Filomat 31:13 (2017), 4297–4304 https://doi.org/10.2298/FIL1713297A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Graphs with Large Total Geodetic Number

Hossein Abdollahzadeh Ahangar^a

^aDepartment of Mathematics, Babol Noshirvani University of Technology, Shariati Ave., Babol, I.R. Iran, Postal Code: 47148-71167

Abstract. For two vertices u and v of a graph G, the set I[u, v] consists of all vertices lying on some u - v geodesic in G. If S is a set of vertices of G, then I[S] is the union of all sets I[u, v] for $u, v \in S$. A set of vertices $S \subseteq V(G)$ is a *total geodetic set* if I[S] = V(G) and the subgraph G[S] induced by S has no isolated vertex. The *total geodetic number*, denoted by $g_i(G)$, is the minimum cardinality among all total geodetic sets of G. In this paper, we characterize all connected graphs G of order $n \ge 3$ with $g_i(G) = n - 1$.

1. Introduction

In this paper, we continue the study of total geodetic number in graphs. For notation and graph theory terminology, we follow West [20]. Specifically, let *G* be a simple connected graph with vertex set V(G) = V and edge set E(G) = E. The integers n = n(G) = |V(G)| and m = m(G) = |E(G)| are the order and the size of the graph *G*, respectively. For two vertices *x* and *y* in a (connected) graph *G*, the *distance* $d_G(x, y)$ is the length of a shortest x - y path in *G*. The *girth* of a graph *G*, denoted by *girth*(*G*), is the length of its shortest cycle. The girth of a graph with no cycle is defined to be 0. The *join* $H \vee K$ of two disjoint graphs *H* and *K* is the graph obtained from their union by adding new edges joining each vertex of V(H) to every vertex of V(K). For a vertex *x* of *G*, the *eccentricity* $e_G(x)$ is the distance between *x* and a vertex farthest from *x*. The minimum eccentricity among the vertices of *G* is the *radius*, rad(G), and the maximum eccentricity is its *diameter*, diam(G). A x - y path of length $d_G(x, y)$ is called a x - y geodesic. The geodetic interval I[x, y] is the set consisting of *x*, *y* and all vertices lying in some x - y geodesic of *G*, and for a nonempty subset *S* of V(G), we define $I[S] = \bigcup_{x,y \in S} I[x, y]$.

A subset *S* of vertices of *G* is a *geodetic set* (or just GS) if I[S] = V. The *geodetic number* g(G) is the minimum cardinality of a geodetic set of *G*. A g(G)-set is a geodetic set of *G* of size g(G). The geodetic sets of a connected graph were introduced by Harary, Loukakis and Tsouros [14], as a tool for studying metric properties of connected graphs. It was shown in [7] that the determination of g(G) is an NP-hard problem and its decision problem is NP-complete. The geodetic number and its variants have been studied by several authors (see for example [1, 2, 6, 7, 9–13, 15–19, 21]).

A set of vertices $S \subseteq V(G)$ is a *total geodetic set* (or just TGS) if I[S] = V(G) and the subgraph G[S] induced by *S* has no isolated vertex. The minimum cardinality among all total geodetic sets of *G* is called the *total geodetic number* and is denoted by $g_t(G)$. The total geodetic number of a connected graph was introduced by Abdollahzadeh Ahangar and Samodivkin in [5]. Very recently, Abdollahzadeh Ahangar and Najimi

²⁰¹⁰ Mathematics Subject Classification. 05C12.

Keywords. Geodetic set, Geodetic number, Total geosetic set, Total geodetic number

Received: 01 January 2016; Accepted: 24 July 2017

Communicated by Francesco Belardo

Email address: ha.ahangar@nit.ac.ir (Hossein Abdollahzadeh Ahangar)

introduced the concept of total restrained geodetic number in [3], and continued the study on this new parameter by Abdollahzadeh Ahangar et al. in [4].

A vertex of *G* is *simplicial* if the subgraph induced by its neighborhood is complete. In particular, every endvertex is simplicial. The set of all simplicial vertices of a graph *G* is denoted by Ext(G). A vertex of *G* is a *stem* if it is adjacent to an endvertex. The sets of all endvertices and all stems are denoted by L(G) and Stem(G), respectively. In K_2 a vertex is both an endvertex and a stem. A vertex *v* in *G* is said to be a g_t -fixed vertex of *G* if *v* belongs to every $g_t(G)$ -set. The set of all g_t -fixed vertices of a graph *G* is denoted by $Fi_t(G)$.

The main aim of this paper is to characterize all connected graphs *G* of order $n \ge 3$ with $g_t(G) = n - 1$.

We make use of the following results in this paper.

Theorem 1.1. ([8]) Let *G* be a connected graph of order $n \ge 3$. Then g(G) = n - 1 if and only if *G* is the join of K_1 and pairwise disjoint complete graphs $K_{n_1}, K_{n_2}, \ldots, K_{n_r}$, that is, $G = (K_{n_1} \cup K_{n_2} \cup \ldots K_{n_r}) \lor K_1$, where $r \ge 2$, n_1, n_2, \ldots, n_r are positive integers with $n_1 + n_2 + \ldots + n_r = n - 1$.

