Filomat 31:14 (2017), 4499–4505 https://doi.org/10.2298/FIL1714499E

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On a Superclass of *-Operfectness

Erdal Ekici^a, A. Nur Tunç^a

^aDepartment of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale/TURKEY

Abstract. This paper presents P^* -closed sets defined by using the sets in ideal. This concept is a new approach on the sets of ideal spaces. The class of P^* -closed sets is a superclass of *-operfect sets and \star -open pre^{*}₁-closed sets.

1. Introduction

For many topological properties and major topological subjects, resolvability, compactness, hyperconnectedness, disconnectedness, etc., various set theories via ideal spaces have been studied up to now (see [5–7, 9, 13, 18]). So, the sets in ideal spaces have important roles for major topological problems. On the other hand, in 2010, Acikgoz et al. defined the concept of *-operfect sets [1]. In 2011, Ekici introduced the concept of pre_l^r -open sets to establish decompositions of continuity [11]. In this paper, a new approach on the sets of ideal spaces called P^* -closed sets are presented. The class of P^* -closed sets is a superclass of *-operfect sets and \star -open pre_l^* -closed sets. Characterizations of P^* -closed sets are gotten.

We consider a space (T, σ) to be a topological space. For (T, σ) , the closure and interior of $A \subset T$ will be denoted by $\mathfrak{Cl}(A)$ and $\mathfrak{Int}(A)$, respectively.

A subcollection \Im of the power set P(T) of a set *T* is called an ideal on *T* [16] if

(*i*) if $A_1 \subset A_2 \in \mathfrak{I}$ for $A_1, A_2 \subset T$, then $A_1 \in \mathfrak{I}$,

(*ii*) if $A_1, A_2 \in \mathfrak{I}$, then $A_1 \cup A_2 \in \mathfrak{I}$.

An ideal topological space is a space (T, σ) with an ideal \Im on T and will be denoted by (T, σ, \Im) [16]. For (T, σ, \Im) , the local function of A (with respect to \Im and σ) (.)* : $P(T) \rightarrow P(T)$ is defined by $A^*(\Im, \sigma)$ (or A^*) = { $t \in T : A \cap B \notin \Im$ for every $B \in \sigma$ such that $t \in B$ } [16]. $\mathfrak{Cl}^*(A) = A \cup A^*$ is a Kuratowski closure operator for the *-topology which will be denoted by σ^* [15]. Recall that a set A in (T, σ) is said to be semi-open [17] if $A \subset \mathfrak{Cl}(\mathfrak{Int}(A))$. The complement of a semi-open set will be called semi-closed [4].

Definition 1.1. *A set A in ideal space* (T, σ, \Im) *is said to be*

i) pre_I^* -open **[11]** *if* $A \subset \operatorname{Sut}^*(\mathfrak{Cl}(A))$, *ii)* pre_I^* -closed **[8, 11]** *if* $T \setminus A$ *is* pre_I^* -open, *iii)* *-perfect **[14]** *if* $A = A^*$, *iv)* *-operfect **[1]** *if* A *is* open *-perfect.

²⁰¹⁰ Mathematics Subject Classification. Primary 54A05, 54A10

Keywords. *P**-closed set, *P**-open set, pre^{*}₁-open, pre^{*}₁-closed, *-operfect, *****-open, *****-closed, *****-nowhere dense.

Received: 06 April 2016; Accepted: 24 October 2016

Communicated by Dragan S. Djordjević

Corresponding Author: Erdal Ekici

Email address: eekici@comu.edu.tr (prof.dr.erdalekici@gmail.com) (Erdal Ekici)

2. P*-Closed Sets

In this Section, a new approach on the sets of ideal spaces called P^* -closed sets are presented. The class of P^* -closed sets is a superclass of *-operfect sets and *-open pre^{*}-closed sets.

Definition 2.1. *For any set A in any ideal space* $(T, \sigma, \mathfrak{I})$ *, A is called*

(*i*) a P^* -closed set if there exists a $C \in \mathfrak{I}$ such that $(\mathfrak{Int}(A))^* \subset \mathfrak{Int}^*(B) \cup C$ for each semi-open set B with $A \subset B$, (*ii*) a P^* -open set if $T \setminus A$ is P^* -closed.

