Graphs with Large Total Geodetic Number

Hossein Abdollahzadeh Ahangar ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Babol Noshirvani University of Technology, Shariati Ave., Babol, I.R. Iran, Postal Code: 47148-71167

Abstract

For two vertices u and v of a graph G, the set $I[u, v]$ consists of all vertices lying on some $u-v$ geodesic in G. If S is a set of vertices of G, then $I[S]$ is the union of all sets $I[u, v]$ for $u, v \in S$. A set of vertices $S \subseteq V(G)$ is a total geodetic set if $I[S]=V(G)$ and the subgraph $G[S]$ induced by S has no isolated vertex. The total geodetic number, denoted by $g_{t}(G)$, is the minimum cardinality among all total geodetic sets of G. In this paper, we characterize all connected graphs G of order $n \geq 3$ with $g_{t}(G)=n-1$.

1. Introduction

In this paper, we continue the study of total geodetic number in graphs. For notation and graph theory terminology, we follow West [20]. Specifically, let G be a simple connected graph with vertex set $V(G)=V$ and edge set $E(G)=E$. The integers $n=n(G)=|V(G)|$ and $m=m(G)=|E(G)|$ are the order and the size of the graph G, respectively. For two vertices x and y in a (connected) graph G, the distance $d_{G}(x, y)$ is the length of a shortest $x-y$ path in G. The girth of a graph G, denoted by $\operatorname{girth}(G)$, is the length of its shortest cycle. The girth of a graph with no cycle is defined to be 0 . The join $H \vee K$ of two disjoint graphs H and K is the graph obtained from their union by adding new edges joining each vertex of $V(H)$ to every vertex of $V(K)$. For a vertex x of G, the eccentricity $e_{G}(x)$ is the distance between x and a vertex farthest from x. The minimum eccentricity among the vertices of G is the $\operatorname{radius}, \operatorname{rad}(G)$, and the maximum eccentricity is its diameter, $\operatorname{diam}(G)$. A $x-y$ path of length $d_{G}(x, y)$ is called a $x-y$ geodesic. The geodetic interval $I[x, y]$ is the set consisting of x, y and all vertices lying in some $x-y$ geodesic of G, and for a nonempty subset S of $V(G)$, we define $I[S]=\cup_{x, y \in S} I[x, y]$.

A subset S of vertices of G is a geodetic set (or just GS) if $I[S]=V$. The geodetic number $g(G)$ is the minimum cardinality of a geodetic set of G. A $g(G)$-set is a geodetic set of G of size $g(G)$. The geodetic sets of a connected graph were introduced by Harary, Loukakis and Tsouros [14], as a tool for studying metric properties of connected graphs. It was shown in [7] that the determination of $g(G)$ is an NP-hard problem and its decision problem is NP-complete. The geodetic number and its variants have been studied by several authors (see for example [1, 2, 6, 7, 9-13, 15-19, 21]).

A set of vertices $S \subseteq V(G)$ is a total geodetic set (or just TGS) if $I[S]=V(G)$ and the subgraph $G[S]$ induced by S has no isolated vertex. The minimum cardinality among all total geodetic sets of G is called the total geodetic number and is denoted by $g_{t}(G)$. The total geodetic number of a connected graph was introduced by Abdollahzadeh Ahangar and Samodivkin in [5]. Very recently, Abdollahzadeh Ahangar and Najimi

[^0]introduced the concept of total restrained geodetic number in [3], and continued the study on this new parameter by Abdollahzadeh Ahangar et al. in [4].

A vertex of G is simplicial if the subgraph induced by its neighborhood is complete. In particular, every endvertex is simplicial. The set of all simplicial vertices of a graph G is denoted by $\operatorname{Ext}(G)$. A vertex of G is a stem if it is adjacent to an endvertex. The sets of all endvertices and all stems are denoted by $L(G)$ and $\operatorname{Stem}(G)$, respectively. In K_{2} a vertex is both an endvertex and a stem. A vertex v in G is said to be a g_{t}-fixed vertex of G if v belongs to every $g_{t}(G)$-set. The set of all g_{t}-fixed vertices of a graph G is denoted by $F i_{t}(G)$.

The main aim of this paper is to characterize all connected graphs G of order $n \geq 3$ with $g_{t}(G)=n-1$.
We make use of the following results in this paper.

Theorem 1.1. ([8]) Let G be a connected graph of order $n \geq 3$. Then $g(G)=n-1$ if and only if G is the join of K_{1} and pairwise disjoint complete graphs $K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{r}}$, that is, $G=\left(K_{n_{1}} \cup K_{n_{2}} \cup \ldots K_{n_{r}}\right) \vee K_{1}$, where $r \geq 2, n_{1}, n_{2}, \ldots, n_{r}$ are positive integers with $n_{1}+n_{2}+\ldots+n_{r}=n-1$.

Proposition 1.2. ([5]) For $n \geq 3, g_{t}\left(C_{n}\right)=4$ when $n \geq 5$ and $g_{t}\left(C_{n}\right)=3$ when $n \in\{3,4\}$.
Observation 1.3. ([5]) Let G be a connected graph of order $n \geq 2$. Then $\operatorname{Stem}(G) \cup \operatorname{Ext}(G) \subseteq \operatorname{Fi}_{t}(G)$. In particular, $g_{t}(G) \geq|E x t(G)|+|\operatorname{Stem}(G)|$.

Proposition 1.4. Let G be a connected graph of order n. Then $g_{t}(G)=n$ if and only if every vertex of G is simplicial or a stem.

Proof. The sufficiency follows from Observation 1.3. To prove the necessity, assume that $g_{t}(G)=n$. If G has a vertex v that is not simplicial or a stem, then obviously $V(G)-\{v\}$ is a total geodetic set of G which leads to a contradiction. Therefore, every vertex of G is simplicial or a stem.

2. Upper bounds on the total geodetic number

In this section we give several sufficient conditions for a graph of order n to have total geodetic number at most $n-2$.

