Coincidence of Multivalued Mappings on Metric Spaces with a Graph

Muhammad Nouman Aslam Khan ${ }^{\text {a,b }}$, Akbar Azam ${ }^{\text {b }}$, Ljubiša D.R. Kočinac ${ }^{\text {c }}$
${ }^{a}$ School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
${ }^{b}$ Department of Mathematics, COMSATS Institute of Information Technology, Chak Shahzad, Islamabad - 44000, Pakistan
${ }^{c}$ University of Niš, Faculty of Sciences and Mathematics, 18000 Niš, Serbia

Abstract

In this article the coincidence points of a self mapping and a sequence of multivalued mappings are found using the graphic F-contraction. This generalizes Mizoguchi-Takahashi's fixed point theorem for multivalued mappings on a metric space endowed with a graph. As applications we obtain a theorem in homotopy theory, an existence theorem for the solution of a system of Urysohn integral equations, and for the solution of a special type of fractional integral equations.

1. Introduction and Preliminaries

The study of fixed points in metric spaces endowed with a graph was initiated by Jachymski [9]. The famous Banach contraction principle was extended to multivalued mappings by Nadler [14] in 1969. Reich [15] studied the fixed point results for the multivalued mappings on the compact subsets of a complete metric space. Hu [8] in 1980 extended the multivalued fixed point results to locally contractive multivalued mappings in ε-chainable metric space. In 1989, Mizouguchi and Takahashi [13] generalized Nadler's fixed point theorem using the MT-function. Recently, Sultana and Vetrivel [17] used the concept of Jachymski [9] for graphic contraction for multivalued mappings to extend the work of Mizouguchi and Takahashi [13]. Also Frigon and Dinevari [6] considered multivalued mappings on complete metric space endowed with a directed graph.

In 2012, Wardowski [18] introduced the F-contraction and proved the uniqueness of fixed point to extend the famous Banach contraction principle. Batra and Vashistha [4] have used the concept of graphic contraction in connection with F-contraction for the existence of fixed point results. Fixed point results of Hardy-Rogers type for self mappings on ordered complete metric spaces are pursued by Cosentino and Vetro [5] in view of F-contraction. The Hardy-Rogers type fixed point results have been extended for the multivalued mappings by Sgroi and Vetro [16]. For a metric space (X, d), by $\operatorname{CL}(X)$ we mean the set of closed subsets of X, and by $\operatorname{CB}(X)$ we mean the set of all nonempty closed bounded subsets of X. For every $A, B \in \mathrm{CB}(X)$, the generalized Hausdorff metric H induced by the metric d is defined as

$$
H(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{y \in B} d(y, A)\right\}
$$

[^0]On $\operatorname{CL}(X)$ the generalized Hausdorff metric is defined which is also applicable on $\mathrm{CB}(X)$ [11].
Present article deals with the coincidence points of the sequence of multivalued maps using the concept of F-contraction endowed with a graph. We follow an idea from [2] to show the existence of coincidence points of a sequence of multivalued mappings taking into account the graphic F-contraction. It provides a new way of generalizations of many results existing in the literature [2, 14, 17].

Let us recall some definitions from graph theory which can be found in [10]. For a metric space (X, d) let Δ be the diagonal of the Cartesian product $X \times X$. Consider a directed graph G such that $X=V(G)$, where $V(G)$ is the set of vertices of G. The set $E(G)$ of edges of G contains Δ, i.e. $E(G)$ contains all the loops. If G has no parallel edges, then we can identify G with the pair $(V(G), E(G))$. Further, the graph G can be viewed as a weighted graph if to each its edge we assign the distance between its ends. Consider a directed graph G. Then G^{-1} denotes the graph obtained from G by reversing the direction of edges, and if we ignore the direction of edges in the graph G we get an undirected graph \tilde{G}. The pair $\left(V^{\prime}, E^{\prime}\right)$ will be called a subgraph of G if $V^{\prime} \subseteq V(G)$ and $E^{\prime} \subseteq E(G)$ and for any edge $(a, b) \in E^{\prime}, a, b \in V^{\prime}$.

