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Abstract. In this paper, we investigate a class of stochastic impulsive fractional differential evolution equa-
tions with infinite delay in Banach space. Firstly, sufficient conditions of the existence and the uniqueness
of the mild solution for this type of equations are derived by means of the successive approximation and
the Bihari’s inequality. Then we get the stability in mean square of the mild solution. Finally, an example
is presented to illustrate the results.

1. Introduction

In resent years, the differential equations of fractional order have been widely studied by many authors
(see e.g. [1, 13, 15, 20, 27, 29, 33]) due to their applications in many practical dynamical phenomena arising
in engineering, physics, economy and science [4, 5, 9, 19, 23]. When we take environment noise and time
delays into account (see. e.g. [2, 6, 8, 11, 12, 14, 18]), it is reasonable to consider the stochastic fractional
evolution equations with delays. This paper is concerned with the existence, the uniqueness and the
stability of mild solutions of Cauchy problems for the stochastic impulsive fractional evolution equations:

Dα
t [x′(t) − 1(t, xt)] = Ax(t) + f (t, xt) + σ(t, xt)

dw(t)
dt , t ∈ J, t , ti,

4x(ti) = Ii(xti ), 4x′(ti) = Ji(xti ), i = 1, 2, . . . ,m,
x0 = ϕ ∈ B, x′0 = x1 ∈ H,

(1)

where J = [0, b], 0 < α < 1, Dα
t denotes the Caputo fractional derivative operator of order α. A : D(A) ⊂ H→

H is a sectorial operator. 1, f : J × B → H and σ : J × B → L(G,H) are appropriate mappings. Here B is an
abstract phase space to be defined later. The history xt : (−∞, 0] → H, xt(s) = x(t + s), s ≤ 0 belongs to the
abstract phase spaceB. Moreover, we denote 4x(ti) = x(t+

i )−x(t−i ) for 0 ≤ t0 < t1 < · · · < tm < tm+1 = b which
are fixed numbers. Let x(t+

i ) and x(t−i ) represent the right and the left limits of x(t) at t = ti, respectively.
Similarly, 4x′(ti) = x′(t+

i ) − x′(t−i ) has the same meaning.
Let (Ω,F ,P) be a complete probability space equipped with some filtration {Ft}t≥0 satisfying the usual

conditions, i.e., the filtration is right continuous and increasing while F0 contains all P-null sets. H, G be
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two real separable Hilbert spaces and we denote by < ·, · >H, < ·, · >G their inner products and by | · |H, | · |G
their vector norms, respectively. Let L(G,H) be the collection of all inner bounded operators from G into
H, with the usual operator norm ‖ · ‖. The symbol {w(t), t ≥ 0} is a G-valued {Ft}t≥0 Wiener process defined
on the probability space (Ω,F ,P) with covariance operator Q, i.e.

E < w(t), x >G< w(s), y >G= (t ∧ s) < Qx, y >G, ∀x, y ∈ G

where Q is a positive, self-adjoint and trace class operator on G. In particular, we regard {w(t), t ≥ 0} as a
G-valued Q wiener process related to {Ft}t≥0 (see [2, 14]), and w(t) is defined as

w(t) =

∞∑
n=1

√
λnβn(t)en, t ≥ 0,

where βn(t) (= 1, 2, 3, . . .) is a sequence of real-valued standard Brownian motions mutually independent
on the probability space (Ω,F ,P), λn, n = 1, 2, 3, . . . are the eigenvalues of Q and en, n = 1, 2, 3, . . . are the
eigenvectors corresponding to λn. That is

Qen = λnen, n = 1, 2, 3, . . . .

In order to define stochastic integrals with respect to the Q-wiener process w(t), we introduce the subspace
G0 = Q1/2(G) of G with the inner product,

< u, v >G0=< Q1/2u,Q1/2v >G .

It is easy to see that G0 is a Hilbert space. Let L0
2 = L2(G0,H) denote the collection of all Hilbert-Schmidt

operators from G0 into H. It turns out to be a separable Hilbert space equipped with the norm

‖ψ‖2
L

0
2

= tr
(
(ψQ1/2)(ψQ1/2)∗

)
, ∀ψ ∈ L0

2.

Clearly, for any bounded operator ψ ∈ L(G,H), this norm reduces to ‖ψ‖2
L

0
2

= tr(ψQψ∗).

Let Φ : (0,∞)→ L0
2 be a predictable and Ft-adapted process such that∫ t

0
E‖Φ(s)‖2

L
0
2
ds < ∞, ∀t > 0.

Then we can define the H-valued stochastic integral∫ t

0
Φ(s)dw(s),

which is a continuous square-integrable martingale ([24]). In the following, we assume σ : J × B → L0
2 in

(1).
Under the uniform Lipschitz and the linear growth conditions, Øksendal in [21] obtained sufficient

conditions for the existence and the uniqueness of solutions of stochastic differential equations. By using
the nonlinear alternative of Leray-Schauder type for multivalued maps and properties of the solution
operator, Yan and Zhang [31] got sufficient conditions for the existence of solutions for the following
impulsive fractional partial neutral stochastic integro-differential inclusions with state-dependent delay.

dD(t, xt) ∈
∫ t

0
(t−s)α−2

Γ(α−1) AD(s, xs)dsdt + F(t, xρ(t,xt))dw(t), t ∈ J = [0, b], t , tk, k = 1, 2, . . . ,m.
x0 = ϕ ∈ B,
4x(tk) = Ik(xk), k = 1, 2, . . . ,m.
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where D(t, xt) = ϕ(0) + G(t, ϕ), ϕ ∈ B, ρ, Ik (k = 1, 2, . . . ,m) are given functions. Very recently, Xie [30]
established the sufficient conditions for the existence and the uniqueness of mild solutions of Cauchy
problems for the impulsive fractional integro-differential evolution equations:

