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Available at: http://www.pmf.ni.ac.rs/filomat
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Abstract. In this paper, we establish new real Paley-Wiener theorems for the Dunkl transform.

1. Introduction

Let R be a finite root system in Rd with associated Coxeter-Weyl group W (see [1] for details on root
systems) and for j = 1, ..., d, let T j be the Dunkl operators defined by

T j f (x) =
∂ f
∂x j

(x) +
∑
α∈R+

k(α)α j
f (x) − f (σα(x))
〈α, x〉

,

where R+ is a subsystem of positive roots, σα is the reflection directed by the root α ∈ R+, k is a nonnegative
multiplicity function defined on R.

The Dunkl theory is based on the Dunkl kernel K(iλ, .), λ ∈ Cd, which is the unique analytic solution of
the system

T ju(x) = iλ ju(x), j = 1, 2, ..., d,

satisfying the normalizing condition u(0) = 1.
With the Dunkl kernel K(iλ, .), Dunkl have defined in [2] the Dunkl transform FD by

FD( f )(y) =
1
ck

∫
Rd

f (x)K(−iy, x)ωk(x)dx, for all y ∈ Rd,

where

ωk(x) =
∏
α∈R+

|〈α, x〉|2k(α), and ck =

∫
Rd

e−
||x||2

2 ωk(x) dx,

and have established that the Dunkl transform is a topological automorphism of the Schwartz space S(Rd).
The Plancherel’s and inversion theorems are also established for this transform.

Very recently, many authors have been investigating the behavior of the Dunkl transform with respect
to several problems already studied for the Fourier transform; for instance, uncertainty [4], Besov spaces
[5], real Paley-Wiener theorems [6], generalized Sonine-type integral transforms [7], heat equation [8],
maximal function [10], and so on.
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In this article we prove a new version of the real Paley-Wiener theorems for the Dunkl transform. We
recall that, in [6] we have provide a general theory for the real Paley-Wiener theorems associated with
the Dunkl transform. Finally, we note that in [3] the authors have studied a family of Wiener transforms
associated with a pair of operators on Hilbert space.

The remaining part of the paper is organized as follows. The §2 is devoted to characterize the support
for the Dunkl transform on the generalized Lebesgue spaces. The last section is devoted to characterize the
support of the Dunkl transform under the behaviour of the generalized Lebesgue norms of iterated Dunkl
potentials.

2. New Version of Real Paley-Wiener Theorem for the Dunkl Transform

Let Φ : [0,∞) −→ [0,∞) be a non-zero concave function which is non-decreasing and Φ(0) = 0. Denote
NΦ,k(Rd) the set of all measurable functions f such that

|| f ||NΦ,k(Rd) :=
∫
∞

0
Φ(mesk( f )(y))dy < ∞,

where

mesk( f )(y) =

∫
{x∈Rd: | f (x)|>y}

ωk(x)dx,

and by MΦ,k(Rd) the set of all measurable function 1 such that

||1||MΦ,k(Rd) := sup
{ 1
Φ(mesk(I))

∫
I
|1(x)|ωk(x)dx : I ⊂ Rd, 0 < mesk(I) < ∞

}
< ∞,

where

mesk(I) =

∫
I
ωk(x)dx.

Note that if Φ(t) = t then NΦ,k(Rd) = L1
k(Rd) := L1(Rd, ωk(x)dx) and MΦ,k(Rd) = L∞k (Rd) := L∞(Rd, ωk(x)dx).

We proceed as in [9], we prove.

Lemma 1. There exists a positive constant C, such that for all f ∈ NΦ,k(Rd) and 1 ∈MΦ,k(Rd), we have∣∣∣∣ ∫
Rd

f (x)1(x)ωk(x)dx
∣∣∣∣ ≤ C|| f ||NΦ,k(Rd)||1||MΦ,k(Rd).

Definition 1. Let u be a distribution on Rd and P a polynomial. Then we let

R(P,u) = sup
{
|P(y)| : y ∈ suppu

}
∈ [0,∞],

where by convention R(P,u) = 0 if u = 0.

Theorem 1. Let P be a non-constant polynomial with complex coefficients on Rd, and f in S(Rd). Then in the
extended positive real numbers

lim
n→∞
||Pn(−iT) f ||

1
n

MΦ,k(Rd)
= sup

y∈suppFD( f )
|P(y)|. (1)

with T = (T1, ...,Td).