A path of length K in G from a vertex p to a vertex q is a sequence $\left\{v_{i}\right\}_{i=0}^{K}$ of $K+1$ vertices such that $v_{0}=p$, $v_{K}=q$ and $\left(v_{j-1}, v_{j}\right) \in E(G)$ for $j=1,2, \ldots, K$. For $v \in V(G)$ and $K \in \mathbb{N} \cup\{0\}$ by $[v]_{G}^{K}$ we denote the set

$$
[v]_{G}^{K}:=\{u \in V(G): \text { there is a path of lenght } K \text { from } v \text { to } u\} .
$$

A graph G is called connected if there is a path between any two vertices. Graph G is weakly connected if \tilde{G} is connected.

The following is the definition of G-contraction by Jachymski [9].
Definition 1.1. ([9]) Let (X, d) be a metric space endowed with a graph G. We say that a mapping $T: X \rightarrow X$ is a G-contraction if T preserves edges of G, that is if

$$
\underset{x, y \in X}{\forall}(x, y) \in E(G) \Longrightarrow(T x, T y) \in E(G),
$$

and there exists some $\alpha \in[0,1)$ such that

$$
\underset{x, y \in X}{\forall}(x, y) \in E(G) \Longrightarrow d(T x, T y) \leq \alpha d(x, y)
$$

Mizoguchi and Takahashi [13] had defined an MT-function as follows:
Definition 1.2. ([7]) A function $\varphi:[0, \infty) \rightarrow[0,1)$ is said to be an MT-function if it satisfies MizoguchiTakahashi's condition $\lim \sup _{r \rightarrow t^{+}} \varphi(r)<1$ for all $t \in[0, \infty)$.

Clearly, if $\varphi:[0, \infty) \rightarrow[0,1)$ is a nondecreasing function or a nonincreasing function, then it is an $M T$-function. By $\mathcal{M T}$ we denote the set of all $M T$-functions.

Now we state some results from the basic theory of multivalued mappings.
Lemma 1.3. ([11]) Let (X, d) be a metric space and $B \in \operatorname{CL}(X)$. Then for each $x \in X$ and $q>1$ there exists an element $b \in B$ such that $d(x, b) \leq q d(x, B)$.

As mentioned earlier, Wardowski [18] initiated the idea of F-contractions and provided a generalization of the Banach contraction principle. Following Wardowski [18] F denotes the set of all functions $F: \mathbb{R}^{+} \rightarrow \mathbb{R}$ satisfying the following three conditions:
(F1) F is strictly increasing;
(F2) For each sequence $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$ of positive real numbers $\lim _{n \rightarrow \infty} \alpha_{n}=0$ if and only if $\lim _{n \rightarrow \infty} F\left(\alpha_{n}\right)=-\infty$;
(F3) There exists $k \in(0,1)$ such that $\lim _{\alpha \rightarrow 0^{+}} \alpha^{k} F(\alpha)=0$.

Definition 1.4. ([18]) Let (X, d) be a metric space and $F \in F$. A self mapping T on X is called an F-contraction if there exists $\tau>0$ such that for all $x, y \in X$

$$
d(T x, T y)>0 \text { implies } \tau+F(d(T x, T y)) \leq F(d(x, y))
$$

Further Altun, Olgun and Minak [1] used F-contractions in multivalued maps to generalize the constant τ by putting some restriction using the lim inf and prove the fixed point theorems on closed and bounded subsets of complete metric space.

2. Main Results

Definition 2.1. ([17]) A multivalued mapping $F: X \rightarrow C B(X)$ is said to be a Mizoguchi-Takahashi Gcontraction if for all distinct $x, y \in X$ with $(x, y) \in E(G)$ we have:
(i) $H(F(x), F(y)) \leq \varphi(d(x, y)) d(x, y)$, where $\varphi \in \mathcal{M T}$;
(ii) If $u \in F(x)$ and $v \in F(y)$ are such that $d(u, v) \leq d(x, y)$, then $(u, v) \in E(G)$.

Motivated with Definition 2.1 of [17], we define in a more general setting the sequence of multivalued $F-G_{f}$-contraction for functions $F \in F$.