Dα
t [x′(t) − 1(t, xt)] = Ax(t) + f (t, xt,Bx(t)), t ∈ J, t , ti,
4x(ti) = Ii(xti ), 4x′(ti) = Ji(xti ), i = 1, 2, . . . ,m,
x0 = ϕ ∈ B, x′0 = x1 ∈ H,

(2)

where Bx(t) =
∫ t

0 k(t, s)x(s)ds, k ∈ C(D,R+), D = {(t, s) : 0 ≤ s ≤ t ≤ b}. By means of the Kuratowski measure
of non-compactness and the progressive estimation method, the conclusions in [30] had improved and
generalized many known results. More recently, Chadha and Pandey in [3] obtained sufficient conditions
for the existence of mild solutions for an impulsive neutral stochastic fractional differential equation with
infinite delays by using resolvent operator and the Krasnoselskii-Schaefer fixed point theorem.

However, so far we have not seen the existence and uniqueness results for the Cauchy problem (1). In
this paper, we use the successive approximation and the Bihari’s inequality to get the sufficient conditions
for the existence and the uniqueness results of the mild solution for the Cauchy problem (1). Our method
do not need mappings 1(t, ϕ), f (t, ϕ) and σ(t, ϕ) satisfy the Lipschitz conditions for the second variable
which had been used in [3]. We have to point out that in the process of the existence and uniqueness result,
we have mainly adopted the ideas appeared in [16, 17]. Furthermore, we give sufficient conditions that
guarantee the stability in mean square of the mild solution.

2. Preliminaries

The collection of all strongly measurable, square-integrable and H-valued random variables, is denoted by
L2(Ω,H). L2(Ω,H) with the norm ‖x(·)‖L2 = (E|x(·)|2H)1/2 is a Banach space. The expectation E is defined as
Ex =

∫
Ω

x(ω)dP. We introduce the space PC formed by all H-valued stochastic processes {x(t) : t ∈ [0, b]}
such that x is continuous at t , tk, x(t−k ) = x(tk) and x(t+

k ) exist for all k = 1, 2, . . . ,m. When PC is endowed
with the norm ‖x‖PC = (sups∈J E|x(s)|2)1/2, (PC, ‖ · ‖PC) is a Banach space [32]. Next, we present an axiomatic
definition of the phase spaceB introduced in [7, 8] and [26], where the axioms of the spaceB are established
for F0-measurable functions from (−∞, 0] into H, with a semi-norm ‖ · ‖B which satisfies the following
axioms.

(A1) If x : (−∞, b] → H, b > 0 is such that x0 ∈ B and x|[0,b] ∈ PC, then, for every t ∈ J, the following
conditions hold:

(1) xt ∈ B,
(2) |x(t)| ≤ L‖xt‖B,
(3) ‖xt‖B ≤ Γ(t) sup0≤s≤t |x(s)| + N(t)‖x0‖B,

where L > 0 is a constant; Γ, N : [0,+∞) → [1,+∞) are mappings. Γ is continuous and N is locally
bounded. L, Γ, N are independent on x(·).

(A2) The space B is complete.

Then we have the following useful lemma (see [26]).

Lemma 2.1. Let x : (−∞, b] → H be an Ft adapted measurable process such that the F0 adapted process x0 = ϕ ∈
L2(Ω,B), then

E‖xs‖B ≤ NbE‖ϕ‖B + ΓbE( sup
0≤s≤b

|x(s)|), (3)

where Nb = supt∈J{N(t)} and Γb = supt∈J{Γ(t)}.

Denote byM2((−∞, b],H) be the space of all H-valued càdlàg measurable processes x = {x(t)}−∞<t≤b such
that
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(i) x0 = ϕ ∈ B and x(t) is Ft-adapted on [0, b];
(ii) endow the spaceM2((−∞, b],H) with the norm

‖x‖2
M2 = E‖ϕ‖2

B
+ E(sup

t∈J
|x(t)|2) < ∞. (4)

ThenM2((−∞, b],H) with the norm (4) is a Banach space, in the following of this paper, we use ‖ · ‖ for this
norm.

Definition 2.2. A stochastic process x(t) : t ∈ (−∞, b]→ H is called a mild solution of (1) if
(i) x(t) is measurable and x(t) is Ft-adapted for t ∈ [0, b], and xt (t ∈ [0, b]) is B-valued;

(ii)
∫ b

0 ‖x(s)‖2ds < ∞, P-a.s.;
(iii) x(t) has càdlàg path on t ∈ [0, b] a.s. and x(t) satisfies the following integral equation for each t ∈ [0, b],

x(t) = Sq(t)ϕ(0) +

∫ t

0
Sq(s)[x1 − 1(0, ϕ)]ds +

∑
ti<t

Sq(t − ti)Ii(xti ) (5)

+
∑
ti<t

∫ t

ti

Sq(t − s)[Ji(xti ) − 1(ti, xti + Ii(xti )) + 1(ti, xti )]ds

+

∫ t

0
Sq(t − s)1(s, xs)ds +

∫ t

0
Tq(t − s) f (s, xs)ds +

∫ t

0
Tq(t − s)σ(s, xs)dw(s),

where Sq(t), Tq(t) : R+ → L(H,H) (q = 1 + α) are given by

Sq(t) = Eq,1(Atq) =
1

2πi

∫
Br

eλtλq−1

λq − A
dλ, (6)

Tq(t) = tq−1Eq,q(Atq) =
1

2πi

∫
Br

eλt

λq − A
dλ, (7)

and Br denotes the Bromwich path [30];
(iv) x0 = ϕ ∈ B.