Proposition 1.2. ([5]) For $n \ge 3$, $g_t(C_n) = 4$ when $n \ge 5$ and $g_t(C_n) = 3$ when $n \in \{3, 4\}$.

Observation 1.3. ([5]) Let *G* be a connected graph of order $n \ge 2$. Then $Stem(G) \cup Ext(G) \subseteq Fi_t(G)$. In particular, $g_t(G) \ge |Ext(G)| + |Stem(G)|$.

Proposition 1.4. Let *G* be a connected graph of order *n*. Then $g_t(G) = n$ if and only if every vertex of *G* is simplicial or a stem.

Proof. The sufficiency follows from Observation 1.3. To prove the necessity, assume that $g_t(G) = n$. If *G* has a vertex *v* that is not simplicial or a stem, then obviously $V(G) - \{v\}$ is a total geodetic set of *G* which leads to a contradiction. Therefore, every vertex of *G* is simplicial or a stem. \Box

2. Upper bounds on the total geodetic number

In this section we give several sufficient conditions for a graph of order *n* to have total geodetic number at most n - 2.

A *cut-vertex* is a vertex whose deletion results in a graph with more components than the original graph. The set of all cut-vertices of G, is denoted by Cut(G).

Proposition 2.1. Let *G* be a connected graph of order *n*. If there exist two vertices $u_1, u_2 \in Cut(G) - Stem(G)$ with $d(u_1, u_2) \ge 2$, then $g_t(G) \le n - 2$.

Proof. By the assumption, each component of $G - u_1$ and $G - u_2$ have order at least 2. Let I be the set of all isolated vertices of $G - \{u_1, u_2\}$. If $I = \emptyset$, then clearly $V(G) - \{u_1, u_2\}$ is a total geodetic set of G that implies $g_t(G) \le n - 2$. If $|I| \ge 2$, then clearly V(G) - I is a total geodetic set of G implying that $g_t(G) \le n - 2$. Assume now that $I = \{w\}$. It follows that $\deg(w) = 2$ and w is adjacent to u_1 and u_2 . Suppose G_1 is a component of $G - u_1$ not containing u_2 and G_2 is a component of $G - u_2$ not containing u_1 . Let $w_1 \in V(G_1)$ and $w_2 \in V(G_2)$. Then clearly $|V(G_i)| \ge 2$ for i = 1, 2 and every $w_1 - w_2$ geodesic contains u, v and w. It follows that $V(G) - \{u, v, w\}$ is a total geodetic set of G yielding $g_t(G) \le n - 3$. This completes the proof. \Box

Next result is an immediate consequence of Proposition 2.1.

Corollary 2.2. If *G* is a graph of order *n* with $g_t(G) = n - 1$, then the induced subgraph G[Cut(G) - Stem(G)] is complete.

A *vertex cut* of a connected graph *G* is a set $S \subseteq V(G)$ such that G - S has more than one component. The *connectivity* of *G*, written $\kappa(G)$, is the minimum size of a vertex set *S* such that G - S is disconnected or has only one vertex.

Proposition 2.3. For any connected graph *G* of order *n* different from K_n ,

$$q_t(G) \le n - \kappa(G) + 1.$$

Proof. We may assume that $\kappa(G) \ge 2$, otherwise the result is immediate. Let $S = \{v_1, v_2, \dots, v_{\kappa(G)}\}$ be a vertex cut of *G* and let G_1, G_2, \dots, G_l ; $(l \ge 2)$ be the components of G - S. For each $v_i \in S$, there is a vertex $u_{i_j} \in G_j$ such that $v_i u_{i_j} \in E(G)$, otherwise $S - \{v_i\}$ is a vertex cut of *G*, which is a contradiction.

If $|V(G_i)| \ge 2$ for each *i*, then clearly V(G) - S is a total geodetic set of *G* and hence $g_t(G) \le n - \kappa(G)$. Assume that $|V(G_i)| = 1$ for some *i*, say i = 1, and let $V(G_1) = \{w\}$. Then *w* must be adjacent to all vertices of *S*. It is easy to verify that $V(G) - \{v_2, v_3, \dots, v_{\kappa(G)}\}$ is a total geodetic set of *G* implying that $g_t(G) \le n - \kappa(G) + 1$. This completes the proof. \Box

An immediate consequence of Proposition 2.3 now follows.

Corollary 2.4. For any connected graph *G* of order *n* with $g_t(G) = n - 1$, $\kappa(G) \le 2$.

Proposition 2.5. Let *k* be a positive integer and *G* a connected graph of order *n* different from K_n . If $\delta(G) \ge k + 1$ and *G* has at least *k* vertices of degree n - 1, then $g_t(G) \le n - k$.

Proof. Let *S* be a set of vertices of degree n-1 and size *k*. Since $G \neq K_n$, *G* has two non-adjacent vertices *u* and *v* and all vertices of *S* lay on some u - v geodesic. On the other hand, we deduce from $\delta(G) \ge k + 1$ that G - S has no isolated vertex. It follows that V(G) - S is a TGS of *G* which implies that $g_t(G) \le |V(G) - S| \le n - k$. \Box

Proposition 2.6. Let *G* be a graph of order *n* with $\delta(G) \ge 3$. If *G* has two non-adjacent vertices *u*, *v* such that $\deg(u) + \deg(v) \ge n$, then $g_t(G) \le n - 2$.

