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Abstract. In this paper, we obtain some limit formulas for derivatives of (p, q)-gamma function and (p, q)-
digamma function at their poles. These limit formulas extend the Prabhu-Srivastava theorem involving
gamma function and digamma function.

1. Introduction

It is well-known that for all complex numbers x , 0,−1,−2, · · · , the gamma function and digamma
function [1, pp. 255] are defined by

Γ(x) = lim
n→∞

n!nx

x(x + 1) · · · (x + n)
and ψ(x) =

Γ′(x)
Γ(x)

,

respectively.
A. Prabhu and H.M. Srivastava [8] have considered the limits of ratios between two gamma functions

and digamma functions at their poles x = 0,−1,−2, · · · , and obtained some nice formulas:

Theorem 1.1. ([8, Theorem 1 and 2]) For non-negative integer k and positive integers n and m, we have

lim
x→−k

Γ(nx)
Γ(mx)

= (−1)(n−m)k m
n
·

(mk)!
(nk)!

, (1)

and

lim
x→−k

ψ(nx)
ψ(mx)

=
m
n
.
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Applying (1) and Gauss-Legendre multiplication formula, they also obtained an interesting product identity
for the gamma function:

n−1∏
j=1

Γ(−k +
j
n

) = (−1)(n−1)knnk− 1
2 (2π)

1
2 (n−1) k!

(nk)!
,

for non-negative integer k and positive integer n ≥ 2.
In 2013, F. Qi [9] considered the limits of ratios between two derivatives of gamma function and digamma

function at their poles.

Theorem 1.2. ([9, Theorem 1.2]) For non-negative integers s, k and positive integers n,m, we have

lim
x→−k

Γ(s)(nx)
Γ(s)(mx)

= (−1)(n−m)k
(m

n

)s+1
·

(mk)!
(nk)!

, (2)

and

lim
x→−k

ψ(s)(nx)
ψ(s)(mx)

=
(m

n

)s+1
. (3)

Remark. Theorem 1.2 is contained in the Prabhu-Srivastava theorem (Theorem 1.1) by obvious use of the
L’Hôpital’s rule for limits.

For a non-negative integer p, the p-gamma function is defined by

Γp(x) =
p!px

x(x + 1) · · · (x + p)
, (4)

which was first introduced by Euler. Similarly, the p-digamma function is given by

ψp(x) =
Γ′p(x)

Γp(x)
.

Note that limp→∞ Γp(x) = Γ(x) and limp→∞ ψp(x) = ψ(x), and both Γp(x) andψp(x) are analytic on the complex
plane except for x = 0,−1,−2, · · · ,−p.

Recently, L. Yin and L.-G. Huang [5] provided alternative proofs of (1) and (3) by establishing the
following results:

Theorem 1.3. ([5, Theorem 2.3 and 2.6]) Let k, p, s be non-negative integers and m,n be positive integers such that
mk,nk ≤ p. Then

lim
x→−k

Γp(nx)
Γp(mx)

=
m
n

(−p)(m−n)k
(

p
nk

)
/

(
p

mk

)
, (5)

and

lim
x→−k

ψ(s)
p (nx)

ψ(s)
p (mx)

=
(m

n

)s+1
. (6)

Letting p→∞ in (5) and (6) and noting that

lim
p→∞

p(m−n)k
(

p
nk

)
/

(
p

mk

)
=

(mk)!
(nk)!

,

we are led to (1) and (3). They also posed the following conjecture:
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Conjecture 1.4. ([5, Conjecture 2.9]) Let s, k and p be non-negative integers and m,n be positive integers such that
mk,nk ≤ p. Then

lim
x→−k

Γ(s)
p (nx)

Γ(s)
p (mx)

=
(m

n

)s+1
(−p)(m−n)k

(
p

nk

)
/

(
p

mk

)
. (7)

It is not hard to see that (7) reduces to (2) when p→∞.
Remark. Theorem 1.3 and Conjecture 1.4 can be considered as the p-extensions of the Prabhu-Srivastava
theorem (Theorem 1.1).

F. H. Jackson defined the following q-gamma functions [4, (I.35), pp.353]:

Γq(x) =
(q; q)∞
(qx; q)∞

(1 − q)1−x for 0 < q < 1,

and

Γq(x) =
(q−1; q−1)∞
(q−x; q−1)∞

(q − 1)1−xq(x
2) for q > 1, (8)

where (a; q)0 = 1 and (a; q)n =
∏n−1

k=0 (1 − aqk). This function have many analogues of the classical facts about
the gamma function [2, 7]. Similarly, the q-digamma function is given by

ψq(x) =
Γ′q(x)

Γq(x)
.

It is well-known that limq→1 Γq(x) = Γ(x) and limq→1 ψq(x) = ψ(x), and both Γq(x) and ψq(x) have the poles at
x = 0,−1,−2, · · · .