A cut-vertex is a vertex whose deletion results in a graph with more components than the original graph. The set of all cut-vertices of G, is denoted by $\operatorname{Cut}(G)$.

Proposition 2.1. Let G be a connected graph of order n. If there exist two vertices $u_{1}, u_{2} \in \operatorname{Cut}(G)-\operatorname{Stem}(G)$ with $d\left(u_{1}, u_{2}\right) \geq 2$, then $g_{t}(G) \leq n-2$.

Proof. By the assumption, each component of $G-u_{1}$ and $G-u_{2}$ have order at least 2. Let I be the set of all isolated vertices of $G-\left\{u_{1}, u_{2}\right\}$. If $I=\emptyset$, then clearly $V(G)-\left\{u_{1}, u_{2}\right\}$ is a total geodetic set of G that implies $g_{t}(G) \leq n-2$. If $|I| \geq 2$, then clearly $V(G)-I$ is a total geodetic set of G implying that $g_{t}(G) \leq n-2$. Assume now that $I=\{w\}$. It follows that $\operatorname{deg}(w)=2$ and w is adjacent to u_{1} and u_{2}. Suppose G_{1} is a component of $G-u_{1}$ not containing u_{2} and G_{2} is a component of $G-u_{2}$ not containing u_{1}. Let $w_{1} \in V\left(G_{1}\right)$ and $w_{2} \in V\left(G_{2}\right)$. Then clearly $\left|V\left(G_{i}\right)\right| \geq 2$ for $i=1,2$ and every $w_{1}-w_{2}$ geodesic contains u, v and w. It follows that $V(G)-\{u, v, w\}$ is a total geodetic set of G yielding $g_{t}(G) \leq n-3$. This completes the proof.

Next result is an immediate consequence of Proposition 2.1.
Corollary 2.2. If G is a graph of order n with $g_{t}(G)=n-1$, then the induced subgraph $G[\operatorname{Cut}(G)-\operatorname{Stem}(G)]$ is complete.

A vertex cut of a connected graph G is a set $S \subseteq V(G)$ such that $G-S$ has more than one component. The connectivity of G, written $\kappa(G)$, is the minimum size of a vertex set S such that $G-S$ is disconnected or has only one vertex.

Proposition 2.3. For any connected graph G of order n different from K_{n},

$$
g_{t}(G) \leq n-\kappa(G)+1
$$

Proof. We may assume that $\mathcal{\kappa}(G) \geq 2$, otherwise the result is immediate. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{\mathcal{K}(G)}\right\}$ be a vertex cut of G and let $G_{1}, G_{2}, \ldots, G_{l} ;(l \geq 2)$ be the components of $G-S$. For each $v_{i} \in S$, there is a vertex $u_{i_{j}} \in G_{j}$ such that $v_{i} u_{i_{j}} \in E(G)$, otherwise $S-\left\{v_{i}\right\}$ is a vertex cut of G, which is a contradiction.

If $\left|V\left(G_{i}\right)\right| \geq 2$ for each i, then clearly $V(G)-S$ is a total geodetic set of G and hence $g_{t}(G) \leq n-\kappa(G)$. Assume that $\left|V\left(G_{i}\right)\right|=1$ for some i, say $i=1$, and let $V\left(G_{1}\right)=\{w\}$. Then w must be adjacent to all vertices of S. It is easy to verify that $V(G)-\left\{v_{2}, v_{3}, \ldots, v_{\kappa(G)}\right\}$ is a total geodetic set of G implying that $g_{t}(G) \leq n-\kappa(G)+1$. This completes the proof.

An immediate consequence of Proposition 2.3 now follows.
Corollary 2.4. For any connected graph G of order n with $g_{t}(G)=n-1, \kappa(G) \leq 2$.
Proposition 2.5. Let k be a positive integer and G a connected graph of order n different from K_{n}. If $\delta(G) \geq k+1$ and G has at least k vertices of degree $n-1$, then $g_{t}(G) \leq n-k$.

Proof. Let S be a set of vertices of degree $n-1$ and size k. Since $G \neq K_{n}, G$ has two non-adjacent vertices u and v and all vertices of S lay on some $u-v$ geodesic. On the other hand, we deduce from $\delta(G) \geq k+1$ that $G-S$ has no isolated vertex. It follows that $V(G)-S$ is a TGS of G which implies that $g_{t}(G) \leq|V(G)-S| \leq n-k$.

Proposition 2.6. Let G be a graph of order n with $\delta(G) \geq 3$. If G has two non-adjacent vertices u, v such that $\operatorname{deg}(u)+\operatorname{deg}(v) \geq n$, then $g_{t}(G) \leq n-2$.

Proof. Since $\operatorname{deg}(u)+\operatorname{deg}(v) \geq n$, we have $|N(u) \cap N(v)| \geq 2$. Suppose that $\left\{w_{1}, w_{2}\right\} \subseteq N(u) \cap N(v)$. It follows from $\delta(G) \geq 3$ that $V(G)-\left\{w_{1}, w_{2}\right\}$ is a TGS of G which implies that $g_{t}(G) \leq n-2$, as desired.
Next results are immediate consequence of Proposition 2.6.
Corollary 2.7. Let G be a graph of order $n \geq 5$ different from K_{n}. If $\delta(G) \geq\left\lceil\frac{n}{2}\right\rceil$, then $g_{t}(G) \leq n-2$.
Corollary 2.8. For any graph G of order $n \geq 5$ with $g_{t}(G)=n-1, \delta(G) \leq\left\lfloor\frac{n}{2}\right\rfloor$.