Proof. Since deg(*u*) + deg(*v*) \ge *n*, we have $|N(u) \cap N(v)| \ge 2$. Suppose that $\{w_1, w_2\} \subseteq N(u) \cap N(v)$. It follows from $\delta(G) \ge 3$ that $V(G) - \{w_1, w_2\}$ is a TGS of *G* which implies that $g_t(G) \le n - 2$, as desired. \Box

Next results are immediate consequence of Proposition 2.6.

Corollary 2.7. Let *G* be a graph of order $n \ge 5$ different from K_n . If $\delta(G) \ge \lceil \frac{n}{2} \rceil$, then $g_t(G) \le n - 2$.

Corollary 2.8. For any graph *G* of order $n \ge 5$ with $g_t(G) = n - 1$, $\delta(G) \le \lfloor \frac{n}{2} \rfloor$.

3. Graphs with large geodetic number

In this section, we classify all connected graphs of order *n* whose total geodetic number is n - 1.

Theorem 3.1. Let *G* be a connected graph of order *n* and let $G' = G - (Ext(G) \cup Stem(G))$. Then $g_t(G) = n - 1$ if and only if one of the following statements hold:

- (i) $G = C_4$ or $G = C_5$.
- (ii) *G*′ is a complete graph of order at least two and every pair of vertices of *G*′ has a common neighbor of degree 2.
- (iii) *G'* is K_2 with vertex set $\{x_1, x_2\}$, at least one of induced subgraphs $G[N(x_1) \{x_2\}]$ and $G[N(x_2) \{x_1\}]$ is a complete graph and $d(y_1, y_2) \le 2$ for every vertex $y_1 \in N(x_1) N(x_2)$ and $y_2 \in N(x_2) N(x_1)$.
- (iv) *G'* is *K*₃ with vertex set {*x*₁, *x*₂, *x*₃}, every pair *x_i* and *x_j* but one, say *x*₂, *x*₃, have a common neighbor $w_{i,j}$ of degree two for $1 \le i, j \le 3$, min{deg(*x*₂), deg(*x*₃)} = 3, and if deg(*x_i*) ≥ 4 for some $i \in \{2, 3\}$, then $N(x_i) \{x_1\} \subseteq N(x_1)$.
- (v) G' is $P_3 = x_1x_2x_3$, deg $(x_2) = 2$ and there is no vertex y for which $yx_1 \in E(G)$ and $d(y, x_3) = 3$ or $yx_3 \in E(G)$ and $d(y, x_1) = 3$.
- (vi) *G'* is $C_4 = (x_1x_2x_3x_4)$, two consecutive vertices of C_4 , say x_3 and x_4 have degree two, $N[x_1] \{x_4\} = N[x_2] \{x_3\}$, and x_1, x_2 have a common neighbor of degree 2.

Proof. If $G = C_4$ or $G = C_5$, then clearly $g_t(G) = n - 1$, by Proposition 1.2. If *G* satisfies (ii) and $V(G) = \{x_1, x_2, ..., x_t\}$, then every $g_t(G)$ -set must contain all x_i but one. It follows from Observation 1.3 and Proposition 1.4 that $g_t(G) = n - 1$. If *G* satisfies (iii), then by Proposition 1.4, we have $g_t(G) \le n - 1$. We may assume that $G[N(x_2) - \{x_1\}]$ is a complete graph. It follows that x_2 only lies on $y_1x_2x_1$ geodesic where $y_1 \in N(x_2)$, since $d(y_1, y_2) \le 2$ for each $y_2 \in N(x_1)$. This implies that every $g_t(G)$ -set contains x_1 or x_2 and so $g_t(G) = n - 1$.

Let *G* satisfy (iv). By Observation 1.3, $\text{Ext}(G) \cup \text{Stem}(G) \subseteq S$. Since x_1 and x_2 have a common neighbor of degree two, we have $|S \cap \{x_1, x_2\}| \ge 1$. Similarly $|S \cap \{x_1, x_3\}| \ge 1$. If $x_1 \notin S$, then $x_2, x_3 \in S$ and the result follows as above. Let $x_1 \in S$. By the assumptions, we may assume that $\text{deg}(x_2) = 3$. If $\text{deg}(x_3) = 3$, then clearly $S \cap \{x_2, x_3\} \neq \emptyset$ which implies that $g_t(G) = |S| = n - 1$. Suppose $\text{deg}(x_3) \ge 4$. Then it follows from $N(x_3) - \{x_1\} \subseteq N(x_1)$ that $x_2 \in S$, which implies that $g_t(G) = |S| \ge n - 1$ by Proposition 1.4. Thus $g_t(G) = n - 1$.