Remark 2.3. We should mention an important property of Sγ(t) and Tγ(t), that is there exist positive numbers M
and Mb such that ‖Sγ(t)‖L(H,H) ≤M and ‖Tγ(t)‖L(H,H) ≤ tγ−1Mb for t ∈ J, γ ∈ (0, 2) ([15]), which plays an important
role in the following discussion.

Lemma 2.4. (Bihari’s inequality) Assume T > 0, u0 ≥ 0 and u(t), v(t) be continuous functions on [0,T]. Let
κ : R+ → R+ be a concave continuous and nondecreasing function such that κ(r) > 0 for all r > 0. If

u(t) ≤ u0 +

∫ t

0
v(s)κ(u(s))ds for all 0 ≤ t ≤ T,

then

u(t) ≤ G−1(G(u0) +

∫ t

0
v(s)ds)

and for all t ∈ [0,T], it holds that

G(u0) +

∫ t

0
v(s)ds ∈ Dom(G−1),

where G(r) =
∫ r

1
ds
κ(s) , r ≥ 0 and G−1 is the inverse function of G. In particular, if u0 = 0 and

∫
0+

ds
κ(s) = ∞, then

u(t) = 0 for all 0 ≤ t ≤ T.

Lemma 2.5. ([25]) Let the assumption of Lemma 2.4 hold and v(t) ≥ 0 for all t ∈ [0,T]. If for all ε > 0, there exists
t1 ≥ 0 for all 0 ≤ u0 ≤ ε,

∫ T

t1
v(s)ds ≤

∫ ε
u0

1
κ(s) ds holds. Then for every t ∈ [t1,T], the estimates u(t) ≤ ε holds.
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3. Existence of the Mild Solution

In this section, we first make the following hypotheses.

(H1) 1, f : J × B → H and σ : J × B → L0
2 satisfy

|1(t, ϕ) − 1(t, φ)|2 ∨ | f (t, ϕ) − f (t, φ)|2 ∨ ‖σ(t, ϕ) − σ(t, φ)‖2
L

0
2
≤ κ(‖ϕ − φ‖2

B
), for all t ∈ J and ϕ,φ ∈ B,

where κ(·) is a concave, nondecreasing and continuous function from R+ to R+ such that κ(0) = 0,
κ(u) > 0 for u > 0 and

∫
0+

ds
κ(s) = ∞.

(H2) Ik, Jk : B → H are continuous and there are positive constants pk, qk such that for each ϕ,φ ∈ B,

|Ik(ϕ) − Ik(φ)|2 ≤ pk‖ϕ − φ‖
2
B
, |Jk(ϕ) − Jk(φ)|2 ≤ qk‖ϕ − φ‖

2
B

(k = 1, 2, . . . ,m).

(H3) |1(t, 0)|2 ∨ | f (t, 0)|2 ∨ ‖σ(t, 0)‖2
L

0
2
≤ K, K is a positive constant, and Ik(0) = 0, Jk(0) = 0 (k = 1, 2, . . . ,m).

We consider the sequence of successive approximations defined as follows:

x0(t) = Sq(t)ϕ(0) +

∫ t

0
Sq(s)[x1 − 1(0, ϕ)]ds, t ∈ J, (8)

xn(t) = Sq(t)ϕ(0) +

∫ t

0
Sq(s)[x1 − 1(0, ϕ)]ds +

∑
ti<t

Sq(t − ti)Ii(xn−1
ti

)

+
∑
ti<t

∫ t

ti

Sq(t − s)[Ji(xn−1
ti

) − 1(ti, xn−1
ti

+ Ii(xn−1
ti

)) + 1(ti, xn−1
ti

)]ds +

∫ t

0
Sq(t − s)1(s, xn−1

s )ds

+

∫ t

0
Tq(t − s) f (s, xn−1

s )ds +

∫ t

0
Tq(t − s)σ(s, xn−1

s )dw(s), t ∈ J,n ≥ 1, (9)

xn(t) = ϕ(t), −∞ < t ≤ 0,n ≥ 1. (10)

Lemma 3.1. Assume the (H1)-(H3) hold, and 7mM2Γb
∑m

i=1 pi+14mM2b2Γb
∑m

i=1 qi < 1, then xn(t) ∈ M2((−∞, b]; H)
for all t ∈ (−∞, b], n ≥ 0, that is

E‖xn(t)‖2 ≤ M̃, n = 1, 2 . . . . (11)

where M̃ is a positive constant.

Proof. In what follows, we will use K to stand for generic positive real constants and its values may change
between occurrences. Obviously, x0(t) ∈ M2((−∞, b],H) and

E|xn(t)|2 ≤ 7E|Sq(t)ϕ(0)|2 + 7E|
∫ t

0
Sq(s)[x1 − 1(0, ϕ)]ds|2 + 7E|

∑
ti<t

Sq(t − ti)Ii(xn−1
ti

)|2

+7E|
∑
ti<t

∫ t

ti

Sq(t − s)[Ji(xn−1
ti

) − 1(ti, xn−1
ti

+ Ii(xn−1
ti

)) + 1(ti, xn−1
ti

)]ds|2

+7E|
∫ t

0
Sq(t − s)1(s, xn−1

s )ds|2 + 7E|
∫ t

0
Tq(t − s) f (s, xn−1

s )ds)|2

+7E|
∫ t

0
Tq(t − s)σ(s, xn−1

s )dw(s)|2

= Λ1 + Λ2 + Λ3 + Λ4 + Λ5 + Λ6 + Λ7.