3. Graphs with large geodetic number

In this section, we classify all connected graphs of order n whose total geodetic number is $n-1$.
Theorem 3.1. Let G be a connected graph of order n and let $G^{\prime}=G-(\operatorname{Ext}(G) \cup \operatorname{Stem}(G))$. Then $g_{t}(G)=n-1$ if and only if one of the following statements hold:
(i) $G=C_{4}$ or $G=C_{5}$.
(ii) G^{\prime} is a complete graph of order at least two and every pair of vertices of G^{\prime} has a common neighbor of degree 2 .
(iii) G^{\prime} is K_{2} with vertex set $\left\{x_{1}, x_{2}\right\}$, at least one of induced subgraphs $G\left[N\left(x_{1}\right)-\left\{x_{2}\right\}\right]$ and $G\left[N\left(x_{2}\right)-\left\{x_{1}\right\}\right]$ is a complete graph and $d\left(y_{1}, y_{2}\right) \leq 2$ for every vertex $y_{1} \in N\left(x_{1}\right)-N\left(x_{2}\right)$ and $y_{2} \in N\left(x_{2}\right)-N\left(x_{1}\right)$.
(iv) G^{\prime} is K_{3} with vertex set $\left\{x_{1}, x_{2}, x_{3}\right\}$, every pair x_{i} and x_{j} but one, say x_{2}, x_{3}, have a common neighbor $w_{i, j}$ of degree two for $1 \leq i, j \leq 3, \min \left\{\operatorname{deg}\left(x_{2}\right), \operatorname{deg}\left(x_{3}\right)\right\}=3$, and if $\operatorname{deg}\left(x_{i}\right) \geq 4$ for some $i \in\{2,3\}$, then $N\left(x_{i}\right)-\left\{x_{1}\right\} \subseteq N\left(x_{1}\right)$.
(v) G^{\prime} is $P_{3}=x_{1} x_{2} x_{3}, \operatorname{deg}\left(x_{2}\right)=2$ and there is no vertex y for which $y x_{1} \in E(G)$ and $d\left(y, x_{3}\right)=3$ or $y x_{3} \in E(G)$ and $d\left(y, x_{1}\right)=3$.
(vi) G^{\prime} is $C_{4}=\left(x_{1} x_{2} x_{3} x_{4}\right)$, two consecutive vertices of C_{4}, say x_{3} and x_{4} have degree two, $N\left[x_{1}\right]-\left\{x_{4}\right\}=$ $N\left[x_{2}\right]-\left\{x_{3}\right\}$, and x_{1}, x_{2} have a common neighbor of degree 2.

Proof. If $G=C_{4}$ or $G=C_{5}$, then clearly $g_{t}(G)=n-1$, by Proposition 1.2. If G satisfies (ii) and $V(G)=\left\{x_{1}, x_{2}, \ldots, x_{\ell}\right\}$, then every $g_{t}(G)$-set must contain all x_{i} but one. It follows from Observation 1.3 and Proposition 1.4 that $g_{t}(G)=n-1$. If G satisfies (iii), then by Proposition 1.4, we have $g_{t}(G) \leq n-1$. We may assume that $G\left[N\left(x_{2}\right)-\left\{x_{1}\right\}\right]$ is a complete graph. It follows that x_{2} only lies on $y_{1} x_{2} x_{1}$ geodesic where $y_{1} \in N\left(x_{2}\right)$, since $d\left(y_{1}, y_{2}\right) \leq 2$ for each $y_{2} \in N\left(x_{1}\right)$. This implies that every $g_{t}(G)$-set contains x_{1} or x_{2} and so $g_{t}(G)=n-1$.

Let G satisfy (iv). By Observation 1.3, $\operatorname{Ext}(G) \cup \operatorname{Stem}(G) \subseteq S$. Since x_{1} and x_{2} have a common neighbor of degree two, we have $\left|S \cap\left\{x_{1}, x_{2}\right\}\right| \geq 1$. Similarly $\left|S \cap\left\{x_{1}, x_{3}\right\}\right| \geq 1$. If $x_{1} \notin S$, then $x_{2}, x_{3} \in S$ and the result follows as above. Let $x_{1} \in S$. By the assumptions, we may assume that $\operatorname{deg}\left(x_{2}\right)=3$. If $\operatorname{deg}\left(x_{3}\right)=3$, then clearly $S \cap\left\{x_{2}, x_{3}\right\} \neq \emptyset$ which implies that $g_{t}(G)=|S|=n-1$. Suppose $\operatorname{deg}\left(x_{3}\right) \geq 4$. Then it follows from $N\left(x_{3}\right)-\left\{x_{1}\right\} \subseteq N\left(x_{1}\right)$ that $x_{2} \in S$, which implies that $g_{t}(G)=|S| \geq n-1$ by Proposition 1.4. Thus $g_{t}(G)=n-1$.

Now let G satisfy (v). Assume that S is a $g_{t}(G)$-set. By Observation 1.3, we have $\operatorname{Ext}(G) \cup \operatorname{Stem}(G) \subseteq S$. If $x_{2} \in S$, then since $G[S]$ has no isolated vertex, we must have $x_{1} \in S$ or $x_{3} \in S$. So $|S| \geq n-1$ and it follows from Proposition 1.4 that $g_{t}(G)=|S|=n-1$. Hence, we assume $x_{2} \notin S$. If $x_{1} \notin S$ (the case $x_{3} \notin S$ is similar), then we must have a geodetic path $x_{3} x_{2} x_{1} u$, which is a contradiction with the assumptions. Thus $x_{1}, x_{3} \in S$ and so $g_{t}(G)=n-1$.