Definition 2.2. Let (X, d) be a metric space endowed with a graph G and let $F \in F$ be right continuous. A sequence of multivalued mappings $\left\{T_{q}\right\}_{q=1}^{\infty}$ from X into $\operatorname{CB}(X)$ such that for each $u \in X$ and $q \in \mathbb{N}$, $T_{q}(u) \in \operatorname{CB}(X)$, is said to be a generalized $F-G_{f}$-contraction if $f: X \rightarrow X$ is a surjection such that for $u, v \in X$, $u \neq v$ and $(f u, f v) \in E(G)$ imply

$$
\begin{equation*}
2 \tau(d(f u, f v))+F\left(H\left(T_{q}(u), T_{r}(v)\right)\right) \leq F(d(f u, f v)), \text { for all } q, r \in \mathbb{N} \text { for some } \tau>0, \tag{2.1}
\end{equation*}
$$

where

$$
\tau:(0, \infty) \rightarrow(0, \infty) \text { and } \inf \lim _{t \rightarrow s^{+}} \tau(t)>0, \text { for all } s \geq 0
$$

If $f x \in T_{q}(u)$ and $f y \in T_{r}(v)$ such that $d(f x, f y) \leq d(f u, f v)$, then $(f x, f y) \in E(G)$.
Theorem 2.3. Let (X, d) be a complete metric space with a graph G and $\left\{T_{q}\right\}_{q=1}^{\infty}$ be a generalized $F_{-} G_{f}$-contraction. Assume there exist $m \in \mathbb{N}$ and $v_{0} \in X$ such that:
(i) $T_{1}\left(v_{0}\right) \cap\left[f v_{0}\right]_{G}^{m} \neq \emptyset$;
(ii) For any sequence $\left\{v_{n}\right\}$ in X, if $v_{n} \rightarrow$ vand $v_{n} \in T_{n}\left(v_{n-1}\right) \cap\left[v_{n-1}\right]_{G}^{m}$ for all $n \in \mathbb{N}$, then there exists a subsequence $\left\{v_{n_{k}}\right\}$ of $\left\{v_{n}\right\}$ such that $\left(v_{n_{k}}, v\right) \in E(G)$ for all $k \in \mathbb{N}$.

Then f and the sequence $\left\{T_{q}\right\}_{q=1}^{\infty}$ have a coincidence point, i.e. there exists $v^{*} \in X$ such that $f v^{*} \in \bigcap_{q \in \mathbb{N}} T_{q}\left(v^{*}\right)$.
Proof. Choose $v_{1} \in X$ such that $f v_{1} \in T_{1}\left(v_{0}\right) \cap\left[f v_{0}\right]_{G}^{m}$ then there exists a path from $f v_{0}$ to $f v_{1}$, i.e.

$$
f v_{0}=f u_{0}^{1}, \ldots, f u_{m}^{1}=f v_{1} \in T_{1}\left(v_{0}\right), \text { and }\left(f u_{i}^{1}, f u_{i+1}^{1}\right) \in E(G)
$$

for all $i=0,1,2, \ldots, m-1$. Without any loss of generality, we assume that $f u_{k}^{1} \neq f u_{j}^{1}$ for each $k, j \in\{0,1,2, \ldots, m\}$ with $k \neq j$.

Since $\left(f u_{0}^{1}, f u_{1}^{1}\right) \in E(G)$, we get

$$
\begin{equation*}
2 \tau\left(d\left(f u_{0}^{1}, f u_{1}^{1}\right)\right)+F\left(H\left(T_{1}\left(u_{0}^{1}\right), T_{2}\left(u_{1}^{1}\right)\right)\right) \leq F\left(d\left(f u_{0}^{1}, f u_{1}^{1}\right)\right) \tag{2.2}
\end{equation*}
$$

As F is continuous from right, for $\tau\left(d\left(f u_{0}^{1}, f u_{1}^{1}\right)\right)>0$ there exists a real number $q>1$, such that,

$$
\begin{equation*}
F\left(q H\left(T_{1}\left(u_{0}^{1}\right), T_{2}\left(u_{1}^{1}\right)\right)\right)<F\left(H\left(T_{1}\left(u_{0}^{1}\right), T_{2}\left(u_{1}^{1}\right)\right)\right)+\tau\left(d\left(f u_{0}^{1}, f u_{1}^{1}\right)\right) . \tag{2.3}
\end{equation*}
$$