Theorem 2.2. *The following conditions are equivalent for any set* A *in any ideal space* $(T, \sigma, \mathfrak{I})$ *: (a)* A *is* P^* *-closed,*

(b) There exists a $C \in \mathfrak{I}$ such that $\mathfrak{Cl}^*(\mathfrak{Int}(A)) \subset \mathfrak{Int}^*(B) \cup C$ for each semi-open set B with $A \subset B$,

(c) $(\mathfrak{Int}(A))^* \setminus \mathfrak{Int}^*(B) \in \mathfrak{I}$ for each semi-open set B with $A \subset B$,

(d) $\mathfrak{Cl}^{\star}(\mathfrak{Int}(A)) \setminus \mathfrak{Int}^{\star}(B) \in \mathfrak{I}$ for each semi-open set B with $A \subset B$.

Proof. (*c*) \Rightarrow (*d*) and (*d*) \Rightarrow (*c*) : Suppose that $A \subset B \subset T$ and *B* is a semi-open set. Then

 $\mathfrak{Cl}^{\star}(\mathfrak{Int}(A)) \cap (T \setminus \mathfrak{Int}^{\star}(B))$

is the union of $(\mathfrak{Int}(A))^* \cap (T \setminus \mathfrak{Int}^*(B))$ and $\mathfrak{Int}(A) \cap (T \setminus \mathfrak{Int}^*(B)) = \emptyset$. Then

 $\mathfrak{Cl}^{\star}(\mathfrak{Int}(A)) \cap (T \setminus \mathfrak{Int}^{\star}(B)) \in \mathfrak{I}$

and

 $(\mathfrak{Int}(A))^{\star} \cap (T \setminus \mathfrak{Int}^{\star}(B)) \in \mathfrak{I}.$

The others follows by the ideal and $\mathfrak{Cl}^{\star}(A) = A^{\star} \cup A$ for a set *A* in *T*. \Box

Remark 2.3. We have the following implications for subsets of an ideal space (T, σ, \Im) where none of the implications is reversible:

$$P^{\star}\text{-closed}$$

$$\uparrow$$

$$\star\text{-open and } pre_{I}^{\star}\text{-closed}$$

$$\uparrow$$

$$\star\text{-open and } \star\text{-closed} \longleftarrow open and \star\text{-closed}$$

$$\uparrow$$

$$\star\text{-open and closed} \longleftarrow \uparrow$$

Example 2.4. Let $T = \{k, l, m, n\}$, $\sigma = \{\{k, l, n\}, \{k, n\}, \{k\}, \{n\}, \{k, l\}, \emptyset, T\}$ and $\mathfrak{I} = \{\{m\}, \emptyset\}$. In this ideal space, the set $A = \{l, n\}$ is a P^{*}-closed set, A is not a \star -open set and A is not pre^{*}₁-closed.

Example 2.5. Let $T = \{k, l, m, n\}$, $\sigma = \{\{k, l, n\}, \{k, n\}, \{k\}, \{n\}, \{k, l\}, \emptyset, T\}$ and $\Im = \{\{k\}, \emptyset\}$. The set $A = \{l\}$ is a \star -open and pre_I^* -closed set, A is not a \star -closed set. The set $B = \{l, m, n\}$ is a \star -open and \star -closed set, B is not an open set.

Example 2.6. Let $T = \{k, l, m, n\}$, $\sigma = \{\{k, l, n\}, \{k, n\}, \{k\}, \{n\}, \{k, l\}, \emptyset, T\}$ and $\Im = \{\{k, m\}, \{m\}, \emptyset, \{k\}\}$. In this ideal space, the set $A = \{k\}$ is an open and \star -closed set, A is not closed and $A^* \neq A$. The set $B = \{l, m, n\}$ is a \star -open closed set, B is not open. The set T is a \star -open and closed set and $T^* \neq T$.

Theorem 2.7. For a set A in an ideal space (T, σ, \Im) , the properties (i) and (ii) are equivalent:

(i) A is P^* -open,

(*ii*) There exists a set C in \Im such that $\mathfrak{Cl}^*(B) \setminus C \subset \mathfrak{Int}^*(\mathfrak{Cl}(A))$ for each semi-closed set B with $B \subset A$.