Now let *G* satisfy (v). Assume that *S* is a $g_t(G)$ -set. By Observation 1.3, we have $Ext(G) \cup Stem(G) \subseteq S$. If $x_2 \in S$, then since *G*[*S*] has no isolated vertex, we must have $x_1 \in S$ or $x_3 \in S$. So $|S| \ge n - 1$ and it follows from Proposition 1.4 that $g_t(G) = |S| = n - 1$. Hence, we assume $x_2 \notin S$. If $x_1 \notin S$ (the case $x_3 \notin S$ is similar), then we must have a geodetic path $x_3x_2x_1u$, which is a contradiction with the assumptions. Thus $x_1, x_3 \in S$ and so $g_t(G) = n - 1$.

Finally, let *G* satisfy (vi). If $G = C_4$, then clearly $g_t(G) = n - 1$, by Proposition 1.2. Let $n \ge 5$, two consecutive vertices of C_4 , say x_3 and x_4 , have degree two, $N[x_1] - \{x_4\} = N[x_2] - \{x_3\}$, and x_1, x_2 have a common neighbor *w* of degree 2. Let *S* be a g_t -set of *G*. Since $w \in S$, we may assume that $x_1 \in S$. If $x_3, x_4 \in S$, then $|S| \ge n - 1$ and we deduce from Proposition 1.4 that $g_t(G) = |S| = n - 1$. Let $|S \cap \{x_3, x_4\}| = 1$. If $x_4 \notin S$, then clearly $x_3 \in S$ and since deg $(x_3) = 2$ and *S* is a TGS, we conclude that $x_2 \in S$. Hence $|S| \ge n - 1$ which implies that $g_t(G) = |S| = n - 1$. Let $x_4 \notin S$. If $S \cap \{x_2, x_3\} = \emptyset$, then there is a geodetic path $ux_2x_3x_4$ in *G* which leads to which is a contradiction because $d_G(u, x_4) = 2$. Therefore $x_2 \in S$ and so $g_t(G) = |S| = n - 1$.

Conversely, let $q_t(G) = n - 1$ and let $G - (Ext(G) \cup Stem(G)) = G'$. We proceed with some claims:

Claim 1: $\delta(G) = 1$ or diam $(G) \leq 3$.

Proof. Suppose, to the contrary, that $\delta(G) \ge 2$ and diam $(G) \ge 4$. Let $P = v_1, v_2, \ldots, v_k$ be a diametral path in *G*. Clearly *P* is a $v_1 - v_k$ geodesic path. If v_i, v_{i+1} have no common neighbor of degree 2 for some $2 \le i \le k-2$, then clearly $V(G) - \{v_i, v_{i+1}\}$ is a total geodetic set of *G* implying that $g_t(G) \le n - 2$ which is a contradiction. Assume that v_i and v_{i+1} have at least a common neighbor of degree 2. If v_i and v_{i+2} have no common neighbor of degree 2 for some $2 \le i \le k-3$, then clearly $V(G) - \{v_i, v_{i+2}\}$ is a total geodetic set of *G* which implies that $g_t(G) \le n - 2$, which is a contradiction. Assume *w* is a common neighbor of v_2 and v_4 of degree 2. Then it is easy to see that $V(G) - \{w, v_3\}$ is a total geodetic set of *G* and hence $g_t(G) \le n - 2$, a contradiction, as well. This proves Claim 1. \Box

Claim 2: If $n \ge 6$ and $\delta(G) \ge 2$, then every induced cycle of *G* has length at most 4.

Proof. Suppose, to the contrary, that $C = (v_1v_2...v_k)$ is an induced cycle in G with $k \ge 5$. If n = k, then $V(G) - \{v_1, v_2\}$ is a TGS of G implying that $g_t(G) \le n - 2$, which is a contradiction. Suppose that $n \ge k + 1$. Since G is connected, we may assume $uv_1 \in E(G)$ for some vertex $u \notin V(C)$. If v_2 and v_k have a common neighbor w of degree 2, then obviously $V(G) - \{v_1, w\}$ is a total geodetic set of G implying that $g_t(G) \le n - 2$, which is a contradiction again. Otherwise, $V(G) - \{v_2, v_k\}$ is a total geodetic set of G that implies $g_t(G) \le n - 2$, a contradiction, as well. This proves Claim 2. \Box

Claim 3: If $G \neq C_5$ has an induced *k*-cycle $C = (v_1v_2...v_k)$ where $k \ge 5$, then $v_i, v_{i+1} \in Stem(G)$ for some $1 \le i \le k$.

Proof. Suppose, to the contrary, that no two consecutive vertices of *C* do not belong to Stem(*G*). Since $g_t(G) = n-1$, we must have $G \neq C$. By the assumptions, we have $|\text{Stem}(G) \cap V(C)| \leq \lfloor \frac{k}{2} \rfloor$. If $\text{Stem}(G) \cap V(C) = \emptyset$, then an argument similar to that described in the proof of Claim 2 leads to $g_t(G) \leq n-2$, which is a