Rename $f v_{1}$ as $f u_{0}^{2}$. Using Lemma 1.3, for each $f u_{0}^{2} \in T_{1}\left(u_{0}^{1}\right)$ and $q>1$ we can find some $f u_{1}^{2} \in T_{2}\left(u_{1}^{1}\right)$ such that

$$
d\left(f u_{0}^{2}, f u_{1}^{2}\right)<q H\left(T_{1}\left(u_{0}^{1}\right), T_{2}\left(u_{1}^{1}\right)\right)
$$

which implies

$$
\begin{equation*}
F\left(d\left(f u_{0}^{2}, f u_{1}^{2}\right)\right)<F\left(q H\left(T_{1}\left(u_{0}^{1}\right), T_{2}\left(u_{1}^{1}\right)\right)\right) . \tag{2.4}
\end{equation*}
$$

From (2.2), (2.3) and (2.4) we have

$$
\begin{aligned}
\tau\left(d\left(f u_{0}^{1}, f u_{1}^{1}\right)\right)+F\left(d\left(f u_{0}^{2}, f u_{1}^{2}\right)\right) & <F\left(H\left(T_{1}\left(u_{0}^{1}\right), T_{2}\left(u_{1}^{1}\right)\right)\right)+2 \tau\left(d\left(f u_{0}^{1}, f u_{1}^{1}\right)\right) \\
& <F\left(d\left(f u_{0}^{1}, f u_{1}^{1}\right)\right),
\end{aligned}
$$

which implies

$$
F\left(d\left(f u_{0}^{2}, f u_{1}^{2}\right)\right)<F\left(d\left(f u_{0}^{1}, f u_{1}^{1}\right)\right)-\tau\left(d\left(f u_{0}^{1}, f u_{1}^{1}\right)\right) .
$$

So we have

$$
d\left(f u_{0}^{2}, f u_{1}^{2}\right)<d\left(f u_{0}^{1}, f u_{1}^{1}\right), \text { which implies }\left(f u_{0}^{2}, f u_{1}^{2}\right) \in E(G) .
$$

Since $\left(f u_{1}^{1}, f u_{2}^{1}\right) \in E(G)$, we have

$$
\begin{equation*}
2 \tau\left(d\left(f u_{1}^{1}, f u_{2}^{1}\right)\right)+F\left(H\left(T_{2}\left(u_{1}^{1}\right), T_{2}\left(u_{2}^{1}\right)\right)\right) \leq F\left(d\left(f u_{1}^{1}, f u_{2}^{1}\right)\right) \tag{2.5}
\end{equation*}
$$

As F is continuous from right, for $\tau\left(d\left(f u_{1}^{1}, f u_{2}^{1}\right)\right)>0$ there is a real number $q>1$ such that

$$
\begin{equation*}
F\left(q H\left(T_{2}\left(u_{1}^{1}\right), T_{2}\left(u_{2}^{1}\right)\right)\right)<F\left(H\left(T_{2}\left(u_{1}^{1}\right), T_{2}\left(u_{2}^{1}\right)\right)\right)+\tau\left(d\left(f u_{1}^{1}, f u_{2}^{1}\right)\right) . \tag{2.6}
\end{equation*}
$$

Again by using Lemma 1.3, for each $f u_{1}^{2} \in T_{2}\left(u_{1}^{1}\right)$ and $q_{1}>1$ we can find some $f u_{2}^{2} \in T_{2}\left(u_{2}^{1}\right)$ such that

$$
d\left(f u_{1}^{2}, f u_{2}^{2}\right)<q_{1} H\left(T_{2}\left(u_{1}^{1}\right), T_{2}\left(u_{2}^{1}\right)\right) .
$$

This implies

$$
\begin{equation*}
F\left(d\left(f u_{1}^{2}, f u_{2}^{2}\right)\right)<F\left(q_{1} H\left(T_{1}\left(u_{0}^{1}\right), T_{2}\left(u_{1}^{1}\right)\right)\right) \tag{2.7}
\end{equation*}
$$

