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Abstract. For two vertices u and v of a graph G, the set I[u, v] consists of all vertices lying on some u − v
geodesic in G. If S is a set of vertices of G, then I[S] is the union of all sets I[u, v] for u, v ∈ S. A set of vertices
S ⊆ V(G) is a total geodetic set if I[S] = V(G) and the subgraph G[S] induced by S has no isolated vertex. The
total geodetic number, denoted by 1t(G), is the minimum cardinality among all total geodetic sets of G. In
this paper, we characterize all connected graphs G of order n ≥ 3 with 1t(G) = n − 1.

1. Introduction

In this paper, we continue the study of total geodetic number in graphs. For notation and graph theory
terminology, we follow West [20]. Specifically, let G be a simple connected graph with vertex set V(G) = V
and edge set E(G) = E. The integers n = n(G) = |V(G)| and m = m(G) = |E(G)| are the order and the size
of the graph G, respectively. For two vertices x and y in a (connected) graph G, the distance dG(x, y) is the
length of a shortest x − y path in G. The girth of a graph G, denoted by 1irth(G), is the length of its shortest
cycle. The girth of a graph with no cycle is defined to be 0. The join H ∨ K of two disjoint graphs H and
K is the graph obtained from their union by adding new edges joining each vertex of V(H) to every vertex
of V(K). For a vertex x of G, the eccentricity eG(x) is the distance between x and a vertex farthest from x.
The minimum eccentricity among the vertices of G is the radius, rad(G), and the maximum eccentricity is its
diameter, diam(G). A x − y path of length dG(x, y) is called a x − y geodesic. The geodetic interval I[x, y] is the
set consisting of x, y and all vertices lying in some x− y geodesic of G, and for a nonempty subset S of V(G),
we define I[S] = ∪x,y∈SI[x, y].

A subset S of vertices of G is a geodetic set (or just GS) if I[S] = V. The geodetic number 1(G) is the
minimum cardinality of a geodetic set of G. A 1(G)-set is a geodetic set of G of size 1(G). The geodetic
sets of a connected graph were introduced by Harary, Loukakis and Tsouros [14], as a tool for studying
metric properties of connected graphs. It was shown in [7] that the determination of 1(G) is an NP-hard
problem and its decision problem is NP-complete. The geodetic number and its variants have been studied
by several authors (see for example [1, 2, 6, 7, 9–13, 15–19, 21]).

A set of vertices S ⊆ V(G) is a total geodetic set (or just TGS) if I[S] = V(G) and the subgraph G[S] induced
by S has no isolated vertex. The minimum cardinality among all total geodetic sets of G is called the total
geodetic number and is denoted by 1t(G). The total geodetic number of a connected graph was introduced
by Abdollahzadeh Ahangar and Samodivkin in [5]. Very recently, Abdollahzadeh Ahangar and Najimi
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introduced the concept of total restrained geodetic number in [3], and continued the study on this new
parameter by Abdollahzadeh Ahangar et al. in [4].

A vertex of G is simplicial if the subgraph induced by its neighborhood is complete. In particular, every
endvertex is simplicial. The set of all simplicial vertices of a graph G is denoted by Ext(G). A vertex of G
is a stem if it is adjacent to an endvertex. The sets of all endvertices and all stems are denoted by L(G) and
Stem(G), respectively. In K2 a vertex is both an endvertex and a stem. A vertex v in G is said to be a 1t-fixed
vertex of G if v belongs to every 1t(G)-set. The set of all 1t-fixed vertices of a graph G is denoted by Fit(G).

The main aim of this paper is to characterize all connected graphs G of order n ≥ 3 with 1t(G) = n − 1.

We make use of the following results in this paper.

Theorem 1.1. ([8]) Let G be a connected graph of order n ≥ 3. Then 1(G) = n − 1 if and only if G is the join
of K1 and pairwise disjoint complete graphs Kn1 ,Kn2 , . . . ,Knr , that is, G = (Kn1 ∪ Kn2 ∪ . . .Knr ) ∨ K1, where
r ≥ 2, n1,n2, . . . ,nr are positive integers with n1 + n2 + . . . + nr = n − 1.