contradiction. Assume that $\text{Stem}(G) \cap V(C) \neq \emptyset$ and $v_1 \in \text{Stem}(G)$. Let *S* be the set consisting of all common neighbors of v_2 and v_k which has degree 2. If $|S| \ge 2$, then V(G) - S is a total geodetic set of *G* that leads to a contradiction. If $S = \emptyset$, then obviously $V(G) - \{v_2, v_k\}$ is a total geodetic set of *G* and so $g_t(G) \le n - 2$, which is a contradiction. Assume that $S = \{w\}$. If $v_3 \notin \text{Stem}(G)$, then obviously $V(G) - \{w, v_3\}$ is a total geodetic set of *G* and hence $g_t(G) \le n - 2$, a contradiction. Let $v_3 \in \text{Stem}(G)$. Then $v_4 \notin \text{Stem}(G)$. By repeating the above argument, we may assume that v_2 and v_4 have exactly one common neighbor of degree 2, say w'. It is easy to see that $V(G) - \{w, w'\}$ is a TGS of *G* and hence $g_t(G) \le n - 2$, which is a contradiction. This proves Claim 3. \Box

Claim 4: $G - (Ext(G) \cup Stem(G))$ is a connected graph with diameter at most two.

Proof. First we show that $G' = G - (Ext(G) \cup Stem(G))$ is connected. Suppose, to the contrary, that G' is disconnected and let G_1 and G_2 be two components of G'. Let $v_1 \in V(G_1)$ and $v_2 \in V(G_2)$ such that $d_G(u_1, u_2) = d_G(V(G_1), V(G_2))$. Since v_i is not simplicial, v_i has two neighbors w_{i_1} and w_{i_2} such that $w_{i_1}w_{i_2} \notin E(G)$, for i = 1, 2. Since $v_i \notin Stem(G)$, every neighbor of v_i has degree at least two and so $V(G) - \{v_1, v_2\}$ is a total geodetic set of G, which is a contradiction.

Now, we show that diam(G') ≤ 2 . Assume, to the contrary, that diam(G') ≥ 3 . Let $uw_1w_2...w_kv$ ($k \geq 2$) be a diametral path in G'. Since u and v are not stems and simplicial, we can see that $V(G) - \{u, v\}$ is a total geodetic set of G, which is a contradiction. This proves Claim 4. \Box

Claim 5: $G' = G - (Ext(G) \cup Stem(G))$ is P_3, C_4, C_5 or a complete graph.

Proof. By Claim 5, *G'* is a connected graph with diameter diam(*G'*) \leq 2. If diam(*G'*) = 1, then *G'* is a complete graph, and we are done. Let diam(*G'*) = 2. It follows that $girth(G') \leq 5$. First let girth(G') = 0. Then *G'* is a tree. Since diam(*G'*) = 2, *G'* is a star $K_{1,r}$ ($r \geq 2$). If $r \geq 3$ and u, v are two leaves of *G'*, then clearly $V(G) - \{u, v\}$ is a total geodetic set of *G*, which is a contradiction. Thus r = 2 which implies that $G' = P_3$. Now let girth(G') > 0 and $C = (x_1x_2...x_t)$ be a cycle of *G'* with t = girth(G'). If t = 5, then we deduce from Claim 3 that $G = C_5$. Let $t \leq 4$. We consider two cases.

Case 1. *t* = 4.

We claim that |V(G')| = 4. Suppose, to the contrary, that $|V(G')| \ge 5$. Since G' is connected, there is a vertex $u_1 \in V(G') - V(C)$ such that $u_1x_i \in E(G')$ for some i, say i = 1. From G' being triangle-free, we have $u_1x_2, u_1x_4 \notin E(G)$. If there is path $x_1u_1 \dots u_kx_3$ in G and x_2, x_4 have no common neighbor of degree two, then $V(G) - \{x_2, x_4\}$ is a TGS of G, which is a contradiction. If there is path $x_1u_1 \dots u_kx_3$ in G and x_2, x_4 have a common neighbor w of degree two, then $V(G) - \{w, x_1\}$ is a TGS of G, which is a contradiction. Assume that there is no such a path in G and hence $u_1x_3 \notin E(G)$. It follows from $u_1 \notin \text{Ext}(G) \cup \text{Stem}(G)$ that $V(G) - \{u_1, x_3\}$ is a TGS of G which is a contradiction. Therefore V(G') = 4 and so $G' = C_4$, as desired.

Case 2. *t* = 3.

Let $\{x_1, x_2, ..., x_k\}$ be the vertex set of a largest clique in G'. Since G' is a connected graph with diam(G') = 2, there is a vertex $u_1 \in V(G') - \{x_1, x_2, ..., x_k\}$ such that $u_1x_i \in E(G')$ for some *i*. By the choice of $\{x_1, x_2, ..., x_k\}$, u_1 is not adjacent to all x_i . Assume without loss of generality that $\{x_1, x_2, ..., x_k\} \cap N(u_1) = \{x_1, x_2, ..., x_r\}$ where r < k. Since u_1 is not a simplicial vertex, u_1 has two non-adjacent neighbors u' and u''. We may assume without loss of generality that $u' \notin \{x_1, x_2, ..., x_r\}$. Consider two subcases.

Subcase 2.1. $r \ge 2$.