V.B. Krasniqi, H.M. Srivastava and S.S. Dragomir[3] considered the following (p, q)-gamma function and
(p, q)-digamma function:

Γp,q(x) =
q(x−1

2 )[p]x
q[p]q!

[x]q[x + 1]q · · · [x + p]q
for q > 1, (9)

and ψp,q(x) = Γ′p,q(x)/Γp,q(x), where p is a non-negative integer and [x]q = (1 − q−x)/(1 − q−1). They have also
obtained some complete monotonicity properties of the (p, q)-gamma function. Both Γp,q(x) and ψp,q(x) have
the poles at x = 0,−1, · · · ,−p. Note that (9) reduces to (4) when q→ 1, and reduces to (8) when p→∞.

In this paper, we shall establish some extensions of the Prabhu-Srivastava theorem (Theorem 1.1)
involving the (p, q)-gamma function. We will see that all of Theorem 1.1, 1.2, 1.3 and Conjecture 1.4 are
special cases of these theorems.

2. Statements of the Results

We can rewrite (9) as

Γp,q(x) =
(1 − q−1)(q−1; q−1)p

(q−x; q−1)p+1

(
1 − q−p

1 − q−1

)x

q(x−1
2 ) for q > 1. (10)

It is clear that the definition (10) is equivalent to

Γp,q(x) =
(1 − q)(q; q)p[p]x

qq−(
x−1

2 )

(qx; q)p+1
for q < 1, (11)

where [p]q = (1 − qp)/(1 − q). In what follows we will use the definition (11) for Γp,q(x).



J.-C. Liu, J. Liu / Filomat 31:14 (2017), 4507–4513 4510

Theorem 2.1. Let s, k and p be non-negative integers and n,m be positive integers such that nk,mk ≤ p. Then

lim
x→−k

ψ(s)
p,q(nx)

ψ(s)
p,q(mx)

=
(m

n

)s+1
. (12)

Letting q→ 1 in (12), we obtain (6).

Theorem 2.2. Let s, k and p be non-negative integers and n,m be positive integers such that nk,mk ≤ p. Then

lim
x→−k

Γ(s)
p,q(nx)

Γ(s)
p,q(mx)

=
(m

n

)s+1 (
−q[p]q

)(m−n)k
[

p
nk

]
q
/

[
p

mk

]
q
, (13)

where [p]q = (1 − qp)/(1 − q) and the q-binomial coefficient is given by[
a
b

]
q

=
(q; q)a

(q; q)b(q; q)a−b
.

Letting q→ 1 in (13), we obtain (7), and so we confirm Conjecture 1.4.

Theorem 2.3. Let a, b be positive integers and s, k and p be non-negative integers such that k ≤ p. Then

lim
x→−k

Γ(s)
p,qa (x)

Γ(s)
p,qb (x)

=
b
a

q(a−b)(k+1)2

(
1 − qa

1 − qb

)k+1 (
1 − qbp

1 − qap

)k [
p
k

]
qa

/

[
p
k

]
qb

. (14)

3. Proof of the Results

In order to prove the results, we need some important lemmas.

Lemma 3.1. (Faà di Bruno) If 1 and f are functions with a sufficient number of derivatives, then

ds

dxs 1( f (x)) =
∑

1·r1+2·r2+···+s·rs=s
r1,r2,··· ,rs≥0

s!
r1! · r2! · · · rs!

1(r1+r2+···+rs)( f (x))
(

f (1)(x)
1!

)r1

· · ·

(
f (s)(x)

s!

)rs

. (15)

This is the famous Faà di Bruno formula [6].

Lemma 3.2. Let F and log F be functions with a sufficient number of derivatives. For any positive integer s, there
exist some coefficients a(r1, r2, · · · , rs) independent of x such that

F(s)(x) = F(x)
∑

1·r1+2·r2+···+s·rs=s
r1,r2,··· ,rs≥0

a(r1, r2, · · · , rs)
(

f (1)(x)
)r1
· · ·

(
f (s)(x)

)rs
, (16)

where f (x) = log F(x).

Proof. Letting 1(x) = ex and f (x) = log F(x) in (15), we immediately get

F(s)(x) = F(x)
∑

1·r1+2·r2+···+s·rs=s
r1,r2,··· ,rs≥0

s!
r1! · · · rs!

(
f (1)(x)

1!

)r1

· · ·

(
f (s)(x)

s!

)rs

.

This completes the proof.
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Proof of Theorem 2.1. By (11), we have

ψ(s−1)
p,q (x) =

ds−1

dxs−1 log[p]q +
ds−1

dxs−1

(3
2
− x

)
log q −

p∑
i=0

ds

dxs log(1 − qx+i). (17)

Letting 1(x) = log x and f (x) = 1 − qi+x in (15) gives

ds

dxs log(1 − qx+i) = −
(
log q

)s
∑

1·r1+2·r2+···+s·rs=s
r1,r2,··· ,rs≥0

s!
r1! · r2! · · · rs!