Proposition 1.2. ([5]) For n ≥ 3, 1t(Cn) = 4 when n ≥ 5 and 1t(Cn) = 3 when n ∈ {3, 4}.

Observation 1.3. ([5]) Let G be a connected graph of order n ≥ 2. Then Stem(G) ∪ Ext(G) ⊆ Fit(G). In
particular, 1t(G) ≥ |Ext(G)| + |Stem(G)|.

Proposition 1.4. Let G be a connected graph of order n. Then 1t(G) = n if and only if every vertex of G is
simplicial or a stem.

Proof. The sufficiency follows from Observation 1.3. To prove the necessity, assume that 1t(G) = n. If G has
a vertex v that is not simplicial or a stem, then obviously V(G) − {v} is a total geodetic set of G which leads
to a contradiction. Therefore, every vertex of G is simplicial or a stem.

2. Upper bounds on the total geodetic number

In this section we give several sufficient conditions for a graph of order n to have total geodetic number
at most n − 2.

A cut-vertex is a vertex whose deletion results in a graph with more components than the original graph.
The set of all cut-vertices of G, is denoted by Cut(G).

Proposition 2.1. Let G be a connected graph of order n. If there exist two vertices u1,u2 ∈ Cut(G)− Stem(G)
with d(u1,u2) ≥ 2, then 1t(G) ≤ n − 2.

Proof. By the assumption, each component of G − u1 and G − u2 have order at least 2. Let I be the set of
all isolated vertices of G − {u1,u2}. If I = ∅, then clearly V(G) − {u1,u2} is a total geodetic set of G that
implies 1t(G) ≤ n − 2. If |I| ≥ 2, then clearly V(G) − I is a total geodetic set of G implying that 1t(G) ≤ n − 2.
Assume now that I = {w}. It follows that deg(w) = 2 and w is adjacent to u1 and u2. Suppose G1 is a
component of G − u1 not containing u2 and G2 is a component of G − u2 not containing u1. Let w1 ∈ V(G1)
and w2 ∈ V(G2). Then clearly |V(Gi)| ≥ 2 for i = 1, 2 and every w1 − w2 geodesic contains u, v and w. It
follows that V(G) − {u, v,w} is a total geodetic set of G yielding 1t(G) ≤ n − 3. This completes the proof.

Next result is an immediate consequence of Proposition 2.1.

Corollary 2.2. If G is a graph of order n with 1t(G) = n− 1, then the induced subgraph G[Cut(G)− Stem(G)]
is complete.

A vertex cut of a connected graph G is a set S ⊆ V(G) such that G− S has more than one component. The
connectivity of G, written κ(G), is the minimum size of a vertex set S such that G − S is disconnected or has
only one vertex.
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Proposition 2.3. For any connected graph G of order n different from Kn,

1t(G) ≤ n − κ(G) + 1.

Proof. We may assume that κ(G) ≥ 2, otherwise the result is immediate. Let S = {v1, v2, . . . , vκ(G)} be a vertex
cut of G and let G1,G2, . . . , Gl; (l ≥ 2) be the components of G − S. For each vi ∈ S, there is a vertex ui j ∈ G j
such that viui j ∈ E(G), otherwise S − {vi} is a vertex cut of G, which is a contradiction.

If |V(Gi)| ≥ 2 for each i, then clearly V(G) − S is a total geodetic set of G and hence 1t(G) ≤ n − κ(G).
Assume that |V(Gi)| = 1 for some i, say i = 1, and let V(G1) = {w}. Then w must be adjacent to all vertices of
S. It is easy to verify that V(G)−{v2, v3, . . . , vκ(G)} is a total geodetic set of G implying that 1t(G) ≤ n−κ(G)+1.
This completes the proof.

An immediate consequence of Proposition 2.3 now follows.

Corollary 2.4. For any connected graph G of order n with 1t(G) = n − 1, κ(G) ≤ 2.