Proof. (*i*) \Rightarrow (*ii*) : Assume that *A* is *P*^{*}-open and *B* is a semi-closed set with $B \subset A$. Then $T \setminus A \subset T \setminus B$, $T \setminus B$ is semi-open and $T \setminus A$ is *P*^{*}-closed. We have

 $\mathfrak{Cl}^{\star}(\mathfrak{Int}(T \setminus A)) \setminus \mathfrak{Int}^{\star}(T \setminus B) \in \mathfrak{I}$

and

 $\mathfrak{Cl}^{\star}(\mathfrak{Int}(T \setminus A)) \setminus (T \setminus \mathfrak{Cl}^{\star}(B)) \in \mathfrak{I}.$

Put $C = \mathfrak{Cl}^{\star}(\mathfrak{Int}(T \setminus A)) \setminus (T \setminus \mathfrak{Cl}^{\star}(B))$. Then $C \in \mathfrak{I}$ and

 $\mathfrak{Cl}^{\star}(\mathfrak{Int}(T \setminus A)) \subset (T \setminus \mathfrak{Cl}^{\star}(B)) \cup C.$

Therefore, the intersection of $T \setminus ((T \setminus \mathfrak{Gl}^*(B)))$ and $T \setminus C$ is a subset of

 $T \setminus (\mathfrak{Cl}^{\star}(\mathfrak{Int}(T \setminus A))).$

Thus,

 $\mathfrak{Cl}^{\star}(B) \cap (T \setminus C)$

is a subset of $\mathfrak{Int}^{\star}(\mathfrak{Cl}(A))$. Hence, $\mathfrak{Cl}^{\star}(B) \setminus C \subset \mathfrak{Int}^{\star}(\mathfrak{Cl}(A))$.

 $(ii) \Rightarrow (i)$: Suppose that $\mathfrak{Cl}^{\star}(B) \setminus C \subset \mathfrak{Int}^{\star}(\mathfrak{Cl}(A))$ for a set *C* in \mathfrak{I} and for each semi-closed set *B* with $B \subset A$. Let $T \setminus A \subset D \subset T$ and *D* be a semi-open set. So $T \setminus D \subset A$ and $T \setminus D$ is a semi-closed set. There exists a set *C* in \mathfrak{I} such that

 $\mathfrak{Cl}^{\star}(T \setminus D) \setminus C \subset \mathfrak{Int}^{\star}(\mathfrak{Cl}(A))$

and therefore the intersection of $T \setminus \operatorname{Sut}^*(D)$ and $T \setminus C$ is a subset of

 $\operatorname{\mathfrak{Sut}}^{\star}(\mathfrak{Cl}(A)).$

Then

 $T \setminus \mathfrak{Int}^{\star}(\mathfrak{Cl}(A))$

is a subset of $T \setminus ((T \setminus \mathfrak{Int}^{(D)}) \setminus C)$. Therefore, $T \setminus (T \setminus \mathfrak{Cl}^{(T)}(C)) \subset \mathfrak{Int}^{(D)}(C)$. So $\mathfrak{Cl}^{(T)}(C) \cap \mathfrak{Cl}(A) \subset \mathfrak{Int}^{(D)}(C)$ and

 $\mathfrak{Cl}^{\star}(\mathfrak{Int}(T \setminus A)) \setminus \mathfrak{Int}^{\star}(D) \subset C \in \mathfrak{I}.$

As a result, $T \setminus A$ is a P^* -closed. Thus, A is a P^* -open set. \Box

Definition 2.8. ([9]) Let $(T, \sigma, \mathfrak{I})$ be an ideal space and $A \subset T$. Then A is called a \star -nowhere dense set if $\mathfrak{Int}(\mathfrak{Cl}^{\star}(A)) = \emptyset$.

Theorem 2.9. For any \star -nowhere dense set *A* in an ideal space (T, σ, \Im) , *A* is P^{\star} -closed.

Proof. Let *A* be a \star -nowhere dense set, $A \subset B$ and *B* be semi-open. Since $\mathfrak{Int}(A) = \emptyset$, then

 $\mathfrak{Cl}^{\star}(\mathfrak{Int}(A)) \setminus \mathfrak{Int}^{\star}(B) \in \mathfrak{I}.$

So *A* is a P^* -closed set. \Box

Remark 2.10. For any ideal space (T, σ, \Im) , there exists a P^{*}-closed set which fails to be *-nowhere dense.