From (2.5), (2.6) and (2.7) we obtain

$$
\begin{aligned}
\tau\left(d\left(f u_{1}^{1}, f u_{2}^{1}\right)\right)+F\left(d\left(f u_{1}^{2}, f u_{2}^{2}\right)\right) & <F\left(H\left(T_{2}\left(u_{1}^{1}\right), T_{2}\left(u_{2}^{1}\right)\right)\right)+2 \tau\left(d\left(f u_{1}^{1}, f u_{2}^{1}\right)\right) \\
& <F\left(d\left(f u_{1}^{1}, f u_{2}^{1}\right)\right)
\end{aligned}
$$

and from here

$$
F\left(d\left(f u_{1}^{2}, f u_{2}^{2}\right)\right)<F\left(d\left(f u_{1}^{1}, f u_{2}^{1}\right)\right)-\tau\left(d\left(f u_{1}^{1}, f u_{2}^{1}\right)\right) .
$$

Therefore, we have

$$
d\left(f u_{1}^{2}, f u_{2}^{2}\right)<d\left(f u_{1}^{1}, f u_{2}^{1}\right) \text { which implies }\left(f u_{1}^{2}, f u_{2}^{2}\right) \in E(G) .
$$

Thus we obtain $m+1$ vertices $\left\{f u_{0}^{2}, f u_{1}^{2}, f u_{2}^{2}, \ldots, f u_{m}^{2}\right\}$ in X such that $f u_{0}^{2} \in T_{1}\left(u_{0}^{1}\right)$ and $f u_{s}^{2} \in T_{2}\left(u_{s}^{1}\right)$ for $s=1,2, \ldots, m$, with

$$
d\left(f u_{s}^{2}, f u_{s+1}^{2}\right)<d\left(f u_{s}^{1}, f u_{s+1}^{1}\right)
$$

for $s=0,1,2, \ldots, m-1$. As $\left(f u_{s}^{1}, f u_{s+1}^{1}\right) \in E(G)$ for all $s=0,1,2, \ldots, m-1$, we get $\left(f u_{s}^{2}, f u_{s+1}^{2}\right) \in E(G)$ for all $s=0,1,2, \ldots, m-1$.

Let $f u_{m}^{2}=f v_{2}$. Then the set of points $f v_{1}=f u_{0}^{2}, f u_{1}^{2}, f u_{2}^{2}, \ldots, f u_{m}^{2}=f v_{2} \in T_{2}\left(v_{1}\right)$ is a path from $f v_{1}$ to $f v_{2}$. Rename $f v_{2}$ as $f u_{0}^{3}$. Then by the same procedure we obtain a path

$$
f v_{2}=f u_{0}^{3}, f u_{1}^{3}, f u_{2}^{3}, \ldots, f u_{m}^{3}=f v_{3} \in T_{3}\left(v_{2}\right)
$$

from $f v_{2}$ to $f v_{3}$. Inductively, for some $h \in \mathbb{N}$ we obtain

$$
f v_{h}=f u_{0}^{h+1}, f u_{1}^{h+1}, f u_{2}^{h+1}, \ldots, f u_{m}^{h+1}=f v_{h+1} \in T_{h+1}\left(v_{h}\right)
$$

with

$$
2 \tau\left(d\left(f u_{t}^{h}, f u_{t+1}^{h}\right)\right)+F\left(H\left(T_{h+1}\left(u_{t}^{h}\right), T_{h+1}\left(u_{t+1}^{h}\right)\right)\right) \leq F\left(d\left(f u_{t}^{h}, f u_{t+1}^{h}\right)\right)
$$