Proposition 2.5. Let k be a positive integer and G a connected graph of order n different from Kn. If
δ(G) ≥ k + 1 and G has at least k vertices of degree n − 1, then 1t(G) ≤ n − k.

Proof. Let S be a set of vertices of degree n−1 and size k. Since G , Kn, G has two non-adjacent vertices u and
v and all vertices of S lay on some u− v geodesic. On the other hand, we deduce from δ(G) ≥ k + 1 that G−S
has no isolated vertex. It follows that V(G)−S is a TGS of G which implies that 1t(G) ≤ |V(G)−S| ≤ n−k.

Proposition 2.6. Let G be a graph of order n with δ(G) ≥ 3. If G has two non-adjacent vertices u, v such that
deg(u) + deg(v) ≥ n, then 1t(G) ≤ n − 2.

Proof. Since deg(u) + deg(v) ≥ n, we have |N(u) ∩N(v)| ≥ 2. Suppose that {w1,w2} ⊆ N(u) ∩N(v). It follows
from δ(G) ≥ 3 that V(G) − {w1,w2} is a TGS of G which implies that 1t(G) ≤ n − 2, as desired.

Next results are immediate consequence of Proposition 2.6.

Corollary 2.7. Let G be a graph of order n ≥ 5 different from Kn. If δ(G) ≥ d n
2 e, then 1t(G) ≤ n − 2.

Corollary 2.8. For any graph G of order n ≥ 5 with 1t(G) = n − 1, δ(G) ≤ b n
2 c.

3. Graphs with large geodetic number

In this section, we classify all connected graphs of order n whose total geodetic number is n − 1.

Theorem 3.1. Let G be a connected graph of order n and let G′ = G− (Ext(G)∪Stem(G)). Then 1t(G) = n− 1
if and only if one of the following statements hold:

(i) G = C4 or G = C5.
(ii) G′ is a complete graph of order at least two and every pair of vertices of G′ has a common neighbor

of degree 2.
(iii) G′ is K2 with vertex set {x1, x2}, at least one of induced subgraphs G[N(x1) − {x2}] and G[N(x2) − {x1}]

is a complete graph and d(y1, y2) ≤ 2 for every vertex y1 ∈ N(x1) −N(x2) and y2 ∈ N(x2) −N(x1).
(iv) G′ is K3 with vertex set {x1, x2, x3}, every pair xi and x j but one, say x2, x3, have a common neighbor

wi, j of degree two for 1 ≤ i, j ≤ 3, min{deg(x2),deg(x3)} = 3, and if deg(xi) ≥ 4 for some i ∈ {2, 3}, then
N(xi) − {x1} ⊆ N(x1).

(v) G′ is P3 = x1x2x3, deg(x2) = 2 and there is no vertex y for which yx1 ∈ E(G) and d(y, x3) = 3 or
yx3 ∈ E(G) and d(y, x1) = 3.

(vi) G′ is C4 = (x1x2x3x4), two consecutive vertices of C4, say x3 and x4 have degree two, N[x1] − {x4} =
N[x2] − {x3}, and x1, x2 have a common neighbor of degree 2.
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Proof. If G = C4 or G = C5, then clearly 1t(G) = n − 1, by Proposition 1.2. If G satisfies (ii) and
V(G) = {x1, x2, . . . , x`}, then every 1t(G)-set must contain all xi but one. It follows from Observation 1.3 and
Proposition 1.4 that 1t(G) = n − 1. If G satisfies (iii), then by Proposition 1.4, we have 1t(G) ≤ n − 1. We
may assume that G[N(x2) − {x1}] is a complete graph. It follows that x2 only lies on y1x2x1 geodesic where
y1 ∈ N(x2), since d(y1, y2) ≤ 2 for each y2 ∈ N(x1). This implies that every 1t(G)-set contains x1 or x2 and so
1t(G) = n − 1.