Example 2.11. Let $T = \{k, l, m, n\}$, $\sigma = \{\{k, l, n\}, \{k, n\}, \{k\}, \{n\}, \{k, l\}, \emptyset, T\}$ and $\Im = \{\{m\}, \emptyset\}$. Then $A = \{l, n\}$ is a P^* -closed set but A is not \star -nowhere dense.

Theorem 2.12. For any ideal space (T, σ, \Im) , the properties (i), (ii) and (iii) are equivalent:

(i) Each set in T is a P*-closed set, (ii) $(\operatorname{\mathfrak{Int}}(A))^* \setminus \operatorname{\mathfrak{Int}}(A) \in \mathfrak{I}$ for each semi-open set A in T, (iii) $\operatorname{\mathfrak{GI}}^*(\operatorname{\mathfrak{Int}}(A)) \setminus \operatorname{\mathfrak{Int}}(A) \in \mathfrak{I}$ for each semi-open set A in T.

Proof. (*i*) \Rightarrow (*iii*) : Suppose that every set in *T* is a *P**-closed set. Let $A \subset T$ be a semi-open set. Since $\mathfrak{Int}(A)$ is a *P**-closed set and $\mathfrak{Int}(A)$ is a semi-open set, then

 $\mathfrak{Cl}^{\star}(\mathfrak{Int}(\mathfrak{Int}(A))) \cap (T \setminus \mathfrak{Int}^{\star}(\mathfrak{Int}(A)))$

 $= \mathfrak{Cl}^{\star}(\mathfrak{Int}(A)) \cap (T \setminus \mathfrak{Int}(A)) \in \mathfrak{I}.$

 $(iii) \Rightarrow (i)$: Let $B \subset A \subset T$ and A be a semi-open set. Then

 $\mathfrak{Cl}^{\star}(\mathfrak{Int}(B)) \cap (T \setminus \mathfrak{Int}^{\star}(A))$

 $\subset \mathfrak{Cl}^{\star}(\mathfrak{Int}(A)) \cap (T \setminus \mathfrak{Int}^{\star}(A))$

 $\subset \mathfrak{Cl}^{\star}(\mathfrak{Int}(A)) \cap (T \setminus \mathfrak{Int}(A)).$

Therefore, $\mathfrak{Cl}^{*}(\mathfrak{Int}(A)) \cap (T \setminus \mathfrak{Int}(A)) \in \mathfrak{I}$. Hence, $\mathfrak{Cl}^{*}(\mathfrak{Int}(B)) \cap (T \setminus \mathfrak{Int}^{*}(A)) \in \mathfrak{I}$. As a result, *B* is *P**-closed. (*i*) \Leftrightarrow (*ii*) : Similar to that of (*i*) \Leftrightarrow (*iii*). \Box

Theorem 2.13. For a P^* -closed set A in any ideal space (T, σ, \Im) , if B is a semi-closed set such that $B \subset \mathfrak{Cl}^*(\mathfrak{Int}(A)) \setminus A$, then $\mathfrak{Cl}^*(B) \in \mathfrak{I}$.

Proof. Suppose that $A \subset T$ is P^* -closed. Let B be a semi-closed set in T with $B \subset \mathfrak{Cl}^*(\mathfrak{Int}(A)) \setminus A$. Then $B \subset T \setminus A$ and so $A \subset T \setminus B$ and $T \setminus B$ is semi-open. Since A is P^* -closed, then the intersection of $\mathfrak{Cl}^*(\mathfrak{Int}(A))$ and $(T \setminus \mathfrak{Int}^*(T \setminus B))$ is an element of \mathfrak{I} . We have

 $\mathfrak{Cl}^{\star}(\mathfrak{Int}(A)) \setminus (T \setminus \mathfrak{Cl}^{\star}(B)) \in \mathfrak{I}.$

Since

 $\mathfrak{Cl}^{\star}(B) \subset \mathfrak{Cl}^{\star}(\mathfrak{Int}(A)) \setminus (T \setminus \mathfrak{Cl}^{\star}(B)) \in \mathfrak{I},$

then $\mathfrak{Cl}^{\star}(B) \in \mathfrak{I}$. \square

Corollary 2.14. For a P*-closed set A in any ideal space (T, σ, \Im) , if B is a semi-closed set such that $B \subset \mathfrak{Cl}^{*}(\mathfrak{Int}(A)) \setminus A$, then $B \in \mathfrak{I}$.