For prove this theorem we need the following lemmas.
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Lemma 2. Let P be a non-constant polynomial with complex coefficients onRd and f ∈ S(Rd). Then in the extended
positive real numbers

lim sup
n→∞

||Pn(−iT) f ||
1
n

MΦ,k(Rd)
≤ sup

y∈suppFD( f )
|P(y)|. (2)

Proof. Suppose firstly that R(P,FD( f )) = 0. Then FD( f ) = 0, and as the Dunkl transform is a topological
automorphism of the Schwartz space S(Rd), then f = 0. Thus (2) is immediately.

Moreover, the inequality (2), is clear when R(P,FD( f )) = ∞. So we can assume that

0 < R(P,FD( f )) < ∞.

Using the hypothesis on Φ, it is easy to see that there exist a positive constant C

|| f ||MΦ,k(Rd) ≤ C sup
x∈Rd

|(1 + ||x||2)m f (x)|,

for m ≥ d+1+2
∑
α∈R+

k(α)
2 .

Consequently for all n ∈N, we deduce that

||Pn(−iT) f ||MΦ,k(Rd) ≤ C sup
x∈Rd

|(1 + ||x||2)m[(FD)−1(Pn(ξ)FD( f ))](x)|.

Using the continuity of (FD)−1 we can show that

||Pn(−iT) f ||MΦ,k(Rd) ≤ C sup
ξ∈Rd

∣∣∣∣ ∑
1≤|l|, j≤M

(1 + ||ξ||2) jDl
[
Pn(ξ)FD( f )(ξ)

]∣∣∣∣, (3)

with positive constants C and integer M, independent of n. Using Leibniz’s rule we deduce that

||Pn(−iT) f ||MΦ,k(Rd) ≤ CnM sup
y∈suppFD( f )

|P(y)|n−M,

with C is a constant independent of n. Hence, from the previous inequalities we obtain

lim sup
n→∞

||Pn(−iT) f ||
1
n

MΦ,k(Rd)
≤ sup

y∈suppFD( f )
|P(y)|.

Lemma 3. Let P be a polynomial. Suppose that Pn(−iT) f ∈MΦ,k(Rd) for all n ∈N0. Then in the extended positive
real numbers

lim inf
n→∞

||Pn(−iT) f ||
1
n

MΦ,k(Rd)
≥ R(P,FD( f )). (4)

Proof. Fix ξ0 ∈ suppFD( f ). We can assume that P(ξ0) , 0. We will show that

lim inf
n→∞

||Pn(−iT) f ||
1
n

MΦ,k(Rd)
≥ |P(ξ0)| − ε,

for any fixed ε > 0 such that 0 < 2ε < |P(ξ0)|.
To this end, choose and fix χ ∈ D(Rd) such that 〈FD( f ), χ〉 , 0, and

suppχ ⊂
{
ξ ∈ Rd : |P(ξ0)| − ε < |P(ξ)| < |P(ξ0)| + ε

}
.

For n ∈N, let χn(ξ) = P−n(ξ)χ(ξ).
As above, using the continuity of (FD)−1 and Leibniz’s rule we can show that

∀ x ∈ Rd, (1 + ||x||2)m
|(FD)−1(χn)(x)| ≤ C1nM(|P(ξ0)| − ε)−n, (5)
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with positive constants C1 and integer M, independent of n.
Using the hypothesis on Φ and the relation (5), it is easy to see that

||(FD)−1(χn)||NΦ,k(Rd) ≤ C2nM(|P(ξ0)| − ε)−n.

Then, since
〈FD( f ), χ〉 = 〈Pn(−iT) f , (FD)−1(χn)〉,

we use the Lemma 1, to obtain

|〈FD( f ), χ〉| ≤ C||Pn(−iT) f ||MΦ,k(Rd)||(FD)−1(χn)||NΦ,k(Rd)
≤ C3nM(|P(ξ0)| − ε)−n

||Pn(−iT) f ||MΦ,k(Rd).

Since |〈FD( f ), χ〉| > 0, we deduce that

lim inf
n→∞

||Pn(−iT) f ||
1
n

MΦ,k(Rd)
≥ |P(ξ0)| − ε.