Let G satisfy (iv). By Observation 1.3, Ext(G) ∪ Stem(G) ⊆ S. Since x1 and x2 have a common neighbor
of degree two, we have |S ∩ {x1, x2}| ≥ 1. Similarly |S ∩ {x1, x3}| ≥ 1. If x1 < S, then x2, x3 ∈ S and the result
follows as above. Let x1 ∈ S. By the assumptions, we may assume that deg(x2) = 3. If deg(x3) = 3, then
clearly S ∩ {x2, x3} , ∅ which implies that 1t(G) = |S| = n − 1. Suppose deg(x3) ≥ 4. Then it follows from
N(x3)− {x1} ⊆ N(x1) that x2 ∈ S, which implies that 1t(G) = |S| ≥ n− 1 by Proposition 1.4. Thus 1t(G) = n− 1.

Now let G satisfy (v). Assume that S is a 1t(G)-set. By Observation 1.3, we have Ext(G) ∪ Stem(G) ⊆ S.
If x2 ∈ S, then since G[S] has no isolated vertex, we must have x1 ∈ S or x3 ∈ S. So |S| ≥ n − 1 and it follows
from Proposition 1.4 that 1t(G) = |S| = n − 1. Hence, we assume x2 < S. If x1 < S (the case x3 < S is similar),
then we must have a geodetic path x3x2x1u, which is a contradiction with the assumptions. Thus x1, x3 ∈ S
and so 1t(G) = n − 1.

Finally, let G satisfy (vi). If G = C4, then clearly 1t(G) = n − 1, by Proposition 1.2. Let n ≥ 5, two
consecutive vertices of C4, say x3 and x4, have degree two, N[x1] − {x4} = N[x2] − {x3}, and x1, x2 have a
common neighbor w of degree 2. Let S be a 1t-set of G. Since w ∈ S, we may assume that x1 ∈ S. If x3, x4 ∈ S,
then |S| ≥ n − 1 and we deduce from Proposition 1.4 that 1t(G) = |S| = n − 1. Let |S ∩ {x3, x4}| = 1. If x4 < S,
then clearly x3 ∈ S and since deg(x3) = 2 and S is a TGS, we conclude that x2 ∈ S. Hence |S| ≥ n − 1 which
implies that 1t(G) = |S| = n− 1. Let x4 ∈ S. If S∩ {x2, x3} = ∅, then there is a geodetic path ux2x3x4 in G which
leads to which is a contradiction because dG(u, x4) = 2. Therefore x2 ∈ S and so 1t(G) = |S| = n − 1.

Conversely, let 1t(G) = n − 1 and let G − (Ext(G) ∪ Stem(G)) = G′. We proceed with some claims:

Claim 1: δ(G) = 1 or diam(G) ≤ 3.

Proof. Suppose, to the contrary, that δ(G) ≥ 2 and diam(G) ≥ 4. Let P = v1, v2, . . . , vk be a diametral path in
G. Clearly P is a v1−vk geodesic path. If vi, vi+1 have no common neighbor of degree 2 for some 2 ≤ i ≤ k−2,
then clearly V(G) − {vi, vi+1} is a total geodetic set of G implying that 1t(G) ≤ n − 2 which is a contradiction.
Assume that vi and vi+1 have at least a common neighbor of degree 2. If vi and vi+2 have no common
neighbor of degree 2 for some 2 ≤ i ≤ k − 3, then clearly V(G) − {vi, vi+2} is a total geodetic set of G which
implies that 1t(G) ≤ n− 2, which is a contradiction. Assume w is a common neighbor of v2 and v4 of degree
2. Then it is easy to see that V(G)−{w, v3} is a total geodetic set of G and hence 1t(G) ≤ n−2, a contradiction,
as well. This proves Claim 1.

Claim 2: If n ≥ 6 and δ(G) ≥ 2, then every induced cycle of G has length at most 4.