Finally, let G satisfy (vi). If $G=C_{4}$, then clearly $g_{t}(G)=n-1$, by Proposition 1.2. Let $n \geq 5$, two consecutive vertices of C_{4}, say x_{3} and x_{4}, have degree two, $N\left[x_{1}\right]-\left\{x_{4}\right\}=N\left[x_{2}\right]-\left\{x_{3}\right\}$, and x_{1}, x_{2} have a common neighbor w of degree 2 . Let S be a g_{t}-set of G. Since $w \in S$, we may assume that $x_{1} \in S$. If $x_{3}, x_{4} \in S$, then $|S| \geq n-1$ and we deduce from Proposition 1.4 that $g_{t}(G)=|S|=n-1$. Let $\left|S \cap\left\{x_{3}, x_{4}\right\}\right|=1$. If $x_{4} \notin S$, then clearly $x_{3} \in S$ and since $\operatorname{deg}\left(x_{3}\right)=2$ and S is a TGS, we conclude that $x_{2} \in S$. Hence $|S| \geq n-1$ which implies that $g_{t}(G)=|S|=n-1$. Let $x_{4} \in S$. If $S \cap\left\{x_{2}, x_{3}\right\}=\emptyset$, then there is a geodetic path $u x_{2} x_{3} x_{4}$ in G which leads to which is a contradiction because $d_{G}\left(u, x_{4}\right)=2$. Therefore $x_{2} \in S$ and so $g_{t}(G)=|S|=n-1$.

Conversely, let $g_{t}(G)=n-1$ and let $G-(\operatorname{Ext}(G) \cup \operatorname{Stem}(G))=G^{\prime}$. We proceed with some claims:
Claim 1: $\delta(G)=1$ or $\operatorname{diam}(G) \leq 3$.

Proof. Suppose, to the contrary, that $\delta(G) \geq 2$ and $\operatorname{diam}(G) \geq 4$. Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be a diametral path in G. Clearly P is a $v_{1}-v_{k}$ geodesic path. If v_{i}, v_{i+1} have no common neighbor of degree 2 for some $2 \leq i \leq k-2$, then clearly $V(G)-\left\{v_{i}, v_{i+1}\right\}$ is a total geodetic set of G implying that $g_{t}(G) \leq n-2$ which is a contradiction. Assume that v_{i} and v_{i+1} have at least a common neighbor of degree 2. If v_{i} and v_{i+2} have no common neighbor of degree 2 for some $2 \leq i \leq k-3$, then clearly $V(G)-\left\{v_{i}, v_{i+2}\right\}$ is a total geodetic set of G which implies that $g_{t}(G) \leq n-2$, which is a contradiction. Assume w is a common neighbor of v_{2} and v_{4} of degree 2. Then it is easy to see that $V(G)-\left\{w, v_{3}\right\}$ is a total geodetic set of G and hence $g_{t}(G) \leq n-2$, a contradiction, as well. This proves Claim 1.

Claim 2: If $n \geq 6$ and $\delta(G) \geq 2$, then every induced cycle of G has length at most 4 .

Proof. Suppose, to the contrary, that $C=\left(v_{1} v_{2} \ldots v_{k}\right)$ is an induced cycle in G with $k \geq 5$. If $n=k$, then $V(G)-\left\{v_{1}, v_{2}\right\}$ is a TGS of G implying that $g_{t}(G) \leq n-2$, which is a contradiction. Suppose that $n \geq k+1$. Since G is connected, we may assume $u v_{1} \in E(G)$ for some vertex $u \notin V(C)$. If v_{2} and v_{k} have a common neighbor w of degree 2 , then obviously $V(G)-\left\{v_{1}, w\right\}$ is a total geodetic set of G implying that $g_{t}(G) \leq n-2$, which is a contradiction again. Otherwise, $V(G)-\left\{v_{2}, v_{k}\right\}$ is a total geodetic set of G that implies $g_{t}(G) \leq n-2$, a contradiction, as well. This proves Claim 2.

Claim 3: If $G \neq C_{5}$ has an induced k-cycle $C=\left(v_{1} v_{2} \ldots v_{k}\right)$ where $k \geq 5$, then $v_{i}, v_{i+1} \in \operatorname{Stem}(G)$ for some $1 \leq i \leq k$.

Proof. Suppose, to the contrary, that no two consecutive vertices of C do not belong to Stem (G). Since $g_{t}(G)=n-1$, we must have $G \neq C$. By the assumptions, we have $|\operatorname{Stem}(G) \cap V(C)| \leq\left\lfloor\frac{k}{2}\right\rfloor$. If Stem $(G) \cap V(C)=\emptyset$, then an argument similar to that described in the proof of Claim 2 leads to $g_{t}(G) \leq n-2$, which is a
contradiction. Assume that $\operatorname{Stem}(G) \cap V(C) \neq \emptyset$ and $v_{1} \in \operatorname{Stem}(G)$. Let S be the set consisting of all common neighbors of v_{2} and v_{k} which has degree 2 . If $|S| \geq 2$, then $V(G)-S$ is a total geodetic set of G that leads to a contradiction. If $S=\emptyset$, then obviously $V(G)-\left\{v_{2}, v_{k}\right\}$ is a total geodetic set of G and so $g_{t}(G) \leq n-2$, which is a contradiction. Assume that $S=\{w\}$. If $v_{3} \notin \operatorname{Stem}(G)$, then obviously $V(G)-\left\{w, v_{3}\right\}$ is a total geodetic set of G and hence $g_{t}(G) \leq n-2$, a contradiction. Let $v_{3} \in \operatorname{Stem}(G)$. Then $v_{4} \notin \operatorname{Stem}(G)$. By repeating the above argument, we may assume that v_{2} and v_{4} have exactly one common neighbor of degree 2 , say w^{\prime}. It is easy to see that $V(G)-\left\{w, w^{\prime}\right\}$ is a TGS of G and hence $g_{t}(G) \leq n-2$, which is a contradiction. This proves Claim 3.

Claim 4: $G-(\operatorname{Ext}(G) \cup \operatorname{Stem}(G))$ is a connected graph with diameter at most two.
Proof. First we show that $G^{\prime}=G-(\operatorname{Ext}(G) \cup \operatorname{Stem}(G))$ is connected. Suppose, to the contrary, that G^{\prime} is disconnected and let G_{1} and G_{2} be two components of G^{\prime}. Let $v_{1} \in V\left(G_{1}\right)$ and $v_{2} \in V\left(G_{2}\right)$ such that $d_{G}\left(u_{1}, u_{2}\right)=d_{G}\left(V\left(G_{1}\right), V\left(G_{2}\right)\right)$. Since v_{i} is not simplicial, v_{i} has two neighbors $w_{i_{1}}$ and $w_{i_{2}}$ such that $w_{i_{1}} w_{i_{2}} \notin E(G)$, for $i=1,2$. Since $v_{i} \notin \operatorname{Stem}(G)$, every neighbor of v_{i} has degree at least two and so $V(G)-\left\{v_{1}, v_{2}\right\}$ is a total geodetic set of G, which is a contradiction.

