ρ,p ≤ ‖φ
′(F)‖X⊗(S)ρ,p · ‖D(F)‖X⊗Sl(R)⊗(S)ρ,p < ∞,

and thus φ(F) ∈ Domρ
p(D).

2◦ The proof of (29) for the Wick version can be conducted in a similar manner. According to Theorem
5.9 we have

D(F♦k) = k F♦(k−1)♦D(F).

If φ is an analytic function given by φ(x) =
∑
∞

k=0 akxk, then φ′(x) =
∑
∞

k=1 akkxk−1, and consequently

φ♦(F) =

∞∑
k=0

akF♦k, φ′♦(F) =

∞∑
k=1

akkF♦(k−1).

Thus,

D(φ♦(F)) =

∞∑
k=0

akD(F♦k) =

∞∑
k=0

akkF♦(k−1)♦D(F) = φ′♦(F)♦D(F).

and the identity (29) follows.
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