Proof. Suppose, to the contrary, that C = (v1v2 . . . vk) is an induced cycle in G with k ≥ 5. If n = k, then
V(G) − {v1, v2} is a TGS of G implying that 1t(G) ≤ n − 2, which is a contradiction. Suppose that n ≥ k + 1.
Since G is connected, we may assume uv1 ∈ E(G) for some vertex u < V(C). If v2 and vk have a common
neighbor w of degree 2, then obviously V(G)− {v1,w} is a total geodetic set of G implying that 1t(G) ≤ n− 2,
which is a contradiction again. Otherwise, V(G)−{v2, vk} is a total geodetic set of G that implies 1t(G) ≤ n−2,
a contradiction, as well. This proves Claim 2.

Claim 3: If G , C5 has an induced k-cycle C = (v1v2 . . . vk) where k ≥ 5, then vi, vi+1 ∈ Stem(G) for some
1 ≤ i ≤ k.

Proof. Suppose, to the contrary, that no two consecutive vertices of C do not belong to Stem(G). Since
1t(G) = n−1, we must have G , C. By the assumptions, we have |Stem(G)∩V(C)| ≤ b k

2 c. If Stem(G)∩V(C) = ∅,
then an argument similar to that described in the proof of Claim 2 leads to 1t(G) ≤ n − 2, which is a
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contradiction. Assume that Stem(G)∩V(C) , ∅ and v1 ∈ Stem(G). Let S be the set consisting of all common
neighbors of v2 and vk which has degree 2. If |S| ≥ 2, then V(G)− S is a total geodetic set of G that leads to a
contradiction. If S = ∅, then obviously V(G) − {v2, vk} is a total geodetic set of G and so 1t(G) ≤ n − 2, which
is a contradiction. Assume that S = {w}. If v3 < Stem(G), then obviously V(G)− {w, v3} is a total geodetic set
of G and hence 1t(G) ≤ n − 2, a contradiction. Let v3 ∈ Stem(G). Then v4 < Stem(G). By repeating the above
argument, we may assume that v2 and v4 have exactly one common neighbor of degree 2, say w′. It is easy
to see that V(G)− {w,w′} is a TGS of G and hence 1t(G) ≤ n− 2, which is a contradiction. This proves Claim
3.

Claim 4: G − (Ext(G) ∪ Stem(G)) is a connected graph with diameter at most two.

Proof. First we show that G′ = G − (Ext(G) ∪ Stem(G)) is connected. Suppose, to the contrary, that
G′ is disconnected and let G1 and G2 be two components of G′. Let v1 ∈ V(G1) and v2 ∈ V(G2) such
that dG(u1,u2) = dG(V(G1),V(G2)). Since vi is not simplicial, vi has two neighbors wi1 and wi2 such that
wi1 wi2 < E(G), for i = 1, 2. Since vi < Stem(G), every neighbor of vi has degree at least two and so
V(G) − {v1, v2} is a total geodetic set of G, which is a contradiction.

Now, we show that diam(G′) ≤ 2. Assume, to the contrary, that diam(G′) ≥ 3. Let uw1w2 . . .wkv (k ≥ 2)
be a diametral path in G′. Since u and v are not stems and simplicial, we can see that V(G) − {u, v} is a total
geodetic set of G, which is a contradiction. This proves Claim 4.

Claim 5: G′ = G − (Ext(G) ∪ Stem(G)) is P3,C4,C5 or a complete graph.

Proof. By Claim 5, G′ is a connected graph with diameter diam(G′) ≤ 2. If diam(G′) = 1, then G′ is a
complete graph, and we are done. Let diam(G′) = 2. It follows that 1irth(G′) ≤ 5. First let 1irth(G′) = 0.
Then G′ is a tree. Since diam(G′) = 2, G′ is a star K1,r (r ≥ 2). If r ≥ 3 and u, v are two leaves of G′, then
clearly V(G) − {u, v} is a total geodetic set of G, which is a contradiction. Thus r = 2 which implies that
G′ = P3. Now let 1irth(G′) > 0 and C = (x1x2 . . . xt) be a cycle of G′ with t = 1irth(G′). If t = 5, then we
deduce from Claim 3 that G = C5. Let t ≤ 4. We consider two cases.