Proof. It follows by Theorem 2.13. \Box

Theorem 2.15. For a P^* -closed set A in any ideal space $(T, \sigma, \mathfrak{I})$, if B is a semi-closed set such that $B \subset (\mathfrak{Int}(A))^* \setminus A$, then $B \in \mathfrak{I}$.

Proof. Suppose that *A* is a *P**-closed set in *T*. Let *B* be a semi-closed set in *T* with $B \subset (\mathfrak{Int}(A))^* \setminus A$. So $B \subset T \setminus A$. Then $A \subset T \setminus B$ and $T \setminus B$ is a semi-open set. Since *A* is a *P**-closed set,

 $\mathfrak{Cl}^{\star}(\mathfrak{Int}(A)) \setminus \mathfrak{Int}^{\star}(T \setminus B) \in \mathfrak{I}.$

Therefore, $\mathfrak{Cl}^{\star}(\mathfrak{Int}(A)) \setminus (T \setminus \mathfrak{Cl}^{\star}(B)) \in \mathfrak{I}$ and

 $(\mathfrak{Int}(A))^{\star} \setminus (T \setminus \mathfrak{Cl}^{\star}(B)) \in \mathfrak{I}.$

Since

 $B \subset (\mathfrak{Int}(A))^{\star} \setminus (T \setminus \mathfrak{Cl}^{\star}(B)) \in \mathfrak{I},$

then $B \in \mathfrak{J}$. \square

Remark 2.16. *Example 2.17 enable us to realize that Theorem 2.13 and 2.15 are not true without P*-closedness.*

Example 2.17. Let $T = \{k, l, m, n\}$, $\sigma = \{\{k, l, n\}, \{k, n\}, \{k\}, \{n\}, \emptyset, T\}$ and $\Im = \{\{l, n\}, \{n\}, \{l\}, \emptyset\}$. Put $A = \{k\}$ and $B = \{l, m\}$. Then A is not a P^* -closed set, B is a semi-closed set, $B \subset (\Im t(A))^* \setminus A$ and $B \subset \mathfrak{Cl}^*(\Im t(A)) \setminus A$. But $B \notin \Im$ and $\mathfrak{Cl}^*(B) \notin \Im$.

Theorem 2.18. For any P^* -closed set A in any ideal space $(T, \sigma, \mathfrak{I})$, $\mathfrak{Cl}^*(\mathfrak{Int}(A)) \setminus A$ is P^* -open.

Proof. Assume that $A \subset T$ is P^* -closed. Let $B \subset \mathfrak{Cl}^*(\mathfrak{Int}(A)) \setminus A$ and B be a semi-closed set. By Theorem 2.13, $\mathfrak{Cl}^*(B) \in \mathfrak{I}$. So, there exists a set $C = \mathfrak{Cl}^*(B) \in \mathfrak{I}$ such that

 $\mathfrak{Cl}^{\star}(B) \setminus C \subset \mathfrak{Int}^{\star}(\mathfrak{Cl}(\mathfrak{Cl}^{\star}(\mathfrak{Int}(A)) \cap (T \setminus A))).$

By Theorem 2.7, $\mathfrak{Cl}^{\star}(\mathfrak{Int}(A)) \cap (T \setminus A)$ is P^{\star} -open. \Box

Theorem 2.19. Let $(T, \sigma, \mathfrak{I})$ be an ideal space and $A \subset T$ be a P^* -open set. If $\mathfrak{Int}^*(\mathfrak{Cl}(A)) \cup (T \setminus A) \subset B$ and B is semi-open in T, then $T \setminus B \in \mathfrak{I}$.