Now, we show that $\operatorname{diam}\left(G^{\prime}\right) \leq 2$. Assume, to the contrary, that $\operatorname{diam}\left(G^{\prime}\right) \geq 3$. Let $u w_{1} w_{2} \ldots w_{k} v(k \geq 2)$ be a diametral path in G^{\prime}. Since u and v are not stems and simplicial, we can see that $V(G)-\{u, v\}$ is a total geodetic set of G, which is a contradiction. This proves Claim 4.

Claim 5: $G^{\prime}=G-(\operatorname{Ext}(G) \cup \operatorname{Stem}(G))$ is P_{3}, C_{4}, C_{5} or a complete graph.
Proof. By Claim 5, G^{\prime} is a connected graph with diameter $\operatorname{diam}\left(G^{\prime}\right) \leq 2$. If $\operatorname{diam}\left(G^{\prime}\right)=1$, then G^{\prime} is a complete graph, and we are done. Let $\operatorname{diam}\left(G^{\prime}\right)=2$. It follows that $\operatorname{girth}\left(G^{\prime}\right) \leq 5$. First let $\operatorname{girth}\left(G^{\prime}\right)=0$. Then G^{\prime} is a tree. Since $\operatorname{diam}\left(G^{\prime}\right)=2, G^{\prime}$ is a star $K_{1, r}(r \geq 2)$. If $r \geq 3$ and u, v are two leaves of G^{\prime}, then clearly $V(G)-\{u, v\}$ is a total geodetic set of G, which is a contradiction. Thus $r=2$ which implies that $G^{\prime}=P_{3}$. Now let $\operatorname{girth}\left(G^{\prime}\right)>0$ and $C=\left(x_{1} x_{2} \ldots x_{t}\right)$ be a cycle of G^{\prime} with $t=\operatorname{girth}\left(G^{\prime}\right)$. If $t=5$, then we deduce from Claim 3 that $G=C_{5}$. Let $t \leq 4$. We consider two cases.

Case 1. $t=4$.
We claim that $\left|V\left(G^{\prime}\right)\right|=4$. Suppose, to the contrary, that $\left|V\left(G^{\prime}\right)\right| \geq 5$. Since G^{\prime} is connected, there is a vertex $u_{1} \in V\left(G^{\prime}\right)-V(C)$ such that $u_{1} x_{i} \in E\left(G^{\prime}\right)$ for some i, say $i=1$. From G^{\prime} being triangle-free, we have $u_{1} x_{2}, u_{1} x_{4} \notin E(G)$. If there is path $x_{1} u_{1} \ldots u_{k} x_{3}$ in G and x_{2}, x_{4} have no common neighbor of degree two, then $V(G)-\left\{x_{2}, x_{4}\right\}$ is a TGS of G, which is a contradiction. If there is path $x_{1} u_{1} \ldots u_{k} x_{3}$ in G and x_{2}, x_{4} have a common neighbor w of degree two, then $V(G)-\left\{w, x_{1}\right\}$ is a TGS of G, which is a contradiction. Assume that there is no such a path in G and hence $u_{1} x_{3} \notin E(G)$. It follows from $u_{1} \notin \operatorname{Ext}(G) \cup \operatorname{Stem}(G)$ that $V(G)-\left\{u_{1}, x_{3}\right\}$ is a TGS of G which is a contradiction. Therefore $V\left(G^{\prime}\right)=4$ and so $G^{\prime}=C_{4}$, as desired.

Case 2. $t=3$.
Let $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be the vertex set of a largest clique in G^{\prime}. Since G^{\prime} is a connected graph with $\operatorname{diam}\left(G^{\prime}\right)=2$, there is a vertex $u_{1} \in V\left(G^{\prime}\right)-\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ such that $u_{1} x_{i} \in E\left(G^{\prime}\right)$ for some i. By the choice of $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, u_{1} is not adjacent to all x_{i}. Assume without loss of generality that $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \cap N\left(u_{1}\right)=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ where $r<k$. Since u_{1} is not a simplicial vertex, u_{1} has two non-adjacent neighbors u^{\prime} and $u^{\prime \prime}$. We may assume without loss of generality that $u^{\prime} \notin\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$. Consider two subcases.

Subcase 2.1. $r \geq 2$.
If x_{i} and x_{j} have no common neighbor of degree two for some $1 \leq i \neq j \leq r$, then $V(G)-\left\{x_{i}, x_{j}\right\}$ is a TGS of G, which is a contradiction. Hence, we assume x_{i} and x_{j} have a common neighbor $w_{i, j}$ of degree two for each $1 \leq i \neq j \leq r$. If u_{1} and x_{i} have a common neighbor w of degree two for some $r+1 \leq i \leq k$, then $V(G)-\left\{w, x_{1}\right\}$ is a TGS of G, which is a contradiction. Let u_{1} and x_{i} have no common neighbor of degree two for each $r+1 \leq i \leq k$. Then $V(G)-\left\{u_{1}, x_{k}\right\}$ is a TGS of G which is a contradiction.