Case 1. t = 4.
We claim that |V(G′)| = 4. Suppose, to the contrary, that |V(G′)| ≥ 5. Since G′ is connected, there is a
vertex u1 ∈ V(G′) − V(C) such that u1xi ∈ E(G′) for some i, say i = 1. From G′ being triangle-free, we have
u1x2,u1x4 < E(G). If there is path x1u1 . . . ukx3 in G and x2, x4 have no common neighbor of degree two, then
V(G) − {x2, x4} is a TGS of G, which is a contradiction. If there is path x1u1 . . . ukx3 in G and x2, x4 have a
common neighbor w of degree two, then V(G)− {w, x1} is a TGS of G, which is a contradiction. Assume that
there is no such a path in G and hence u1x3 < E(G). It follows from u1 < Ext(G)∪ Stem(G) that V(G)− {u1, x3}

is a TGS of G which is a contradiction. Therefore V(G′) = 4 and so G′ = C4, as desired.

Case 2. t = 3.
Let {x1, x2, . . . , xk} be the vertex set of a largest clique in G′. Since G′ is a connected graph with diam(G′) = 2,
there is a vertex u1 ∈ V(G′) − {x1, x2, . . . , xk} such that u1xi ∈ E(G′) for some i. By the choice of {x1, x2, . . . , xk},
u1 is not adjacent to all xi. Assume without loss of generality that {x1, x2, . . . , xk} ∩ N(u1) = {x1, x2, . . . , xr}

where r < k. Since u1 is not a simplicial vertex, u1 has two non-adjacent neighbors u′ and u′′. We may
assume without loss of generality that u′ < {x1, x2, . . . , xr}. Consider two subcases.

Subcase 2.1. r ≥ 2.
If xi and x j have no common neighbor of degree two for some 1 ≤ i , j ≤ r, then V(G) − {xi, x j} is a TGS
of G, which is a contradiction. Hence, we assume xi and x j have a common neighbor wi, j of degree two
for each 1 ≤ i , j ≤ r. If u1 and xi have a common neighbor w of degree two for some r + 1 ≤ i ≤ k, then
V(G) − {w, x1} is a TGS of G, which is a contradiction. Let u1 and xi have no common neighbor of degree
two for each r + 1 ≤ i ≤ k. Then V(G) − {u1, xk} is a TGS of G which is a contradiction.



H. A. Ahangar / Filomat 31:13 (2017), 4297–4304 4302

Subcase 2.2. r = 1.
If u1, xi has a common neighbor w of degree 2 and u1, x j has a common neighbor w′ of degree 2 for some
2 ≤ i, j ≤ k (possibly i = j), then V(G) − {wi,w j} is a TGS of G, which is a contradiction. If u1 has exactly one
common neighbor w of degree two with some x2, x3, . . . , xk, say w ∈ N(u1) ∩ N(x2), then V(G) − {w, xk} is a
TGS of G, which is a contradiction. Henceforth, we assume that u1 has no common neighbor of degree two
with x2, x3, . . . , xk. Then V(G)− {u1, x3} is a TGS of G, which is a contradiction. This completes the proof.

Claim 6: If G′ � K2 and V(G) = {x1, x2}, then one of the following statements hold:

(a) there exists a vertex w with N(w) = {x1, x2},

(b) at least one of induced subgraphs G[N(x1)−{x2}] and G[N(x2)−{x1}] is a complete graph and d(y1, y2) ≤ 2
for every vertex y1 ∈ N(x1) −N(x2) and y2 ∈ N(x2) −N(x1).

Proof. If (a) holds, there is nothing to prove. Assume that (a) does not hold. If both of induced subgraphs
G[N(x1)−{x2}] and G[N(x2)−{x1}] are not complete, then V(G)−{x1, x2} is a TGS of G, which is a contradiction.
Hence, at least one of the induced subgraphs G[N(x1)− {x2}] and G[N(x2)− {x1}] is complete. If d(y1, y2) ≥ 3
for some y1 ∈ N(x1)−N(x2) and y2 ∈ N(x2)−N(x1), then V(G)−{x1, x2} is a TGS of G, which is a contradiction.
Thus (b) holds and the proof is complete.