If x_i and x_j have no common neighbor of degree two for some $1 \le i \ne j \le r$, then $V(G) - \{x_i, x_j\}$ is a TGS of G, which is a contradiction. Hence, we assume x_i and x_j have a common neighbor $w_{i,j}$ of degree two for each $1 \le i \ne j \le r$. If u_1 and x_i have a common neighbor w of degree two for some $r + 1 \le i \le k$, then $V(G) - \{w, x_1\}$ is a TGS of G, which is a contradiction. Let u_1 and x_i have no common neighbor of degree two for each $r + 1 \le i \le k$. Then $V(G) - \{u_1, x_k\}$ is a TGS of G which is a contradiction.

Subcase 2.2. *r* = 1.

If u_1, x_i has a common neighbor w of degree 2 and u_1, x_j has a common neighbor w' of degree 2 for some $2 \le i, j \le k$ (possibly i = j), then $V(G) - \{w_i, w_j\}$ is a TGS of G, which is a contradiction. If u_1 has exactly one common neighbor w of degree two with some x_2, x_3, \ldots, x_k , say $w \in N(u_1) \cap N(x_2)$, then $V(G) - \{w, x_k\}$ is a TGS of G, which is a contradiction. Henceforth, we assume that u_1 has no common neighbor of degree two with x_2, x_3, \ldots, x_k . Then $V(G) - \{u_1, x_3\}$ is a TGS of G, which is a contradiction. This completes the proof. \Box

Claim 6: If $G' \cong K_2$ and $V(G) = \{x_1, x_2\}$, then one of the following statements hold:

- (a) there exists a vertex *w* with $N(w) = \{x_1, x_2\}$,
- (b) at least one of induced subgraphs $G[N(x_1) \{x_2\}]$ and $G[N(x_2) \{x_1\}]$ is a complete graph and $d(y_1, y_2) \le 2$ for every vertex $y_1 \in N(x_1) N(x_2)$ and $y_2 \in N(x_2) N(x_1)$.

Proof. If (a) holds, there is nothing to prove. Assume that (a) does not hold. If both of induced subgraphs $G[N(x_1)-\{x_2\}]$ and $G[N(x_2)-\{x_1\}]$ are not complete, then $V(G)-\{x_1,x_2\}$ is a TGS of *G*, which is a contradiction. Hence, at least one of the induced subgraphs $G[N(x_1) - \{x_2\}]$ and $G[N(x_2) - \{x_1\}]$ is complete. If $d(y_1, y_2) \ge 3$ for some $y_1 \in N(x_1) - N(x_2)$ and $y_2 \in N(x_2) - N(x_1)$, then $V(G) - \{x_1, x_2\}$ is a TGS of *G*, which is a contradiction. Thus (b) holds and the proof is complete. \Box

Claim 7: If $G' \cong K_3$ and $V(K_3) = \{x_1, x_2, x_3\}$, then one of the following holds:

- (a) x_i and x_j have a common neighbor of degree two for each $1 \le i, j \le 3$,
- (b) every pair x_i and x_j but one, say x_2 and x_3 , have a common neighbor $w_{i,j}$ of degree two for $1 \le i, j \le 3$, min{deg(x_2), deg(x_3)} = 3, and if deg(x_i) ≥ 4 for some $i \in \{2, 3\}$, then $N(x_i) \{x_1\} \subseteq N(x_1)$.

Proof. Let (a) does not hold. The proof is achieved by means of contradiction. Assume first that x_i and x_j have no common neighbor of degree 2 for each $1 \le i, j \le 3$. If $N(x_1) - \{x_2\} \subseteq N(x_2)$, then since x_1 is not a simplicial vertex, $V(G) - \{x_1, x_2\}$ is a TGS of G, which is a contradiction. Assume that x_1^1 is a neighbor of x_1 such that $x_1^1 \notin N(x_2)$. If $x_1^1x_3 \in E(G)$, then clearly $V(G) - \{x_1, x_3\}$ is a TGS of G, which is a contradiction. Suppose that $x_1^1x_3 \notin E(G)$. If $N(x_2) - \{x_3\} \subseteq N(x_3)$, then $V(G) - \{x_2, x_3\}$ is a TGS of G, which is a contradiction. Let $x_2^1 \in N(x_2) \setminus N(x_3)$. Then $V(G) - \{x_1, x_2\}$ is a TGS of G which is a contradiction.

Now let x_1, x_3 and x_2, x_3 have no common neighbor of degree two and x_1, x_2 have a common neighbor $w_{1,2}$ of degree two. If $N(x_3) - \{x_2\} \subseteq N(x_2)$, since x_3 is not a simplicial vertex, then $V(G) - \{x_2, x_3\}$ is a TGS of *G*, which is a contradiction. Assume that x_3^1 is a neighbor of x_3 such that $x_3^1 \notin N(x_2)$. If $x_3^1x_1 \in E(G)$, then obviously $V(G) - \{x_1, x_3\}$ is a TGS of *G*, which is a contradiction. If $x_3^1x_1 \notin E(G)$, then $d_G(x_1, x_3^1) = 3$ which implies that $V(G) - \{x_1, x_3\}$ is a TGS of *G*, which is a contradiction. Thus every pair x_i and x_j but one, say x_2, x_3 , have a common neighbor $w_{i,j}$ of degree two for $1 \le i, j \le 3$.