Similarly since $f u_{t}^{h+1} \in T_{h+1}\left(u_{t}^{h}\right)$, and again using Lemma 1.3, one can find some $f u_{t+1}^{h+1} \in T_{h+1}\left(u_{t+1}^{h}\right)$ such that

$$
\begin{equation*}
F\left(d\left(f u_{t}^{h+1}, f u_{t+1}^{h+1}\right)\right)<F\left(d\left(f u_{t}^{h}, f u_{t+1}^{h}\right)\right)-\tau\left(d\left(f u_{t}^{h}, f u_{t+1}^{h}\right)\right) \tag{2.8}
\end{equation*}
$$

which implies that,

$$
\begin{equation*}
d\left(f u_{t}^{h+1}, f u_{t+1}^{h+1}\right)<d\left(f u_{t}^{h}, f u_{t+1}^{h}\right) \tag{2.9}
\end{equation*}
$$

and hence $\left(f u_{t}^{h+1}, f u_{t+1}^{h+1}\right) \in E(G)$ for $t=0,1,2, \ldots, m-1$.
Consequently, we construct a sequence $\left\{f v_{h}\right\}_{h=1}^{\infty}$ of points of X with

$$
\begin{aligned}
f v_{1}= & f u_{m}^{1}=f u_{0}^{2} \in T_{1}\left(v_{0}\right) \\
f v_{2}= & f u_{m}^{2}=f u_{0}^{3} \in T_{2}\left(v_{1}\right) \\
f v_{3}= & f u_{m}^{3}=f u_{0}^{4} \in T_{3}\left(v_{2}\right) \\
& \vdots \\
f v_{h+1}= & f u_{m}^{h+1}=f u_{0}^{h+2} \in T_{h+1}\left(v_{h}\right)
\end{aligned}
$$

for all $h \in \mathbb{N}$.
Now from (2.8) we have

$$
\begin{aligned}
F\left(d\left(f u_{t}^{h+1}, f u_{t+1}^{h+1}\right)\right)< & F\left(d\left(f u_{t}^{h}, f u_{t+1}^{h}\right)\right)-\tau\left(d\left(f u_{t}^{h}, f u_{t+1}^{h}\right)\right) \\
< & F\left(d\left(f u_{t}^{h-1}, f u_{t+1}^{h-1}\right)\right)-\tau\left(d\left(f u_{t}^{h-1}, f u_{t+1}^{h-1}\right)\right)-\tau\left(d\left(f u_{t}^{h}, f u_{t+1}^{h}\right)\right) \\
& \vdots \\
< & F\left(d\left(f u_{t}^{1}, f u_{t+1}^{1}\right)\right)-\underbrace{\tau\left(d\left(f u_{t}^{h}, f u_{t+1}^{h}\right)\right)-\tau\left(d\left(f u_{t}^{h-1}, f u_{t+1}^{h-1}\right)\right)-\ldots-\tau\left(d\left(f u_{t}^{1}, f u_{t+1}^{1}\right)\right)}_{h t e r m s} \\
< & F\left(d\left(f u_{t}^{1}, f u_{t+1}^{1}\right)\right)-h \min \left\{\tau\left(d\left(f u_{t}^{h-1}, f u_{t+1}^{h-1}\right)\right), \tau\left(d\left(f u_{t}^{h}, f u_{t+1}^{h}\right)\right), \ldots, \tau\left(d\left(f u_{t}^{1}, f u_{t+1}^{1}\right)\right)\right\} \\
< & F\left(d\left(f u_{t}^{1}, f u_{t+1}^{1}\right)\right)-h \tau_{\min }
\end{aligned}
$$

As $h \rightarrow \infty$ we get $\lim _{h \rightarrow \infty} F\left(d\left(f u_{t}^{h+1}, f u_{t+1}^{h+1}\right)\right) \rightarrow-\infty$ then from (F2) $\lim _{h \rightarrow \infty} d\left(f u_{t}^{h+1}, f u_{t+1}^{h+1}\right)=0$.
Now from (F3), there exists some $k \in(0,1)$ such that

$$
\lim _{h \rightarrow \infty} d\left(f u_{t}^{h+1}, f u_{t+1}^{h+1}\right)^{k} F\left(d\left(f u_{t}^{h+1}, f u_{t+1}^{h+1}\right)\right)=0
$$