Claim 7: If G′ � K3 and V(K3) = {x1, x2, x3}, then one of the following holds:

(a) xi and x j have a common neighbor of degree two for each 1 ≤ i, j ≤ 3,

(b) every pair xi and x j but one, say x2 and x3, have a common neighbor wi, j of degree two for 1 ≤ i, j ≤ 3,
min{deg(x2),deg(x3)} = 3, and if deg(xi) ≥ 4 for some i ∈ {2, 3}, then N(xi) − {x1} ⊆ N(x1).

Proof. Let (a) does not hold. The proof is achieved by means of contradiction. Assume first that xi and x j
have no common neighbor of degree 2 for each 1 ≤ i, j ≤ 3. If N(x1) − {x2} ⊆ N(x2), then since x1 is not a
simplicial vertex, V(G) − {x1, x2} is a TGS of G, which is a contradiction. Assume that x1

1 is a neighbor of
x1 such that x1

1 < N(x2). If x1
1x3 ∈ E(G), then clearly V(G) − {x1, x3} is a TGS of G, which is a contradiction.

Suppose that x1
1x3 < E(G). If N(x2)− {x3} ⊆ N(x3), then V(G)− {x2, x3} is a TGS of G, which is a contradiction.

Let x1
2 ∈ N(x2) \N(x3). Then V(G) − {x1, x2} is a TGS of G which is a contradiction.

Now let x1, x3 and x2, x3 have no common neighbor of degree two and x1, x2 have a common neighbor
w1,2 of degree two. If N(x3) − {x2} ⊆ N(x2), since x3 is not a simplicial vertex, then V(G) − {x2, x3} is a TGS
of G, which is a contradiction. Assume that x1

3 is a neighbor of x3 such that x1
3 < N(x2). If x1

3x1 ∈ E(G), then
obviously V(G) − {x1, x3} is a TGS of G, which is a contradiction. If x1

3x1 < E(G), then dG(x1, x1
3) = 3 which

implies that V(G) − {x1, x3} is a TGS of G, which is a contradiction. Thus every pair xi and x j but one, say
x2, x3, have a common neighbor wi, j of degree two for 1 ≤ i, j ≤ 3.

If min{deg(x2),deg(x3)} ≥ 4, then clearly V(G) − {x2, x3} is a TGS of G which is a contradiction. Hence,
min{deg(x2),deg(x3)} = 3. Assume that deg(x2) = 3. Finally, if N(x3) * N(x1) and x1

3 ∈ N(x3) \ N(x1), then
dG(x3,w1,2) = 2 and V(G) − {x2, x3} is a TGS of G, which is a contradiction. So G satisfies (b).

Claim 8: If G′ � Kl (l ≥ 4) and V(Kl) = {x1, x2, . . . , xl}, then xi and x j have a common neighbor of degree
two for each 1 ≤ i, j ≤ l.

Proof. Assume, to the contrary, that xi and x j have no common neighbor of degree two for some 1 ≤ i, j ≤ l,
say i = 1, j = 2. Let w1 be a common neighbor of x1, x3 and w2 be a common neighbor of x2, x4. Then
dG(w1,w2) = 3 which implies that V(G) − {x1, x2} is a TGS of G, which is a contradiction. This completes the
proof.

Claim 9: If G′ � x1x2x3, then deg(x2) = 2 and there is no vertex y for which yx1 ∈ E(G) and d(y, x3) = 3
or yx3 ∈ E(G) and d(y, x1) = 3.
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Proof. Let G − (Ext(G) ∪ Stem(G)) = x1x2x3. If deg(x2) ≥ 3, then V(G) − {x1, x3} is a TGS of G, which is a
contradiction. Thus deg(x2) = 2. If there is a vertex y ∈ N(x1) such that d(y, x3) = 3 (the case y ∈ N(x3)
such that d(y, x1) = 3 is similar), then V(G) − {x1, x2} is a TGS of G which is which is a contradiction. This
completes the proof.