If min{deg(x_2), deg(x_3)} \geq 4, then clearly $V(G) - \{x_2, x_3\}$ is a TGS of *G* which is a contradiction. Hence, min{deg(x_2), deg(x_3)} = 3. Assume that deg(x_2) = 3. Finally, if $N(x_3) \notin N(x_1)$ and $x_3^1 \in N(x_3) \setminus N(x_1)$, then $d_G(x_3, w_{1,2}) = 2$ and $V(G) - \{x_2, x_3\}$ is a TGS of *G*, which is a contradiction. So *G* satisfies (b). \Box

Claim 8: If $G' \cong K_l$ ($l \ge 4$) and $V(K_l) = \{x_1, x_2, ..., x_l\}$, then x_i and x_j have a common neighbor of degree two for each $1 \le i, j \le l$.

Proof. Assume, to the contrary, that x_i and x_j have no common neighbor of degree two for some $1 \le i, j \le l$, say i = 1, j = 2. Let w_1 be a common neighbor of x_1, x_3 and w_2 be a common neighbor of x_2, x_4 . Then $d_G(w_1, w_2) = 3$ which implies that $V(G) - \{x_1, x_2\}$ is a TGS of G, which is a contradiction. This completes the proof. \Box

Claim 9: If $G' \cong x_1x_2x_3$, then deg $(x_2) = 2$ and there is no vertex y for which $yx_1 \in E(G)$ and $d(y, x_3) = 3$ or $yx_3 \in E(G)$ and $d(y, x_1) = 3$.

Proof. Let $G - (Ext(G) \cup Stem(G)) = x_1x_2x_3$. If $deg(x_2) \ge 3$, then $V(G) - \{x_1, x_3\}$ is a TGS of G, which is a contradiction. Thus $deg(x_2) = 2$. If there is a vertex $y \in N(x_1)$ such that $d(y, x_3) = 3$ (the case $y \in N(x_3)$ such that $d(y, x_1) = 3$ is similar), then $V(G) - \{x_1, x_2\}$ is a TGS of G which is which is a contradiction. This completes the proof. \Box

Claim 10: If $G' \cong (x_1x_2x_3x_4)$, then either $G = C_4$ or $n \ge 5$, two consecutive vertices of C_4 , say x_3 and x_4 , have degree two, $N[x_1] - \{x_4\} = N[x_2] - \{x_3\}$, and x_1, x_2 have a common neighbor of degree 2.

Proof. Let $G - (Ext(G) \cup Stem(G)) = (x_1x_2x_3x_4)$. If n = 4, then clearly $G = C_4$. Suppose that $n \ge 5$. We first show that two consecutive adjacent vertices of cycle $(x_1x_2x_3x_4)$ have degree 2. If deg $(x_1) \ge 3$ and deg $(x_3) \ge 3$, then $V(G) - \{x_2, x_4\}$ is a TGS of G, and if deg $(x_2) \ge 3$ and deg $(x_4) \ge 3$, then $V(G) - \{x_1, x_2\}$ is a TGS of G, which is a contradiction. Assume without loss of generality that deg $(x_3) = deg(x_4) = 2$. If x_1 and x_2 have no common vertex of degree two, then $V(G) - \{x_1, x_2\}$ is a TGS of G, which is a contradiction. \Box

In view of the above Claims, the proof of Theorem 3.1 is complete. \Box

An immediate consequence of Theorems 1.1, 3.1 and Observation 1.3 now follows:

Corollary 3.2. Let *G* be a connected graph of order *n*. Then $g(G) = g_t(G) = n - 1$ if and only if *G* is the join of K_1 and pairwise disjoint complete graphs $K_{n_1}, K_{n_2}, \ldots, K_{n_r}$, that is, $G = (K_{n_1} \cup K_{n_2} \cup \ldots K_{n_r}) \vee K_1$, where $r \ge 2$, $n_i \ge 2$, for $1 \le i \le r$, with $n_1 + n_2 + \ldots + n_r = n - 1$.

Corollary 3.3. If *G* is a graph of order *n* with $g_t(G) = n - 1$, then the difference $g_t(G) - g(G)$ is at most |V(G')| - 1, where $G' = G - (Ext(G) \cup Stem(G))$.

Proof. Assume that $G' = G - (Ext(G) \cup Stem(G))$. Since $g_t(G) = n - 1$, by Theorem 3.1 one of the conditions (i)-(vi) hold. If *G* satisfies (i), then clearly $g(C_4) = 2$ and $g(C_5) = 3$. Thus $g_t(G) - g(G) = 2$, and so the result follows. If *G* satisfies (ii), then $Ext(G) \cup Stem(G)$ is the unique *g*-set of *G*, and so $g(G) = |Ext(G) \cup Stem(G)| = |V(G)| - |V(G')|$. Thus $g_t(G) - g(G) = n - 1 - n + |V(G')| = |V(G')| - 1$, and so the result follows.