Subcase 2.2. $r=1$.
If u_{1}, x_{i} has a common neighbor w of degree 2 and u_{1}, x_{j} has a common neighbor w^{\prime} of degree 2 for some $2 \leq i, j \leq k$ (possibly $i=j$), then $V(G)-\left\{w_{i}, w_{j}\right\}$ is a TGS of G, which is a contradiction. If u_{1} has exactly one common neighbor w of degree two with some $x_{2}, x_{3}, \ldots, x_{k}$, say $w \in N\left(u_{1}\right) \cap N\left(x_{2}\right)$, then $V(G)-\left\{w, x_{k}\right\}$ is a TGS of G, which is a contradiction. Henceforth, we assume that u_{1} has no common neighbor of degree two with $x_{2}, x_{3}, \ldots, x_{k}$. Then $V(G)-\left\{u_{1}, x_{3}\right\}$ is a TGS of G, which is a contradiction. This completes the proof.

Claim 6: If $G^{\prime} \cong K_{2}$ and $V(G)=\left\{x_{1}, x_{2}\right\}$, then one of the following statements hold:
(a) there exists a vertex w with $N(w)=\left\{x_{1}, x_{2}\right\}$,
(b) at least one of induced subgraphs $G\left[N\left(x_{1}\right)-\left\{x_{2}\right\}\right]$ and $G\left[N\left(x_{2}\right)-\left\{x_{1}\right\}\right]$ is a complete graph and $d\left(y_{1}, y_{2}\right) \leq 2$ for every vertex $y_{1} \in N\left(x_{1}\right)-N\left(x_{2}\right)$ and $y_{2} \in N\left(x_{2}\right)-N\left(x_{1}\right)$.

Proof. If (a) holds, there is nothing to prove. Assume that (a) does not hold. If both of induced subgraphs $G\left[N\left(x_{1}\right)-\left\{x_{2}\right\}\right]$ and $G\left[N\left(x_{2}\right)-\left\{x_{1}\right\}\right]$ are not complete, then $V(G)-\left\{x_{1}, x_{2}\right\}$ is a TGS of G, which is a contradiction. Hence, at least one of the induced subgraphs $G\left[N\left(x_{1}\right)-\left\{x_{2}\right\}\right]$ and $G\left[N\left(x_{2}\right)-\left\{x_{1}\right\}\right]$ is complete. If $d\left(y_{1}, y_{2}\right) \geq 3$ for some $y_{1} \in N\left(x_{1}\right)-N\left(x_{2}\right)$ and $y_{2} \in N\left(x_{2}\right)-N\left(x_{1}\right)$, then $V(G)-\left\{x_{1}, x_{2}\right\}$ is a TGS of G, which is a contradiction. Thus (b) holds and the proof is complete.

Claim 7: If $G^{\prime} \cong K_{3}$ and $V\left(K_{3}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$, then one of the following holds:
(a) x_{i} and x_{j} have a common neighbor of degree two for each $1 \leq i, j \leq 3$,
(b) every pair x_{i} and x_{j} but one, say x_{2} and x_{3}, have a common neighbor $w_{i, j}$ of degree two for $1 \leq i, j \leq 3$, $\min \left\{\operatorname{deg}\left(x_{2}\right), \operatorname{deg}\left(x_{3}\right)\right\}=3$, and if $\operatorname{deg}\left(x_{i}\right) \geq 4$ for some $i \in\{2,3\}$, then $N\left(x_{i}\right)-\left\{x_{1}\right\} \subseteq N\left(x_{1}\right)$.

Proof. Let (a) does not hold. The proof is achieved by means of contradiction. Assume first that x_{i} and x_{j} have no common neighbor of degree 2 for each $1 \leq i, j \leq 3$. If $N\left(x_{1}\right)-\left\{x_{2}\right\} \subseteq N\left(x_{2}\right)$, then since x_{1} is not a simplicial vertex, $V(G)-\left\{x_{1}, x_{2}\right\}$ is a TGS of G, which is a contradiction. Assume that x_{1}^{1} is a neighbor of x_{1} such that $x_{1}^{1} \notin N\left(x_{2}\right)$. If $x_{1}^{1} x_{3} \in E(G)$, then clearly $V(G)-\left\{x_{1}, x_{3}\right\}$ is a TGS of G, which is a contradiction. Suppose that $x_{1}^{1} x_{3} \notin E(G)$. If $N\left(x_{2}\right)-\left\{x_{3}\right\} \subseteq N\left(x_{3}\right)$, then $V(G)-\left\{x_{2}, x_{3}\right\}$ is a TGS of G, which is a contradiction. Let $x_{2}^{1} \in N\left(x_{2}\right) \backslash N\left(x_{3}\right)$. Then $V(G)-\left\{x_{1}, x_{2}\right\}$ is a TGS of G which is a contradiction.

Now let x_{1}, x_{3} and x_{2}, x_{3} have no common neighbor of degree two and x_{1}, x_{2} have a common neighbor $w_{1,2}$ of degree two. If $N\left(x_{3}\right)-\left\{x_{2}\right\} \subseteq N\left(x_{2}\right)$, since x_{3} is not a simplicial vertex, then $V(G)-\left\{x_{2}, x_{3}\right\}$ is a TGS of G, which is a contradiction. Assume that x_{3}^{1} is a neighbor of x_{3} such that $x_{3}^{1} \notin N\left(x_{2}\right)$. If $x_{3}^{1} x_{1} \in E(G)$, then obviously $V(G)-\left\{x_{1}, x_{3}\right\}$ is a TGS of G, which is a contradiction. If $x_{3}^{1} x_{1} \notin E(G)$, then $d_{G}\left(x_{1}, x_{3}^{1}\right)=3$ which implies that $V(G)-\left\{x_{1}, x_{3}\right\}$ is a TGS of G, which is a contradiction. Thus every pair x_{i} and x_{j} but one, say x_{2}, x_{3}, have a common neighbor $w_{i, j}$ of degree two for $1 \leq i, j \leq 3$.