Now from consequences of (2.2) we have

$$
F\left(d\left(f u_{t}^{h+1}, f u_{t+1}^{h+1}\right)\right) \leq F\left(d\left(f u_{t}^{1}, f u_{t+1}^{1}\right)\right)-h \tau_{\min } \text { for all } h \in \mathbb{N},
$$

which implies that

$$
\begin{aligned}
& d\left(f u_{t}^{h+1}, f u_{t+1}^{h+1}\right)^{k} F\left(d\left(f u_{t}^{h+1}, f u_{t+1}^{h+1}\right)\right)-d\left(f u_{t}^{h+1}, f u_{t+1}^{h+1}\right)^{k} F\left(d\left(f u_{t}^{1}, f u_{t+1}^{1}\right)\right) \\
\leq & d\left(f u_{t}^{h+1}, f u_{t+1}^{h+1}\right)^{k}\left(F\left(d\left(f u_{t}^{h+1}, f u_{t+1}^{h+1}\right)\right)-h \tau_{\min }\right)-d\left(f u_{t}^{h+1}, f u_{t+1}^{h+1}\right)^{k} F\left(d\left(f u_{t}^{1}, f u_{t+1}^{1}\right)\right) \\
= & -h \tau_{\min } d\left(f u_{t}^{h+1}, f u_{t+1}^{h+1}\right)^{k} \leq 0 .
\end{aligned}
$$

Letting $h \rightarrow \infty$ we deduce that,

$$
\begin{equation*}
\lim _{h \rightarrow \infty} h d\left(f u_{t}^{h+1}, f u_{t+1}^{h+1}\right)^{k}=0 \tag{2.10}
\end{equation*}
$$

It follows from (2.10) that there exists some $h_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
h d\left(f u_{t}^{h+1}, f u_{t+1}^{h+1}\right)^{k} \leq 1 \text { for all } h>h_{1} \tag{2.11}
\end{equation*}
$$

This implies that

$$
d\left(f u_{t}^{h+1}, f u_{t+1}^{h+1}\right) \leq \frac{1}{h^{\frac{1}{k}}} \text { for all } h>h_{1} .
$$

Now for $p>h>h_{1}$ consider,

$$
\begin{equation*}
d\left(f v_{h}, f v_{p}\right) \leq \sum_{i=h}^{p-1} d\left(f v_{i}, f v_{i+1}\right) \leq \sum_{i=h}^{p-1} \frac{1}{i^{\frac{1}{k}}} \tag{2.12}
\end{equation*}
$$

Since $0<k<1$ therefore series in (2.12) converges, and so for all $t \in\{0,1,2, \ldots, m-1\}$, it follows that $\left\{f v_{h}=f u_{m}^{h}\right\}$ is a Cauchy sequence.

Since (X, d) is complete, there is $v^{*} \in X$ such that $f v_{h} \rightarrow f v^{*}$. Since $f v_{h} \in T_{h}\left(v_{h-1}\right) \cap\left[v_{n-1}\right]_{G}^{m}$ for all $n \in \mathbb{N}$, there exists a subsequence $\left\{f v_{h_{k}}\right\}$ such that $\left(f v_{h_{k}}, f v^{*}\right) \in E(G)$ for all $k \in \mathbb{N}$. Thus

$$
\begin{aligned}
2 \tau\left(d\left(f v_{h_{k-1}}, f v^{*}\right)\right)+F\left(H\left(T_{h_{k}}\left(v_{h_{k-1}}\right), T_{q}\left(v^{*}\right)\right)\right. & \leq F\left(d\left(f v_{h_{k-1}}, f v^{*}\right)\right) \\
F\left(H\left(T_{h_{k}}\left(v_{h_{k-1}}\right), T_{q}\left(v^{*}\right)\right)\right) & <F\left(d\left(f v_{h_{k-1}}, f v^{*}\right)\right) .
\end{aligned}
$$

Since F is an increasing function we have

$$
\begin{equation*}
H\left(T_{h_{k}}\left(v_{h_{k-1}}\right), T_{q}\left(v^{*}\right)\right)<d\left(f v_{h_{k-1}}, f v^{*}\right) . \tag{2.13}
\end{equation*}
$$