If *G* satisfies (iii), then by Theorem 1.1, we have $g(G) \le n - 2$. On the other hand, $V(G) - V(K_2) = Ext(G) \cup Stem(G)$ is a *g*-set of *G*. Hence $g_t(G) - g(G) = 1$.

Let *G* satisfy (iv). If deg(x_2) \geq 4 and deg(x_3) \geq 4, then g(G) = |Ext(G)| + |Stem(G)|. Thus $g_t(G) - g(G) = n - 1 - n + |V(G')| = |V(G')| - 1$. Otherwise, at least one of x_2 or x_3 must be included in any *g*-set of *G* and so $g(G) \geq n - 2$. On the other hand, Theorem 1.1 implies that g(G) = n - 2. Hence $g_t(G) - g(G) = 1$.

Let *G* satisfy (v). Clearly, x_2 belongs to any *g*-set of *G* yielding g(G) = n - 2. Thus $g_t(G) - g(G) = 1$.

Assume *G* satisfies (vi). Since deg(x_3) = deg(x_4) = 2, we conclude from the structure of *G* that any *g*-set of *G* contains x_3 or x_4 . This implies that $g(G) \ge |Ext(G) \cup Stem(G)| + 1 = n - 3$. Thus $g_t(G) - g(G) \le 2$ and the proof is complete. \Box

We conclude the paper by giving the following result:

Proposition 3.4. The difference $g_t(G) - g(G)$ can be arbitrarily large.

Proof. For each integer $n \ge 3$, let *G* be a graph obtained from $K_{1,r}$ by subdivision all leaves once. Clearly, g(G) = r, and $g_t(G) = 2r$. Thus, $g_t(G) - g(G) = r$. \Box

Acknowledgements

The author is grateful to anonymous referees for their remarks and suggestions that helped improve the manuscript.

References

- H. Abdollahzadeh Ahangar, F. Fujie-Okamoto and V. Samodivkin, On the forcing connected geodetic number and the connected geodetic number of a graph, Ars Combin. 126(3) (2016) 323–335.
- H. Abdollahzadeh Ahangar, S. Kousari, S.M. Sheikholeslami and L. Volkmann, Graphs with large geodetic number, Filomat, 29(6) (2015), 1361–1368.
- [3] H. Abdollahzadeh Ahangar and M. Najimi, Total restrained geodetic number of graphs, Iranian J. Sci. Technol. Sci. 41(2) (2017), 473–480.
- [4] H. Abdollahzadeh Ahangar, M. Najimi, V. Samodivkin and I.G. Yero, *The forcing total restrained geodetic number and the total restrained geodetic number of a graph*, AKCE Int. J. Graphs Combin. **14(3)** (2017), 242-250.
- [5] H. Abdollahzadeh Ahangar and V. Samodivkin, The total geodetic number of a graph, Util. Math. 100 (2016) 253–268.
- [6] H. Abdollahzadeh Ahangar, V. Samodivkin, S.M. Sheikholeslami and A. Khodkar, The restrained geodetic number of a graph, Bull. Malays. Math. Sci. Soc. 38(3) (2015), 1143–1155.
- [7] M. Atici, *Computational complexity of geodetic set*, Int. J. Comput. Math. **79(5)** (2002), 587–591.
- [8] F. Buckley, F. Harary and L.V. Quintas, Extremal results on the geodetic number of a graph, Scientia A2 (1988) 17–26.
- [9] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks **39(1)** (2002), 1–6.
- [10] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory 19(1) (1999), 45–58.
- [11] G. Chartrand and P. Zhang, The forcing convexity number of a graph, Czechoslovak Math. J. 51(4) (2001), 847–858.
- [12] G. Chartrand and P. Zhang, Extreme geodesic graphs, Czechoslovak Math. J. 52(4) (2002), 771–780.
- [13] M.C. Dourado, F. Protti, D. Rautenbach and J.L. Szwarcfiter, *Some remarks on the geodetic number of a graph*, Discrete Math. **310(4)** (2010), 832–837.
- [14] F. Harary, E. Loukakis and C. Tsourus, *The geodetic number of a graph*, Math. Comput. Modelling 17(11) (1993), 89–95.
- [15] L.D. Tong, *The* (*a*, *b*)-forcing geodetic graphs, Discrete Math. **309(6)** (2009), 1623–1628.
- [16] L.D. Tong, The forcing hull and forcing geodetic numbers of graphs, Discrete Appl. Math. 157(5) (2009), 1159–1163.
- [17] A.P. Santhakumaran, P. Titus and J. John, On the connected geodetic number of a graph, J. Comb. Math. Comb. Comput. 69 (2009),219–229.
- [18] A.P. Santhakumaran, P. Titus and J. John, The upper connected geodetic number and forcing connected geodetic number of a graph, Discrete Appl. Math. 157(7) (2009), 1571–1580.
- [19] F.H. Wang, Y.L. Wang and J.M. Chang, The lower and upper forcing geodetic numbers of block-cactus graphs, European J. Oper. Res. 175(1) (2006), 238–245.
- [20] D.B. West, Introduction to Graph Theory. Prentice Hall, (2001).
- [21] P. Zhang, The upper forcing geodetic number of a graph, Ars Combin. 62 (2002), 3–15.