If $\min \left\{\operatorname{deg}\left(x_{2}\right), \operatorname{deg}\left(x_{3}\right)\right\} \geq 4$, then clearly $V(G)-\left\{x_{2}, x_{3}\right\}$ is a TGS of G which is a contradiction. Hence, $\min \left\{\operatorname{deg}\left(x_{2}\right), \operatorname{deg}\left(x_{3}\right)\right\}=3$. Assume that $\operatorname{deg}\left(x_{2}\right)=3$. Finally, if $N\left(x_{3}\right) \nsubseteq N\left(x_{1}\right)$ and $x_{3}^{1} \in N\left(x_{3}\right) \backslash N\left(x_{1}\right)$, then $d_{G}\left(x_{3}, w_{1,2}\right)=2$ and $V(G)-\left\{x_{2}, x_{3}\right\}$ is a TGS of G, which is a contradiction. So G satisfies (b).

Claim 8: If $G^{\prime} \cong K_{l}(l \geq 4)$ and $V\left(K_{l}\right)=\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}$, then x_{i} and x_{j} have a common neighbor of degree two for each $1 \leq i, j \leq l$.

Proof. Assume, to the contrary, that x_{i} and x_{j} have no common neighbor of degree two for some $1 \leq i, j \leq l$, say $i=1, j=2$. Let w_{1} be a common neighbor of x_{1}, x_{3} and w_{2} be a common neighbor of x_{2}, x_{4}. Then $d_{G}\left(w_{1}, w_{2}\right)=3$ which implies that $V(G)-\left\{x_{1}, x_{2}\right\}$ is a TGS of G, which is a contradiction. This completes the proof.

Claim 9: If $G^{\prime} \cong x_{1} x_{2} x_{3}$, then $\operatorname{deg}\left(x_{2}\right)=2$ and there is no vertex y for which $y x_{1} \in E(G)$ and $d\left(y, x_{3}\right)=3$ or $y x_{3} \in E(G)$ and $d\left(y, x_{1}\right)=3$.

Proof. Let $G-(\operatorname{Ext}(G) \cup \operatorname{Stem}(G))=x_{1} x_{2} x_{3}$. If $\operatorname{deg}\left(x_{2}\right) \geq 3$, then $V(G)-\left\{x_{1}, x_{3}\right\}$ is a TGS of G, which is a contradiction. Thus $\operatorname{deg}\left(x_{2}\right)=2$. If there is a vertex $y \in N\left(x_{1}\right)$ such that $d\left(y, x_{3}\right)=3$ (the case $y \in N\left(x_{3}\right)$ such that $d\left(y, x_{1}\right)=3$ is similar), then $V(G)-\left\{x_{1}, x_{2}\right\}$ is a TGS of G which is which is a contradiction. This completes the proof.

Claim 10: If $G^{\prime} \cong\left(x_{1} x_{2} x_{3} x_{4}\right)$, then either $G=C_{4}$ or $n \geq 5$, two consecutive vertices of C_{4}, say x_{3} and x_{4}, have degree two, $N\left[x_{1}\right]-\left\{x_{4}\right\}=N\left[x_{2}\right]-\left\{x_{3}\right\}$, and x_{1}, x_{2} have a common neighbor of degree 2 .

Proof. Let $G-(\operatorname{Ext}(G) \cup \operatorname{Stem}(G))=\left(x_{1} x_{2} x_{3} x_{4}\right)$. If $n=4$, then clearly $G=C_{4}$. Suppose that $n \geq 5$. We first show that two consecutive adjacent vertices of cycle $\left(x_{1} x_{2} x_{3} x_{4}\right)$ have degree 2 . If $\operatorname{deg}\left(x_{1}\right) \geq 3$ and $\operatorname{deg}\left(x_{3}\right) \geq 3$, then $V(G)-\left\{x_{2}, x_{4}\right\}$ is a TGS of G, and if $\operatorname{deg}\left(x_{2}\right) \geq 3$ and $\operatorname{deg}\left(x_{4}\right) \geq 3$, then $V(G)-\left\{x_{1}, x_{2}\right\}$ is a TGS of G, which is a contradiction. Assume without loss of generality that $\operatorname{deg}\left(x_{3}\right)=\operatorname{deg}\left(x_{4}\right)=2$. If x_{1} and x_{2} have no common vertex of degree two, then $V(G)-\left\{x_{1}, x_{2}\right\}$ is a TGS of G, which is a contradiction.

In view of the above Claims, the proof of Theorem 3.1 is complete.
An immediate consequence of Theorems 1.1, 3.1 and Observation 1.3 now follows:
Corollary 3.2. Let G be a connected graph of order n. Then $g(G)=g_{t}(G)=n-1$ if and only if G is the join of K_{1} and pairwise disjoint complete graphs $K_{n_{1}}, K_{n_{2}}, \ldots, K_{n_{r}}$, that is, $G=\left(K_{n_{1}} \cup K_{n_{2}} \cup \ldots K_{n_{r}}\right) \vee K_{1}$, where $r \geq 2, n_{i} \geq 2$, for $1 \leq i \leq r$, with $n_{1}+n_{2}+\ldots+n_{r}=n-1$.

Corollary 3.3. If G is a graph of order n with $g_{t}(G)=n-1$, then the difference $g_{t}(G)-g(G)$ is at most $\left|V\left(G^{\prime}\right)\right|-1$, where $G^{\prime}=G-(\operatorname{Ext}(G) \cup \operatorname{Stem}(G))$.

Proof. Assume that $G^{\prime}=G-(\operatorname{Ext}(G) \cup \operatorname{Stem}(G))$. Since $g_{t}(G)=n-1$, by Theorem 3.1 one of the conditions (i)-(vi) hold. If G satisfies (i), then clearly $g\left(C_{4}\right)=2$ and $g\left(C_{5}\right)=3$. Thus $g_{t}(G)-g(G)=2$, and so the result follows. If G satisfies (ii), then $\operatorname{Ext}(G) \cup \operatorname{Stem}(G)$ is the unique g-set of G, and so $g(G)=|\operatorname{Ext}(G) \cup \operatorname{Stem}(G)|=$ $|V(G)|-\left|V\left(G^{\prime}\right)\right|$. Thus $g_{t}(G)-g(G)=n-1-n+\left|V\left(G^{\prime}\right)\right|=\left|V\left(G^{\prime}\right)\right|-1$, and so the result follows.