It’s easy to get the estimations Λ1 ≤ 7M2E|ϕ(0)|2, Λ2 ≤ 21M2b2(|x1|
2 + κ(‖ϕ‖2

B
) + K), and

Λ3 ≤ 7mM2
∑
ti<t

E‖Ii(xn−1
ti

)‖2
B
≤ 7mM2

∑
ti<t

piE‖xn−1
ti
‖B.
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By the fact ‖Sq(t)‖L(H,H) ≤M and (H2)-(H3), we have

Λ4 ≤ 14E|
∑
ti<t

∫ t

ti

Sq(t − s)Ji(xn
ti
)ds|2 + 14E|

∑
ti<t

∫ t

ti

Sq(t − s)(1(ti, xn−1
ti

+ Ii(xn−1
ti

)) − 1(ti, xn−1
ti

))ds|2

≤ 14mM2b
∑
ti<t

E
∫ t

ti

|Ji(xti )|
2ds + 14mM2b

∑
ti<t

E
∫ t

ti

κ(|I(xn−1
ti

)|2)ds

≤ 14mM2b2
∑
ti<t

qiE‖xn−1
ti
‖

2
B

+ 14mM2b
∑
ti<t

∫ t

ti

κ(E(pi‖xn−1
ti

)‖2
B

)ds,

and

Λ5 ≤ 7E|
∫ t

0
Sq(t − s)1(s, xn−1

s )ds|2 ≤ 7M2bE
∫ t

0
|1(s, xn−1

s ) − 1(s, 0) + 1(s, 0)|2ds

≤ 14M2bE
∫ t

0
[|1(s, xn−1

s ) − 1(s, 0)|2 + |1(s, 0)|2]ds

≤ 14M2b
∫ t

0
κ(E‖xn−1

s ‖
2
B

)ds + 14M2b2K.

Since ‖Tq(t)‖L(H,H) ≤ tγ−1Mb and (H1)-(H3), we get the following inequality

Λ6 ≤ 7E|
∫ t

0
Tq(t − s) f (s, xn−1

s )ds|2 ≤ 7M2
b

b2q−1

2q − 1
E
∫ t

0
| f (s, xn−1

s ) − f (s, 0) + f (s, 0)|2ds

≤ 14M2
b

b2q−1

2q − 1

∫ t

0
κ(E‖xn−1

s ‖
2
B

)ds + 14M2
b

b2q

2q − 1
K.

We apply the Hölder inequality and the B-D-G inequality to Λ7, combining(H1)-(H3), we can obtain

Λ7 ≤ 7E|
∫ t

0
Tq(t − s)σ(s, xn−1

s )dw(s)|2

≤ 7M2
bb2q−2E

∫ t

0
‖σ(s, xn−1

s ) − σ(s, 0) + σ(s, 0)‖2
L

0
2
ds

≤ 14M2
bb2q−2

∫ t

0
κ(E‖xn−1

s ‖
2
B

)ds + 14M2
bb2q−1K.

Let

c1 = 7M2E|ϕ(0)|2 + 21M2b2(|x1|
2 + κ(‖ϕ‖2

B
) + K) + 14M2b2K + 14M2

b
b2q

2q − 1
K + 14M2

bb2q−1,

the estimations for Λi, i = 1, 2, . . . , 7, together yields

E|xn(t)|2 ≤ c1 + 7mM2
∑
ti<t

piE‖xn−1
ti
‖B + 14mM2b2

∑
ti<t

qiE‖xn−1
ti
‖

2
B

+ 14mM2b
∑
ti<t

∫ t

ti

κ(E(pi‖xn−1
ti

)‖2
B

)ds

+(14M2b + 14M2
b

b2q−1

2q − 1
+ 14M2

bb2q−2)
∫ t

0
κ(E‖xn−1

s ‖
2
B

)ds.
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By Lemma 2.1 and the property ofκ(·), we can find a pair of positive constantsα and β, such thatκ(u) ≤ α+βu,
∀ u ≥ 0. Then

E sup
0≤s≤t
|xn(s)|2 ≤ c1 + 7mM2Nb

∑
ti<t

piE‖ϕ‖B + 14mM2b2
∑
ti<t

piE‖ϕ‖B + 14m2M2b2α

+(14M2b + 14M2
b

b2q−1

2q − 1
+ 14M2

bb2q−2)bα

+(7mM2Γb

∑
ti<t

pi + 14mM2b2Γb

∑
ti<t

qi)E sup
0≤s≤t
|xn−1(s)|2

+(14mM2b
∑
ti<t

pi + 14M2b + 14M2
b

b2q−1

2q − 1
+ 14M2

bb2q−2)βE
∫ t

0
sup

0≤θ≤s
|xn−1(θ)|ds,

and

max
1≤n≤k̃
{E sup

0≤s≤t
|xn(s)|2} ≤ c1 + 7mM2Nb

∑
ti<t

piE‖ϕ‖B + 14mM2b2
∑
ti<t

piE‖ϕ‖B + 14m2M2bα

+(14M2b + 14M2
b

b2q−1

2q − 1
+ 14M2

b
b2q−1

2q − 1
)bα

+(7mM2Γb

∑
ti<t

pi + 14mM2b2Γb

∑
ti<t

qi) max
1≤n≤k̃
{E sup

0≤s≤t
|xn(s)|2}

+(14mM2b
∑
ti<t

pi + 14M2b + 14M2
b

b2q−1

2q − 1
+ 14M2

b
b2q−1

2q − 1
)β

∫ t

0
max
1≤n≤k̃
{E sup

0≤s≤t
|xn(s)|2}ds,

where k̃ is an arbitrary positive integer. If we let

c2 =
c1 + 7mM2Nb

∑
ti<t piE‖ϕ‖B + 14mM2b2 ∑

ti<t piE‖ϕ‖B
1 − 7mM2Γb

∑
ti<t pi − 14mM2b2Γb

∑
ti<t qi

+
14m2M2bα + (14M2b2 + 14M2

bb2q + 14M2
bb2q)α

1 − 7mM2Γb
∑

ti<t pi − 14mM2b2Γb
∑

ti<t qi

c3 =
(14mM2b

∑
ti<t pi + 14M2b + 14M2

b
b2q−1

2q−1 + 14M2
bb2q−2)β

1 − 7mM2Γb
∑

ti<t pi − 14mM2b2Γb
∑

ti<t qi
,

then

max
1≤n≤k̃
{E sup

0≤s≤t
|xn(s)|2} ≤ c2 + c3

∫ t

0
max
1≤n≤k̃
{E sup

0≤s≤t
|xn(s)|2}ds. (12)

By the Gronwall inequality, we have

max
1≤n≤k̃
{E sup

0≤s≤t
|xn(s)|2} ≤ c2ec3 .