Thus
lim inf

n→∞
||Pn(−iT) f ||

1
n

MΦ,k(Rd)
≥ sup

y∈suppFD( f )
|P(y)|.

Proof. of Theorem 1. Combining Lemma 2 and Lemma 3 together, we get the result.

3. Characterization for the Support of the Dunkl Transform on MΦ,k(R) via the Dunkl Potential

In this section, we consider for d = 1, the root system R = {±α,±2α}, with α = 2. Here R+ = {α, 2α}, and
the reflection group W = Z2. The multiplicity function is a single positive parameter denoted by k.

The Dunkl operator Tk is defined for f of class C1 on R, and x ∈ R\{0}, by

Tk f (x) =
d

dx
f (x) +

k
x
{ f (x) − f (−x)}.

Definition 2. Let f be in the space of tempered distributionsS′(R). The tempered generalized function R0 f is termed
the Dunkl potential of f if Tk(R0 f ) = f , that is

〈R0 f ,Tkϕ〉 = −〈 f , ϕ〉, for all ϕ ∈ S(R).

Theorem 2. Let Rn
0 f ∈MΦ,k(R) for all n ∈N0, then

lim
n→∞
||Rn

0 f ||
1
n
MΦ,k(R) =

1
σ0
, (6)

where
σ0 = inf

{
|ξ| : ξ ∈ suppFD( f )

}
.

For prove this theorem we need the following lemmas.

Lemma 4. If σ0 > 0, then

suppFD

(
Rn

0 f
)

= suppFD( f ), n = 1, .... (7)

Proof. As
Tn

k (Rn
0 f ) = f

we deduce that
FD( f ) = (iξ)n

FD

(
Rn

0 f
)
.
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Therefore,
suppFD( f ) ⊂ suppFD

(
Rn

0 f
)
⊂ FD( f ) ∪

{
0
}
.

So, to obtain (7), it is enough to show that 0 < suppFD

(
Rn

0 f
)
.

We choose numbers a, b : 0 < a < b < σ0 and a function h ∈ D(R) such that supp h ⊂ (−b, b) and h(x) ≡ 1 in
(−a, a). Then

supp
(

hFD(Rn
0 f )

)
⊂

{
0
}
.

Suppose that supp
(

hFD(Rn
0 f )

)
=

{
0
}
, then there is a numbers N(n) ∈N such that

hFD

(
Rn

0 f
)

=

N(n)∑
j=0

C j(N(n))T j
kδ.

Hence,

∀ x ∈ R, F −1
D (h) ∗k Rn

0 f (x) =

N(n)∑
j=0

C j(N(n))(−ix) j,

where ∗k is the Dunkl convolution product.
As Rn

0 f ∈MΦ,k(R) and F −1
D (h) ∈ NΦ,k(R), we get F −1

D (h) ∗k Rn
0 f ∈ L∞k (R).

Therefore
∀ x ∈ R, F −1

D (h) ∗k Rn
0 f (x) = C0(N(n)), n ∈N.

Note that
C0(N(n)) = F

−1
D (h) ∗k Rn

0 f (x) = F −1
D (h) ∗k

(
Tk

)
Rn+1

0 f (x)

=
(
Tk

)(
F
−1

D (h) ∗k Rn+1
0 f (x)

)
=

(
Tk

)
(C0(N(n + 1))) = 0.

Thus we deduce that C0(N(n)) = 0. So hFD

(
Rn

0 f
)

= 0.
Assume now the contrary that {

0
}
⊂ supp FD

(
Rn

0 f
)
.

Then there is a function χ ∈ D(R), with suppχ ⊂ (−a, a) and such that

〈FD

(
Rn

0 f
)
, χ〉 , 0.

So, as h(x) = 1 for |x| < a, we get

0 , 〈FD

(
Rn

0 f
)
, χ〉 = 〈FD

(
Rn

0 f
)
, hχ〉 = 〈hFD

(
Rn

0 f
)
, χ〉 = 0,

which is impossible. Thus we have proved (7).