Claim 10: If G′ � (x1x2x3x4), then either G = C4 or n ≥ 5, two consecutive vertices of C4, say x3 and x4,
have degree two, N[x1] − {x4} = N[x2] − {x3}, and x1, x2 have a common neighbor of degree 2.

Proof. Let G − (Ext(G) ∪ Stem(G)) = (x1x2x3x4). If n = 4, then clearly G = C4. Suppose that n ≥ 5. We first
show that two consecutive adjacent vertices of cycle (x1x2x3x4) have degree 2. If deg(x1) ≥ 3 and deg(x3) ≥ 3,
then V(G) − {x2, x4} is a TGS of G, and if deg(x2) ≥ 3 and deg(x4) ≥ 3, then V(G) − {x1, x2} is a TGS of G,
which is a contradiction. Assume without loss of generality that deg(x3) = deg(x4) = 2. If x1 and x2 have
no common vertex of degree two, then V(G) − {x1, x2} is a TGS of G, which is a contradiction.

In view of the above Claims, the proof of Theorem 3.1 is complete. �

An immediate consequence of Theorems 1.1, 3.1 and Observation 1.3 now follows:

Corollary 3.2. Let G be a connected graph of order n. Then 1(G) = 1t(G) = n − 1 if and only if G is the join
of K1 and pairwise disjoint complete graphs Kn1 ,Kn2 , . . . ,Knr , that is, G = (Kn1 ∪ Kn2 ∪ . . .Knr ) ∨ K1, where
r ≥ 2, ni ≥ 2, for 1 ≤ i ≤ r, with n1 + n2 + . . . + nr = n − 1.

Corollary 3.3. If G is a graph of order n with 1t(G) = n − 1, then the difference 1t(G) − 1(G) is at most
|V(G′)| − 1, where G′ = G − (Ext(G) ∪ Stem(G)).

Proof. Assume that G′ = G − (Ext(G) ∪ Stem(G)). Since 1t(G) = n − 1, by Theorem 3.1 one of the conditions
(i)-(vi) hold. If G satisfies (i), then clearly 1(C4) = 2 and 1(C5) = 3. Thus 1t(G) − 1(G) = 2, and so the result
follows. If G satisfies (ii), then Ext(G) ∪ Stem(G) is the unique 1-set of G, and so 1(G) = |Ext(G) ∪ Stem(G)| =
|V(G)| − |V(G′)|. Thus 1t(G) − 1(G) = n − 1 − n + |V(G′)| = |V(G′)| − 1, and so the result follows.

If G satisfies (iii), then by Theorem 1.1, we have 1(G) ≤ n − 2. On the other hand, V(G) − V(K2) =
Ext(G) ∪ Stem(G) is a 1-set of G. Hence 1t(G) − 1(G) = 1.

Let G satisfy (iv). If deg(x2) ≥ 4 and deg(x3) ≥ 4, then 1(G) = |Ext(G)| + |Stem(G)|. Thus 1t(G) − 1(G) =
n− 1− n + |V(G′)| = |V(G′)| − 1. Otherwise, at least one of x2 or x3 must be included in any 1-set of G and so
1(G) ≥ n − 2. On the other hand, Theorem 1.1 implies that 1(G) = n − 2. Hence 1t(G) − 1(G) = 1.

Let G satisfy (v). Clearly, x2 belongs to any 1-set of G yielding 1(G) = n − 2. Thus 1t(G) − 1(G) = 1.
Assume G satisfies (vi). Since deg(x3) = deg(x4) = 2, we conclude from the structure of G that any 1-set

of G contains x3 or x4. This implies that 1(G) ≥ |Ext(G)∪ Stem(G)| + 1 = n − 3. Thus 1t(G) − 1(G) ≤ 2 and the
proof is complete.

We conclude the paper by giving the following result:

Proposition 3.4. The difference 1t(G) − 1(G) can be arbitrarily large.

Proof. For each integer n ≥ 3, let G be a graph obtained from K1,r by subdivision all leaves once. Clearly,
1(G) = r, and 1t(G) = 2r. Thus, 1t(G) − 1(G) = r.
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