Due to the arbitrary of k̃, we have

E sup
0≤s≤t
|xn(s)|2 ≤ c2ec3 = M′, for all 0 ≤ t ≤ b, n ≥ 1.

Consequently,

‖xn(t)‖2 ≤ E‖ϕ‖2
B

+ E( sup
0≤s≤b

|xn(s)|2) ≤ E‖ϕ‖2
B

+ M′ < ∞, (13)

so we can take M̃ = E‖ϕ‖2
B

+ M′. This completes the proof of Lemma 3.1.
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Theorem 3.2. If (H1)-(H3) and

max{7mM2Γb

m∑
i=1

pi + 14mM2b2Γb

m∑
i=1

qi, 7mM2
m∑

i=1

pi + 7mM2b
m∑

i=1

qi} < 1 (14)

hold, then the Cauchy problem (1) has a unique mild solution on (−∞, b].

Proof. Since

|xn+m(t) − xn(t)|2 = |

∑
ti<t

Sq(t − ti)[Ii(xm+n−1
ti

) − Ii(xn−1
ti

)] +
∑
ti<t

∫ t

ti

Sq(t − s)[J(xm+n−1
ti

) − J(xn−1
ti

)]ds

−

∑
ti<t

∫ t

ti

Sq(t − s)[1(ti, xm+n−1
ti

+ Ii(xm+n−1
ti

)) − 1(ti, xn−1
ti

+ Ii(xn−1
ti

))

+1(ti, xm+n−1
ti

) − 1(ti, xn−1
ti

)]ds

+

∫ t

0
Sq(t − s)[1(s, xn+m−1

s ) − 1(s, xn−1
s )]ds +

∫ t

0
Tq(t − s)[ f (s, xn+m−1

s ) − f (s, xn−1
s )]ds

+

∫ t

0
Tq(t − s)[σ(s, xn+m−1

s ) − σ(s, xn−1
s )]dw(s)|2.

By the fact ‖Sq(t)‖L(H,H) ≤M, ‖Tq(t)‖L(H,H) ≤ tq−1Mb for t ∈ J and (H1)-(H3), we get

E|xn+m(t) − xn(t)|2 ≤ 7E|
∑
ti<t

Sq(t − ti)[Ii(xm+n−1
ti

) − Ii(xn−1
ti

)]|2 + 7E|
∑
ti<t

∫ t

ti

Sq(t − s)[J(xm+n−1
ti

) − J(xn−1
ti

)]ds|2

+7E|
∑
ti<t

∫ t

ti

Sq(t − s)[1(ti, xm+n−1
ti

+ Ii(xm+n−1
ti

)) − 1(ti, xn−1
ti

+ Ii(xn−1
ti

))]ds|2

+7E|
∑
ti<t

∫ t

ti

Sq(t − s)[1(ti, xm+n−1
ti

) − 1(ti, xn−1
ti

)]ds|2

+7E|
∫ t

0
Sq(t − s)[1(s, xn+m−1

s ) − 1(s, xn−1
s )]ds|2

+7E|
∫ t

0
Tq(t − s)[ f (s, xn+m−1

s ) − f (s, xn−1
s )]ds|2

+7E|
∫ t

0
Tq(t − s)[σ(s, xn+m−1

s ) − σ(s, xn−1
s )]dw(s)|2

≤ 7mM2
∑
ti<t

piE sup
0≤s≤t
|xm+n−1(s) − xn−1(s)|2 + 7mM2b

∑
ti<t

qiE sup
0≤s≤t
|xm+n−1(s) − xn−1(s)|2

+7mM2
∑
ti<t

∫ t

ti

κ((1 + pi)E sup
0≤s≤ti

|xm+n−1(s) − xn−1(s)|2)ds

+7mM2
∑
ti<t

∫ t

ti

κ(E sup
0≤s≤ti

|xm+n−1(s) − xn−1(s)|2)ds

+7M2b
∫ t

0
κ(E sup

0≤r≤s
|xm+n−1(r) − xn−1(r)|2)ds

+7M2
b

b2q−1

2q − 1

∫ t

0
κ(E sup

0≤r≤s
|xm+n−1(r) − xn−1(r)|2)ds

+7M2
bb2q−2

∫ t

0
κ(E sup

0≤r≤s
|xm+n−1(r) − xn−1(r)|2)ds
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= (7mM2
∑
ti<t

pi + 7mM2b
∑
ti<t

qi)E sup
0≤s≤t
|xm+n−1(s) − xn−1(s)|2

+7mM2
∑
ti<t

∫ t

ti

κ((1 + pi)E sup
0≤r≤ti

|xm+n−1(r) − xn−1(r)|2)ds

+(7m2M2 + 7M2b + 7M2
b

b2q−1

2q − 1
+ 7M2

bb2q)
∫ t

0
κ(E sup

0≤r≤s
|xm+n−1(r) − xn−1(r)|2)ds.