Proof. Assume that $A \subset T$ is P^* -open. Let $\mathfrak{Int}^*(\mathfrak{Gl}(A)) \cup (T \setminus A) \subset B$ and B be semi-open in T. Therefore,

 $T \setminus [\operatorname{\mathfrak{Int}}^{\star}(\operatorname{\mathfrak{Cl}}(A)) \cup (T \setminus A)]$ = $(T \setminus \operatorname{\mathfrak{Int}}^{\star}(\operatorname{\mathfrak{Cl}}(A))) \cap A$ = $\operatorname{\mathfrak{Cl}}^{\star}(\operatorname{\mathfrak{Int}}(T \setminus A)) \cap A.$

Then $T \setminus B$ is a semi-closed set and

 $T \setminus B \subset \mathfrak{Cl}^{\star}(\mathfrak{Int}(T \setminus A)) \setminus (T \setminus A)$

and $T \setminus A$ is a P^* -closed set. By Theorem 2.13, $\mathfrak{Cl}^*(T \setminus B) \in \mathfrak{I}$ and therefore $T \setminus B \in \mathfrak{I}$. \Box

Theorem 2.20. {*t*} is semi-closed or {*t*} is a P^* -open set for each $t \in T$ in any ideal space $(T, \sigma, \mathfrak{I})$.

Proof. Assume that {*t*} is not a semi-closed set for $t \in T$. Let $B \subset \{t\}$ and B be a semi-closed set in T. Then $B = \emptyset$ and so there exists a $B \in \Im$ such that

 $\mathfrak{Cl}^{\star}(B) \setminus B \subset \mathfrak{Int}^{\star}(\mathfrak{Cl}(\{t\})).$

By Theorem 2.7, $\{t\}$ is a P^* -open set. \Box

Definition 2.21. ([2]) Let (T, σ, \Im) be an ideal space. (T, σ, \Im) is called an F*-space if each open set in (T, σ, \Im) is \star -closed.

Theorem 2.22. *Each set is* P^* *-closed in any* F^* *-ideal space* $(T, \sigma, \mathfrak{I})$ *.*

Proof. Let $C \subset B \subset T$ and *B* be a semi-open set. Then

 $\mathfrak{Cl}^{\star}(\mathfrak{Int}(C)) \cap (T \setminus \mathfrak{Int}^{\star}(B))$ = $\mathfrak{Int}(C) \cap (T \setminus \mathfrak{Int}^{\star}(B))$ = $\emptyset \in \mathfrak{I}.$

Therefore, *C* is a P^* -closed set. As a result, each set *C* in *T* is a P^* -closed set. \Box

3. Further Properties

In this Section, further properties of *P**-closed sets are studied.

Theorem 3.1. ([15]) Let $(T, \sigma, \mathfrak{T})$ be an ideal space and A and B be sets in T. (i) if $A \subset B, A^* \subset B^*$, (ii) $(A^*)^* \subset A^*$

Theorem 3.2. Let $A \subset B \subset (\mathfrak{Int}(A))^*$ for P^* -closed A in any ideal space $(T, \sigma, \mathfrak{I})$. Then B is P^* -closed.

Proof. Assume that $A \subset B \subset (\mathfrak{Int}(A))^*$ and C is a semi-open set in T such that $B \subset C$. So $A \subset C$. Since A is a P^* -closed set, $(\mathfrak{Int}(A))^* \setminus \mathfrak{Int}^*(C) \in \mathfrak{I}$. Since $B \subset (\mathfrak{Int}(A))^*$,

 $(\mathfrak{Int}(B))^* \subset ((\mathfrak{Int}(A))^*)^* \subset (\mathfrak{Int}(A))^*.$

We have

 $(\mathfrak{Int}(B))^* \setminus \mathfrak{Int}^*(C)$ $\subset (\mathfrak{Int}(A))^* \setminus \mathfrak{Int}^*(C) \in \mathfrak{I}.$

Then $(\mathfrak{Int}(B))^* \setminus \mathfrak{Int}^*(C) \in \mathfrak{I}$. As a result, *B* is a *P**-closed set. \Box

Theorem 3.3. If $A \subset B \subset \mathfrak{Cl}^*(\mathfrak{Int}(A))$ for P^* -closed A in any ideal space $(T, \sigma, \mathfrak{I})$, B is P^* -closed.