·
(R − 1)!

(1!)r1 (2!)r2 · · · (s!)rs
·

q(x+i)R

(1 − qx+i)R , (18)

where R = r1 + r2 + · · · + rs. Since 1 · r1 + 2 · r2 + · · · + s · rs = s, R has the maximum value R = s when r1 = s
and r2 = · · · = rs = 0, and so we can write (18) in the form

ds

dxs log(1 − qx+i) = −
(
log q

)s
s∑

R=0

Cs(R)
q(x+i)R

(1 − qx+i)R , (19)

where Cs(R) is independent of x and Cs(s) , 0. Note that (19) has the pole at x = −i.
Combining (17) and (19), we have for s ≥ 1 and nk,mk ≤ p,

lim
x→−k

ψ(s−1)
p,q (nx)

ψ(s−1)
p,q (mx)

= lim
x→−k

qn(x+k)s

(1 − qn(x+k))s
·

(1 − qm(x+k))s

qm(x+k)s
.

Noting that

lim
x→−k

1 − qm(x+k)

1 − qn(x+k)
=

m
n
, (20)

we obtain

lim
x→−k

ψ(s−1)
p,q (nx)

ψ(s−1)
p,q (mx)

=
(m

n

)s
for s ≥ 1,

which is equivalent to (12).
Proof of Theorem 2.2. We first prove the case s = 0.

lim
x→−k

Γp,q(nx)
Γp,q(mx)

= q(mk+2
2 )−(nk+2

2 )[p](m−n)k
q

(q−mk; q)mk(q; q)p−mk

(q−nk; q)nk(q; q)p−nk
lim
z→−k

1 − qm(x+k)

1 − qn(x+k)
.

Applying (20) and noting that

(q−i; q)i = (−1)iq−(
i+1
2 )(q; q)i,

we obtain

lim
x→−k

Γp,q(nx)
Γp,q(mx)

=
m
n

(
−q[p]q

)(m−n)k
[

p
nk

]
q
/

[
p

mk

]
q
. (21)

Let fp,q(x) = log Γp,q(x). By (16), we have

Γ(s)
p,q(x) = Γp,q(x)

∑
1·r1+2·r2+···+s·rs=s

r1,r2,··· ,rs≥0

a(r1, r2, · · · , rs)
(

f (1)
p,q (x)

)r1
· · ·

(
f (s)
p,q(x)

)rs
. (22)
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Noting that f (d)
p,q (x) = ψ(d−1)

p,q (x) and then using (12), we get

lim
x→−k

f (d)
p,q (nx)

f (d)
p,q (mx)

=
(m

n

)d
for d ≥ 1. (23)

It follows from (22) and (23) that

lim
x→−k

Γ(s)
p,q(nx)

Γ(s)
p,q(mx)

= lim
x→−k

Γp,q(nx)
Γp,q(mx)

·

(m
n

)s
. (24)

The proof of (13) then directly follows from (21) and (24).
Proof of Theorem 2.3. We first prove the case s = 0.

lim
x→−k

Γp,qa (x)
Γp,qb (x)

= q(a−b)(k+2
2 )

(
1 − qa

1 − qb

)k+1 (
1 − qbp

1 − qap

)k (qa; qa)p(q−bk; qb)k(qb; qb)p−k

(qb; qb)p(q−ak; qa)k(qa; qa)p−k
· lim

x→−k

1 − qb(x+k)

1 − qa(x+k)
.

Using (20) and noting that

(qa; qa)p(q−bk; qb)k(qb; qb)p−k

(qb; qb)p(q−ak; qa)k(qa; qa)p−k
= q(a−b)(k+1

2 )
[
p
k

]
qa

/

[
p
k

]
qb

,

we obtain

lim
x→−k

Γp,qa (x)
Γp,qb (x)

=
b
a

q(a−b)(k+1)2

(
1 − qa

1 − qb

)k+1 (
1 − qbp

1 − qap

)k [
p
k

]
qa

/

[
p
k

]
qb

. (25)

In order to prove (14), by (16) and (25), it suffices to prove that

lim
x→−k

(
log Γp,qa (x)

)(s)

(
log Γp,qb (x)

)(s)
= 1 for s ≥ 1.

Replacing q by qa in (19) yields

ds

dxs log(1 − qa(x+i)) = −
(
a log q

)s
s∑

R=0

Cs(R)
qa(x+i)R

(1 − qa(x+i))R
.

Similarly to the proof of Theorem 2.1, we have

lim
x→−k

(
log Γp,qa (x)

)(s)

(
log Γp,qb (x)

)(s)
= lim

x→−k

(a
b

)s
·

qa(x+k)s

(1 − qa(x+k))s
·

(1 − qb(x+k))s

qb(x+k)s
= 1 (by (20)).

This completes the proof.
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