Let p̄ = max1≤i≤m pi. Since∫ t

ti

κ
(
(1 + pi)E sup

0≤r≤ti

|xm+n−1(r) − xn−1(r)|2
)
ds

≤

∫ t

ti

κ
(
(1 + pi)E sup

0≤r≤s
|xm+n−1(r) − xn−1(r)|2

)
ds

≤

∫ t

0
κ
(
(1 + p̄)E sup

0≤r≤s
|xm+n−1(r) − xn−1(r)|2

)
ds (15)

and κ̃ ◦ a(·) = κ(a(·)) is also a concave function, we get

E sup
0≤s≤t
|xn+m(s) − xn(s)|2

≤ (7mM2
∑
ti<t

pi + 7mM2b
∑
ti<t

qi)E sup
0≤s≤t
|xm+n−1(s) − xn−1(s)|2 (16)

+(14m2M2 + 7M2b + 7M2
b

b2q−1

2q − 1
+ 7M2

bb2q−2)
∫ t

0
κ̃(E sup

0≤r≤s
|xm+n−1(r) − xn−1(r)|2)ds.

It is easy to see

E sup
0≤s≤t
|xn+m(s) − xn(s)|2 − (7mM2

∑
ti<t

pi + 7mM2b
∑
ti<t

qi)E sup
0≤s≤t
|xm+n−1(s) − xn−1(s)|2 (17)

≤ (14m2M2 + 7M2b + 7M2
b

b2q−1

2q − 1
+ 7M2

bb2q−2)
∫ t

0
κ̃(E sup

0≤r≤s
|xm+n−1(r) − xn−1(r)|2)ds.

From Lemma 3.1, we get

E sup
0≤s≤t
|xn+m(s) − xn(s)|2 − (7mM2

∑
ti<t

pi + 7mM2b
∑
ti<t

qi)E sup
0≤s≤t
|xm+n−1(s) − xn−1(s)|2

≤ (14m2M2 + 7M2b + 7M2
b

b2q−1

2q − 1
+ 7M2

bb2q−2)
∫ t

0
κ̃(2M′)ds

≤ c4κ̃(2M′)t = c5t. (18)

Define

ϕ1(t) = c5t, ϕn+1(t) = c4

∫ t

0
κ̃(ϕn(s))ds, n ≥ 1. (19)

Choose b1 ∈ [0, b) such that c4κ̃(c5t) ≤ c5, for all 0 ≤ t ≤ b1.
We give the statement that for any t ∈ [0, b1), {ϕn(t)} is a decreasing sequence. In fact

ϕ2(t) = c4

∫ t

0
κ̃(ϕ1(s))ds = c4

∫ t

0
κ̃(c5s)ds ≤

∫ t

0
c5ds = ϕ1(t).
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By induction, we get

ϕn+1(t) = c4

∫ t

0
κ̃(ϕn(s))ds ≤ c4

∫ t

0
κ̃(ϕn−1(s))ds = ϕn(t), ∀ 0 ≤ t ≤ b1. (20)

Therefore, the statement is true and we can define the function φ(t) as

φ(t) = lim
n→∞

ϕn(t) = lim
n→∞

c4

∫ t

0
κ̃(ϕn−1(s))ds = lim

n→∞
c4

∫ t

0
κ̃(φ(s))ds, 0 ≤ t ≤ b1. (21)

By the Bihari’s inequality, we get φ(t) = 0 for all 0 ≤ t ≤ b1. It means that for all 0 ≤ t ≤ b1,

lim
n→∞

[E sup
0≤s≤t
|xn+m(s) − xn(s)|2 − (7mM2

∑
ti<t

pi + 7mM2b
∑
ti<t

qi)E sup
0≤s≤t
|xm+n−1(s) − xn−1(s)|2] = 0. (22)

By using the condition 7mM2 ∑
ti<t pi + 7mM2b

∑
ti<t qi < 1 and (22), we get

lim
n→∞

E|xn+m(t) − xn(t)|2 = 0, 0 ≤ t ≤ b1, (23)

which means that {xn(t)} is a Cauchy sequence in L2(Ω,H). Let limn→∞ xn(t) = x(t), obviously,

‖x(t)‖2 ≤ M̃, 0 ≤ t ≤ b1.

Taking limits on both side of equation (9), for all t ∈ [0, b1], we have

x(t) = Sq(t)ϕ(0) +

∫ t

0
Sq(s)[x1 − 1(0, ϕ)]ds +

∑
ti<t

Sq(t − ti)Ii(xti )

+
∑
ti<t

∫ t

ti

Sq(t − s)[Ji(xti ) − 1(ti, xti + Ii(xti )) + 1(ti, xti )]ds (24)

+

∫ t

0
Sq(t − s)1(s, xs)ds +

∫ t

0
Tq(t − s) f (s, xs)ds +

∫ t

0
Tq(t − s)σ(s, xs)dw(s).

So we have presented the existence of the mild solution of problem (1) on [0, b1]. By iteration we can get
the existence of the mild solution of problem (1) on [0, b].

Suppose that x(t) and x̄(t) are two solutions of (1). Using the similar discussion as (22), we get

[1 − (7mM2
∑
ti<t

pi + 7mM2b
∑
ti<t

qi)]E sup
0≤s≤t
|x(s) − x̄(s)|2 (25)

≤ (14m2M2 + 7M2b + 7M2
b

b2q−1

2q − 1
+ 7M2

bb2q−2)
∫ t

0
κ̃(E sup

0≤r≤s
|x(r) − x̄(r)|2)ds,

the Bihari inequality implies E|x(t) − x̄(t)|2 = 0, and we have shown the existence and the uniqueness of the
mild solution of (1).