Proof. Assume that $A \subset B \subset \mathfrak{Cl}^{*}(\mathfrak{Int}(A))$ and *C* is a semi-open set in *T* such that $B \subset C$. Since *A* is *P*^{*}-closed, $\mathfrak{Cl}^{*}(\mathfrak{Int}(A)) \setminus \mathfrak{Int}^{*}(C) \in \mathfrak{I}$. Then

 $\mathfrak{Cl}^{\star}(\mathfrak{Int}(B)) \setminus \mathfrak{Int}^{\star}(C)$ $\subset \mathfrak{Cl}^{\star}(\mathfrak{Int}(A)) \setminus \mathfrak{Int}^{\star}(C) \in \mathfrak{I}.$

Therefore, $\mathfrak{Cl}^{\star}(\mathfrak{Int}(B)) \setminus \mathfrak{Int}^{\star}(C) \in \mathfrak{I}$ and *B* is a *P*^{*}-closed set. \Box

Theorem 3.4. For any open P^* -closed set A in any ideal space $(T, \sigma, \mathfrak{I}), \mathfrak{Cl}^*(A)$ is P^* -closed.

Proof. By Theorem 3.3, $\mathfrak{Cl}^*(A)$ is a P^* -closed set. \Box

Theorem 3.5. Let $A \subset T$ be P^* -open in any ideal space $(T, \sigma, \mathfrak{I})$. Assume that $\mathfrak{Int}^*(\mathfrak{Cl}(A)) \subset B$ and $B \subset A$. Then B is P^* -open.

Proof. Assume that $\operatorname{\mathfrak{I}ut}^*(\operatorname{\mathfrak{C}l}(A)) \subset B \subset A$ for any P^* -open A. So $T \setminus A \subset T \setminus B \subset T \setminus \operatorname{\mathfrak{I}ut}^*(\operatorname{\mathfrak{C}l}(A))$ and $T \setminus A$ is a P^* -closed set. Since $T \setminus A \subset T \setminus B \subset \operatorname{\mathfrak{C}l}^*(\operatorname{\mathfrak{I}ut}(T \setminus A))$, by Theorem 3.3, $T \setminus B$ is P^* -closed. Therefore, B is P^* -open. \Box

Theorem 3.6. For any ideal space $(T, \sigma, \mathfrak{I})$, assume that $A \subset T$ is a closed P^* -open set. Then $\mathfrak{Int}^*(A)$ is P^* -open.

Proof. By Theorem 3.5, $\operatorname{Sut}^*(A)$ is P^* -open. \Box

Remark 3.7. For any ideal topological space $(T, \sigma, \mathfrak{I})$, there exist P^* -closed sets A and B but $A \cup B$ and $A \cap B$ fail to be P^* -closed.

Example 3.8. Let $T = \{k, l, m, n\}$, $\sigma = \{\{k, l, n\}, \{k, n\}, \{k\}, \{k, l\}, \{n\}, \emptyset, T\}$ and $\Im = \{\{k\}, \emptyset\}$. Then $A = \{k\}$ and $B = \{l\}$ are P^* -closed sets, $A \cup B$ is not a P^* -closed set.

Example 3.9. Let $T = \{k, l, m, n, o\}$, $\sigma = \{\{k, l, n\}, \{k, n\}, \{n\}, \{k, l\}, \{k\}, \emptyset, T\}$ and $\Im = \{\{l\}, \emptyset\}$. Then $A = \{k, m, n, o\}$ and $B = \{l, m, n, o\}$ are P^* -closed sets, $A \cap B$ is not a P^* -closed set.

Definition 3.10. ([12]) A function $f : (T_1, \sigma, \Im) \to (T_2, \rho, \Im)$ is called \star -closed if f(A) is \star -closed for every \star -closed set A in (T_1, σ, \Im) .

Definition 3.11. ([3]) A function $f : T_1 \to T_2$ is called s-continuous if for each $t \in T_1$ and each semi-open set A containing f(t), there exists an open set B in T_1 containing t such that $f(B) \subset A$.

Theorem 3.12. Let $f : (T_1, \sigma, \mathfrak{I}) \to (T_2, \rho, f(\mathfrak{I}))$ be a function where $f(\mathfrak{I}) = \{f(I) : I \in \mathfrak{I}\}$. If f is bijection, \star -closed and s-continuous, then f(A) is P^{\star} -closed for P^{\star} -closed A in T_1 .