If G satisfies (iii), then by Theorem 1.1, we have $g(G) \leq n-2$. On the other hand, $V(G)-V\left(K_{2}\right)=$ $\operatorname{Ext}(G) \cup \operatorname{Stem}(G)$ is a g-set of G. Hence $g_{t}(G)-g(G)=1$.

Let G satisfy (iv). If $\operatorname{deg}\left(x_{2}\right) \geq 4$ and $\operatorname{deg}\left(x_{3}\right) \geq 4$, then $g(G)=|\operatorname{Ext}(G)|+|\operatorname{Stem}(G)|$. Thus $g_{t}(G)-g(G)=$ $n-1-n+\left|V\left(G^{\prime}\right)\right|=\left|V\left(G^{\prime}\right)\right|-1$. Otherwise, at least one of x_{2} or x_{3} must be included in any g-set of G and so $g(G) \geq n-2$. On the other hand, Theorem 1.1 implies that $g(G)=n-2$. Hence $g_{t}(G)-g(G)=1$.

Let G satisfy (v). Clearly, x_{2} belongs to any g-set of G yielding $g(G)=n-2$. Thus $g_{t}(G)-g(G)=1$.
Assume G satisfies (vi). Since $\operatorname{deg}\left(x_{3}\right)=\operatorname{deg}\left(x_{4}\right)=2$, we conclude from the structure of G that any g-set of G contains x_{3} or x_{4}. This implies that $g(G) \geq|E x t(G) \cup \operatorname{Stem}(G)|+1=n-3$. Thus $g_{t}(G)-g(G) \leq 2$ and the proof is complete.

We conclude the paper by giving the following result:

Proposition 3.4. The difference $g_{t}(G)-g(G)$ can be arbitrarily large.
Proof. For each integer $n \geq 3$, let G be a graph obtained from $K_{1, r}$ by subdivision all leaves once. Clearly, $g(G)=r$, and $g_{t}(G)=2 r$. Thus, $g_{t}(G)-g(G)=r$.

Acknowledgements

The author is grateful to anonymous referees for their remarks and suggestions that helped improve the manuscript.

References

[1] H. Abdollahzadeh Ahangar, F. Fujie-Okamoto and V. Samodivkin, On the forcing connected geodetic number and the connected geodetic number of a graph, Ars Combin. 126(3) (2016) 323-335.
[2] H. Abdollahzadeh Ahangar, S. Kousari, S.M. Sheikholeslami and L. Volkmann, Graphs with large geodetic number, Filomat, 29(6) (2015), 1361-1368.
[3] H. Abdollahzadeh Ahangar and M. Najimi, Total restrained geodetic number of graphs, Iranian J. Sci. Technol. Sci. 41(2) (2017), 473-480.
[4] H. Abdollahzadeh Ahangar, M. Najimi, V. Samodivkin and I.G. Yero, The forcing total restrained geodetic number and the total restrained geodetic number of a graph, AKCE Int. J. Graphs Combin. 14(3) (2017), 242-250.
[5] H. Abdollahzadeh Ahangar and V. Samodivkin, The total geodetic number of a graph, Util. Math. 100 (2016) 253-268.
[6] H. Abdollahzadeh Ahangar, V. Samodivkin, S.M. Sheikholeslami and A. Khodkar, The restrained geodetic number of a graph, Bull. Malays. Math. Sci. Soc. 38(3) (2015), 1143-1155.
[7] M. Atici, Computational complexity of geodetic set, Int. J. Comput. Math. 79(5) (2002), 587-591.
[8] F. Buckley, F. Harary and L.V. Quintas, Extremal results on the geodetic number of a graph, Scientia A2 (1988) 17-26.
[9] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39(1) (2002), 1-6.
[10] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory 19(1) (1999), 45-58.
[11] G. Chartrand and P. Zhang, The forcing convexity number of a graph, Czechoslovak Math. J. 51(4)(2001), 847-858.
[12] G. Chartrand and P. Zhang, Extreme geodesic graphs, Czechoslovak Math. J. 52(4) (2002), 771-780.
[13] M.C. Dourado, F. Protti, D. Rautenbach and J.L. Szwarcfiter, Some remarks on the geodetic number of a graph, Discrete Math. 310(4) (2010), 832-837.
[14] F. Harary, E. Loukakis and C. Tsourus, The geodetic number of a graph, Math. Comput. Modelling 17(11) (1993), 89-95.
[15] L.D. Tong, The (a, b)-forcing geodetic graphs, Discrete Math. 309(6) (2009), 1623-1628.
[16] L.D. Tong, The forcing hull and forcing geodetic numbers of graphs, Discrete Appl. Math. 157(5) (2009), 1159-1163.
[17] A.P. Santhakumaran, P. Titus and J. John, On the connected geodetic number of a graph, J. Comb. Math. Comb. Comput. 69 (2009),219229.
[18] A.P. Santhakumaran, P. Titus and J. John, The upper connected geodetic number and forcing connected geodetic number of a graph, Discrete Appl. Math. 157(7) (2009), 1571-1580.
[19] F.H. Wang, Y.L. Wang and J.M. Chang, The lower and upper forcing geodetic numbers of block-cactus graphs, European J. Oper. Res. 175(1) (2006), 238-245.
[20] D.B. West, Introduction to Graph Theory. Prentice Hall, (2001).
[21] P. Zhang, The upper forcing geodetic number of a graph, Ars Combin. 62 (2002), 3-15.

[^0]: 2010 Mathematics Subject Classification. 05C12.
 Keywords. Geodetic set, Geodetic number, Total geosetic set, Total geodetic number
 Received: 01 January 2016; Accepted: 24 July 2017
 Communicated by Francesco Belardo
 Email address: ha.ahangar@nit.ac.ir (Hossein Abdollahzadeh Ahangar)