4. Stability of Solutions

In this section, we give the continuous dependence of solutions on the initial values by means of the
Bihari’s inequality. We first propose the following assumption on 1 instead of (H1),

(H4) 1 : J × B → H satisfies |1(t, ϕ) − 1(t, φ)|2 ≤ K1‖ϕ − φ‖2B, where K1 is a positive constant.

Definition 4.1. [26] A mild solution xϕ,x1 (t) of Cauchy problem (1) with initial value (ϕ, x1) is said to be stable in
square if for all ε > 0 there exists δ > 0 such that

E sup
0≤s≤b

|xϕ,x1 (s) − yφ,y1 (s)| ≤ ε, when E‖ϕ − φ‖2
B

+ E|x1 − y1|
2 < δ, (26)

where yφ,y1 (t) is another solution of (1) with initial value (φ, y1).



S. Zhao, M. Song / Filomat 31:13 (2017), 4261–4274 4271

Theorem 4.2. Assume 21mM2 ∑m
i=1 pi + 21mM2b

∑m
i=1 qi < 1, the conditions of Theorem 3.2 are satisfied and 1

satisfied (H4), then the mild solution of (1) is stable in mean square.

Proof. Since the proof is similar to the Theorem 18 of [26], we here give only the sketch of the proof. By
using the same argument as that in Theorem 3.2, we get that for all 0 ≤ t ≤ b ,

E sup
0≤s≤t
|xϕ,x1 (s) − yφ,y1 (s)|2 ≤ 3E|Sq(t)ϕ(0) − Sq(t)φ(0)|2 + 3E|

∫ t

0
Sq(s)(|x1 − y1|H + ‖ϕ − φ‖B)ds|2

+3(7mM2
∑
ti<t

pi + 7mM2b
∑
ti<t

qi)E sup
0≤s≤t
|xϕ,x1 (s) − yφ,y1 (s)|2

+3(14m2M2 + 7M2b + 7M2
b

b2q−1

2q − 1
+ 7M2

bb2q−2)
∫ t

0
κ̃(E sup

0≤r≤s
|xϕ,x1 (s) − yφ,y1 (s)|2)ds.

Then we get

E sup
0≤s≤t
|xϕ,x1 (s) − yφ,y1 (s)| ≤

ν
Λ

(|x1 − y1|
2 + ‖ϕ − φ‖B) +

ν̃
Λ

∫ t

0
κ̃(E sup

0≤r≤s
|xϕ,x1 (s) − yφ,y1 (s)|2)ds,

where ν = max{6M2b2, 6M2b2K1 + 3M2L2
}, ν̃ = 3(14m2M2 + 7M2b + 7M2

b
b2q−1

2q−1 + 7M2
bb2q−2), and Λ = 1 −

3(7mM2 ∑
ti<t pi + 7mM2b

∑
ti<t qi). The function κ̃(u) is defined in (16) which has the property as in Lemma

2.4. For any ε > 0, letting ε1 = 1
2ε, we have lims→0

∫ ε1

s
1
κ̃(u) du = ∞. There exists a positive constant δ and

δ < ε1 such that
∫ ε1

δ
1
κ̃(u) du ≥ T. Let u0 = ν

Λ (|x1 − y1|
2 + ‖ϕ − φ‖B), u(t) = E sup0≤s≤t |x

ϕ,x1 (s) − yφ,y1 (s)|, v(t) = 1.

If u0 ≤ δ ≤ ε1, then Lemma 2.5 shows that
∫ ε1

u0

1
κ̃(u) du ≥

∫ ε1

δ
1
κ̃(u) du ≥ T =

∫ b

0 v(s)ds. So for any t ∈ [0, b], the
estimate u(t) ≤ ε1 ≤ ε holds. This completes the proof of the theorem.

5. Application

In this section, an example is provided to illustrate the results obtained in previous two sections.
In the following, we assume H = L2([0, π]), B = PC0 × L2(ρ,H) (see [10]) be the space formed of
all functions ϕ : (−∞, 0] → H such that ϕ|[0,1] ∈ PC([0, 1],H), ϕ(·) is Lebesgue-measurable on (−∞, 0]
and

∫ 0

−∞
ρ(s) sups≤θ≤0(E|ψ(θ)|2)1/2ds < ∞, where ρ : (−∞, 0] → (0,∞) is a continuous function with 1 =∫ 0

−∞
ρ(t)dt < ∞. The norm ‖ · ‖B is defined by

‖ϕ‖B := [
∫ 0

−∞

ρ(s) sup
s≤θ≤0

(E|ψ(θ)|2)ds]1/2 < ∞,

then L = 1, Γ1 = 1 +
∫ 0

−∞
ρ(t)dt = 2. We consider the following initial problem.

Dα
t [u′t(t, x) −

∫ t

−∞

∫ π
0 h(s − t, η, x)u(s, η)dηds] = ∂2

∂x2 u(t, x) + f (t,
∫ 0

−∞
p0(t, s − t)u(s, x)ds)

+σ(t,
∫ 0

−∞
q0(t, s − t)u(s, x) dw(t)

dt , t ∈ J, t , ti;

4u(ti, x) =
∫ ti

−∞
p̄i(s − ti)u(s, x)ds,

4u′(ti, x) =
∫ ti

−∞
q̄i(s − ti)

u(s,x)
1+|u(s,x)|ds, i = 1, 2, . . . ,m;

u(t, 0) = u(t, π) = 0, t ∈ [0, 1]; u(θ, x) = ϕ(θ, x), θ ∈ (−∞, 0], x ∈ [0, π];
∂
∂t u(0, x) = z(x), x ∈ [0, π].