Proof. Let *f* be a bijection, \star -closed and s-continuous function and $A \subset T_1$ be P^{\star} -closed. Let $f(A) \subset B$ such that *B* is semi-open in T_2 . Therefore, $A \subset f^{-1}(B)$ and

 $\mathfrak{Cl}^{\star}(\mathfrak{Int}(A)) \setminus \mathfrak{Int}^{\star}(f^{-1}(B)) \in \mathfrak{I}.$

Therefore,

 $f(\mathfrak{Gl}^{\star}(\mathfrak{Int}(A))) \setminus f(\mathfrak{Int}^{\star}(f^{-1}(B))) \in f(\mathfrak{I}).$

Since *f* is bijective, \star -closed function and s-continuous, then $f(\mathfrak{Sl}^{\star}(\mathfrak{Int}(A))) \setminus \mathfrak{Int}^{\star}(B) \in f(\mathfrak{I})$ and $\mathfrak{Cl}^{\star}(\mathfrak{Int}(f(A)))$ is a subset of $f(\mathfrak{Sl}^{\star}(\mathfrak{Int}(A)))$. Therefore, $\mathfrak{Cl}^{\star}(\mathfrak{Int}(f(A))) \setminus \mathfrak{Int}^{\star}(B) \in f(\mathfrak{I})$ and f(A) is a *P*^{*}-closed set. \Box

Definition 3.13. ([10]) A function $f : (T_1, \sigma, \Im) \to (T_2, \rho, \Im)$ is called \star -open if f(A) is \star -open for every \star -open set A in (T_1, σ, \Im) .

Corollary 3.14. Let $f : (T_1, \sigma, \mathfrak{I}) \to (T_2, \rho, f(\mathfrak{I}))$ be a function where $f(\mathfrak{I}) = \{f(I) : I \in \mathfrak{I}\}$. If f is bijection, \star -open and s-continuous, then f(A) is a P^{\star} -closed set for each P^{\star} -closed set A in T_1 .

Proof. It follows by Theorem 3.12. \Box

References

- [1] A. Acikgoz, T. Noiri and S. Yuksel, On *-operfect sets and α -*-closed sets, Acta Math. Hungar., 127 (1-2) (2010), 146-153.
- [2] A. Acikgoz, S. Yuksel, I. L. Reilly, A decomposition of continuity on F*-spaces and mappings on SA*-spaces, SDÜ Fen Edb. Fak. Fen Der. 3 (2008), 51-59.
- [3] D. E. Cameron and G. Woods, s-continuous and s-open mappings, Preprint.
- [4] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22 (1971) 99-112.
- [5] P. Das, L. D. R. Kočinac and D. Chandra, Some remarks on open covers and selection principles using ideals, Topology and its Applications, 202 (2016), 183-193.
- [6] P. Das and D. Chandra, Some further results on I- γ and I- γ_k -covers, Topology and its Applications, 160 (2013), 2401-2410.
- [7] E. Ekici and Ö. Elmalı, On decompositions via generalized closedness in ideal spaces, Filomat, 29 (4) (2015), 879-886.
- [8] E. Ekici and S. Özen, A generalized class of τ^* in ideal spaces, Filomat, 27 (4) (2013), 529-535.
- [9] E. Ekici and T. Noiri, ★-hyperconnected ideal topological spaces, Analele Stiintifice Ale Universitatii Al. I. Cuza Din Iasi (S. N.) Matematica, Tomul LVIII (1) (2012), 121-129.
- [10] E. Ekici and S. Özen, Rough closedness, rough continuity and Ig-closed sets, Annales Univ. Sci. Budapest., 55 (2012), 47-55.
- [11] E. Ekici, On \mathcal{AC}_I -sets, \mathcal{BC}_I -sets, β_I^* -open sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform., 20 (2011), No. 1, 47-54.
- [12] E. Ekici, On *I*-Alexandroff and I_g -Alexandroff ideal topological spaces, Filomat, 25 (4) (2011), 99-108.
- [13] E. Ekici and T. Noiri, *****-extremally disconnected ideal topological spaces, Acta Mathematica Hungarica, 122 (1-2) (2009), 81-90.
- [14] E. Hayashi, Topologies defined by local properties, Math. Ann., 156 (1964), 205-215.
- [15] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295-310.
- [16] K. Kuratowski, Topology, Vol. 1, Academic Press, New York, 1966.
- [17] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [18] Z. Li and S. Lu, On I-scattered spaces, Bull. Korean Math. Soc., 51 (3) (2014), 667-680.