Lemma 5. If σ0 > 0, then

lim sup
n→∞

||Rn
0 f ||

1
n
MΦ,k(R) ≤

1
σ0
. (8)

Proof. From (7) we have

suppFD

(
Rn

0 f
)
⊂ R\(−σ0, σ0). (9)

For any ε > 0, ε < σ0
2 we choose a function h ∈ C∞(R) satisfying

h(ξ) =

{
1 if |ξ| ≥ σ0 − ε
0 if |ξ| < σ0 − 2ε.
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Let χ be an arbitrary element in S(R). Then it follow from (9) that

〈Rn
0 f , χ〉 = 〈FD

(
Rn

0 f
)
,F −1

D (χ)〉 = 〈FD

(
Rn

0 f
)
, hF −1

D (χ)〉 = 〈Rn
0 f ,FD

(
hF −1

D (χ)
)
〉.

Therefore,

〈Rn
0 f , χ〉 = 〈Rn

0 f , ϕ〉, (10)

where
ϕ = FD

(
hF −1

D (χ)
)
.

We put

ϕn = FD

(h(ξ)
ξn F

−1
D (χ)

)
.

Then ϕn ∈ S(R) and

|〈 f , ϕn〉| = |〈(Tk)nRn
0 f , ϕn〉| = |〈Rn

0 f , (Tk)nϕn〉| = |〈Rn
0 f , ϕ〉|. (11)

Combining (10) and (11), we get

|〈Rn
0 f , χ〉| = |〈 f , ϕn〉| = |〈 f , χ ∗k FD(

h(ξ)
ξn )〉|. (12)

Therefore, we have

||Rn
0 f ||MΦ,k(R) = sup{

χ∈S(R): ||χ||NΦ,k (R)≤1
} ∣∣∣∣〈 f , χ ∗k FD(

h(ξ)
ξn )〉

∣∣∣∣
≤ sup{

χ∈S(R): ||χ||NΦ,k (R)≤1
} || f ||MΦ,k(R)||χ ∗k FD(

h(ξ)
ξn )||NΦ,k(R)

≤ C|| f ||MΦ,k(R)||FD( h(ξ)
ξn )||L1

k (R).

Hence

lim sup
n→∞

||Rn
0 f ||

1
n
NΦ,k(R) ≤ lim sup

n→∞
||FD(

h(ξ)
ξn )||

1
n

L1
k (R)
. (13)

Moreover by a simple calculation we prove

lim sup
n→∞

||FD(
h(ξ)
ξn )||

1
n

L1
k (R)
≤

1
σ0 − 2ε

. (14)

Combining (13) and (14), we get

lim sup
n→∞

||Rn
0 f ||

1
n
MΦ,k(R) ≤

1
σ0 − 2ε

and then (8) by letting ε→ 0.

Lemma 6. If σ0 > 0, then

lim inf
n→∞

||Rn
0 f ||

1
n
MΦ,k(R) ≥

1
σ0
. (15)
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Proof. From the definition of σ0 there exists a function χ ∈ D(R) such that

suppχ ⊂
{
ξ : σ0 − ε < |ξ| < σ0 + ε

}
and 〈FD( f ), χ〉 , 0.

Therefore,

0 , |〈 f , χ〉| = |〈(Tk)nRn
0 f , χ〉| = |〈Rn

0 f ,Tn
kχ〉|

≤ C||Rn
0 f ||MΦ,k(R)||Tn

kχ||NΦ,k(R). (16)

We proceed as in the Lemma 3, we prove that

lim inf
n→∞

||Rn
0 f ||

1
n
MΦ,k(R) ≥

1
(σ0 + ε)

, ε > 0,

and then (15).
Proof. of Theorem 2.

We divide our proof into two cases.
Case 1. σ0 = 0. We have ξ0 ∈ suppFD( f ). Hence, for any ε > 0 there is a function χ ∈ D(R) such that
suppχ ⊂ (−ε, ε) such that 〈FD( f ), χ〉 , 0. Arguing as above we obtain

lim inf
n→∞

||Rn
0 f ||

1
n
MΦ,k(R) ≥

1

lim sup
n→∞

||Tn
k (χ)||

1
n
NΦ,k(R)

≥
1
ε
.

Therefore
lim inf

n→∞
||Rn

0 f ||
1
n
MΦ,k(R) = ∞.

So we always have

lim
n→∞
||Rn

0 f ||
1
n
MΦ,k(R) =

1
σ0
.

Case 2. σ0 > 0. Combining (8) and (15), we arrive to (6).
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