(27)

where w(t) is an H-valued Winer process and J = [0, 1].
Obviously, the operator A : H → H by A = ∂2

∂x2 with domain D(A) = {z ∈ H : z′′ ∈ H, z(0) = z(π) = 0} is
the infinitesimal generator of a strongly continuously cosine family[22]. According to the estimates on the
norms of the operators of Theorems 3.3 and 3.4 in [28], we know the operators Sq(t) and Tq(t) in the mild
solution of (27) satisfy ‖Sq(t)‖L(H,H) ≤ 1, ‖Tq(t)‖L(H,H) ≤ 3. We suppose that
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(a) h(s, η, x), ∂h(s,η,x)
∂x are measurable, h(s, η, 0) = h(s, η, π) = 0,

L0 = max{[
∫ π

0

∫ 0

−∞

∫ π
0

1
ρ(s) (

∂kh(s,η,x)
∂xk )2dηdsdx]

1
2 : k = 0, 1} < ∞,

(b) p0, q0 ∈ C(R2,R+), moreover, (
∫ 0

−∞
p2

0(t, θ)ρ−1(θ)dθ)
1
2 = d1(t) ∈ C(J,R+) and (

∫ 0

−∞
q2

0(t, θ)ρ−1(θ)dθ)
1
2 =

d2(t) ∈ C(J,R+).

(c) p̄i(θ), q̄i(θ) ∈ C(R,R+), moreover, pi = (
∫ 0

−∞

p̄2
i (θ)
ρ(θ) dθ)

1
2 < ∞, and qi = (

∫ 0

−∞

q̄2
i (θ)
ρ(θ) dθ)

1
2 < ∞, i = 1, 2, . . . ,m.

Let L = max{L0,maxt∈J{d1(t)},maxt∈J{d2(t)}}, since we can take κ(ϑ) = L · ϑ which is a concave function as in
(H1), so (H1)-(H3) hold.

According to Theorem 3.2, we get the conclusion that when

max{14m
m∑

i=1

pi + 28m
m∑

i=1

qi, 7m
m∑

i=1

pi + 7m
m∑

i=1

qi} < 1, (28)

problem (27) has a unique mild solution on (−∞, 1].
Obviously, in the Cauchy problem (27), 1(t, ·), Ii(·) are bounded linear operators and ‖Ji(φ)‖ ≤ qi‖φ‖B.

More precisely, let m = 2 and we define ρ(t) = 2e2t, p̄i(t) =
√

2e86t, q̄i(t) =
√

2e86t for t ∈ (−∞, 0]. By
computation, pi = 1

170 , qi = 1
170 , i = 1, 2. We set the operators 1, f and σ as following,

h(s, η, x) = e
3
2 s sin η,

f (t,
∫ 0

−∞

p0(t, s − t)u(s, x)ds) =
e−t
|

∫ t

−∞
p0(s − t)u(s, x)ds|

(12 + et)(1 + |
∫ t

−∞
p0(s − t)u(s, x)ds|)

=
e−t
|

∫ t

−∞
e2(s−t)u(s, x)ds|

(12 + et)(1 + |
∫ t

−∞
e2(s−t)u(s, x)ds|)

,

σ(t,
∫ 0

−∞

q0(t, s − t)u(s, x)ds) =
et

12 + et

|

∫ t

−∞
q0(t, s − t)u(s, x)ds|

1 + |
∫ t

−∞
q0(s − t)u(s, x)ds|

=
et

12 + et

|

∫ t

−∞
e3(s−t)u(s, x)ds|

1 + |
∫ t

−∞
e3(s−t)u(s, x)ds|

,

then

‖

∫ 0

−∞

∫ π

0
h(s − t, η, x)u(s, η)dηds −

∫ 0

−∞

∫ π

0
h(s − t, η, x)v(s, η)dηds‖H

=

∫ 0

−∞

e3(s−t)

2es

∫ π

0
sin η(u(s, η) − v(s, η))dηds (29)

≤
e−3t

2
‖ut(θ, x) − vt(θ, x)‖B,

‖ f (t,
∫ 0

−∞

p0(s − t)u(s, x)ds) − f (t,
∫ 0

−∞

p0(s − t)v(s, x)ds)‖H

≤
1

12

(
|

∫ π

0
(
∫ 0

−∞

p0(s − t)[u(s, x) − v(s, x)]ds)2dx
) 1

2

≤
1
12

∫ 0

−∞

p2
0(s − t)
ρ(s)

ds
∫ 0

π
ρ(s) sup

s≤θ≤0
E|u(θ, ·) − v(θ, ·)|2Hds (30)

≤
e−4t

48
‖ut(θ, x) − vt(θ, x)‖B,
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and

‖σ(t,
∫ 0

−∞

q0(s − t)u(s, x)ds) − σ(t,
∫ 0

−∞

q0(s − t)v(s, x)ds)‖L0
2

≤
1
24

∫ 0

−∞

q2
0(s − t)
ρ(s)

∫ 0

−∞

ρ(s) sup
s≤θ≤0

E|u(θ, ·) − v(θ, ·)|2Hds (31)

≤
e−6t

96
‖ut(θ, x) − vt(θ, x)‖B.

So the inequality (28) holds, the initial problem (27) has a unique mild solution on (−∞, 1]. From inequality
(29), we know the assumption (H4) holds and 21mM2 ∑m

i=1 pi + 21mM2 ∑m
i=1 qi = 84

85 < 1, according to the
Theorem 4.2, the mild solution of the Cauchy problem (27) is stable in the mean square.

6. Conclusion

In this paper, we established the existence and uniqueness of mild solution of a class of stochastic
impulsive fractional differential evolution equations. The methods and techniques used in this paper are
under non-Lipschitz conditions with the Lipschitz conditions being regarded as a special case. We also
obtained sufficient conditions for the mild solution to be stable in the mean square. It would be of great
interest to extend these results to the stochastic fractional evolutions with delay and Piosson jumps. The
regularity of the solution of problem (1) is deserve to study and we will report our research in future work.
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