By (2.13), for all $q \in \mathbb{N}$ we have

$$
\begin{aligned}
d\left(f v^{*}, T_{q}\left(v^{*}\right)\right) & \leq d\left(f v^{*}, f v_{h_{k}}\right)+d\left(f v_{h_{k}}, T_{q}\left(v^{*}\right)\right) \\
& \leq d\left(f v^{*}, f v_{h_{k}}\right)+H\left(T_{h_{k}}\left(v_{h_{k-1}}\right), T_{q}\left(v^{*}\right)\right) \\
& <d\left(f v^{*}, f v_{h+1}\right)+d\left(f v_{h_{k-1}}, f v^{*}\right) .
\end{aligned}
$$

Letting $k \rightarrow \infty$ in the above inequality, we get $d\left(f v^{*}, T_{q}\left(v^{*}\right)\right) \rightarrow 0$, which implies $f v^{*} \in T_{q}\left(v^{*}\right)$ for all $q \in \mathbb{N}$. Hence, $f v^{*} \in \bigcap_{q \in \mathbb{N}} T_{q}\left(v^{*}\right)$ as required.

Corollary 2.4. Let (X, d) be a complete metric space with a graph $G, T: X \rightarrow \operatorname{CB}(X)$ and $f: X \rightarrow X$ a surjection. If $u, v \in X$ are such that $u \neq v$ and $(f u, f v) \in E(G)$ imply

$$
\begin{aligned}
\tau(d(f u, f v))+F(H(T(u), T(v))) & \leq F(d(f u, f v)), \\
\text { where } \tau & :(0, \infty) \rightarrow(0, \infty) \text { with } \inf \lim _{t \rightarrow s^{+}} \tau(t)>0, \text { for all } s \geq 0 .
\end{aligned}
$$

Also if F is right continuous and there exist $m \in \mathbb{N}$ and $v_{0} \in X$ such that:
(i) $T\left(v_{0}\right) \cap\left[f v_{0}\right]_{G}^{m} \neq \emptyset$;
(ii) For any sequence $\left\{v_{n}\right\}$ in X, if $v_{n} \rightarrow v$ and $v_{n} \in T\left(v_{n-1}\right) \cap\left[v_{n-1}\right]_{G}^{m}$ for all $n \in \mathbb{N}$, there exists a subsequence $\left\{v_{n_{k}}\right\}$ such that $\left(v_{n_{k}}, v\right) \in E(G)$ for all $k \in \mathbb{N}$,
then f and T have a coincidence point, i.e., there exists $v^{*} \in X$ such that $f v^{*} \in T\left(v^{*}\right)$.
Corollary 2.5. Let (X, d) be a complete metric space with a graph $G, T: X \rightarrow \mathrm{CB}(X)$. If $u, v \in X$ are distinct elements such that $(u, v) \in E(G)$ implies

$$
\begin{aligned}
\tau(d(u, v))+F(H(T(u), T(v))) & \leq F(d(u, v)) \\
\text { where } \tau & :(0, \infty) \rightarrow(0, \infty) \text { with inf } \lim _{t \rightarrow s^{+}} \tau(t)>0, \text { for all } s \geq 0 .
\end{aligned}
$$

Also if F is right continuous and there exist $m \in \mathbb{N}$ and $v_{0} \in X$ such that:
(i) $T\left(v_{0}\right) \cap\left[v_{0}\right]_{G}^{m} \neq \emptyset$;
(ii) For any sequence $\left\{v_{n}\right\}$ in X, if $v_{n} \rightarrow v$ and $v_{n} \in T\left(v_{n-1}\right) \cap\left[v_{n-1}\right]_{G}^{m}$ for all $n \in \mathbb{N}$, there exists a subsequence $\left\{v_{n_{k}}\right\}$ such that $\left(v_{n_{k}}, v\right) \in E(G)$ for all $k \in \mathbb{N}$,
then T has a fixed point v^{*}.
If we consider $F(t)=\ln t$ in Corollary 2.5, then we arrive at Theorem 3 on multivalued maps of [17].
The following are the consequence for the case of self mappings with τ is taken as a positive real constant in Theorem 2.1.

Corollary 2.6. Let (X, d) be a complete metric space with a graph $G,\left\{T_{q}\right\}_{q=1}^{\infty}$ be a sequence of the self mappings on X, and $f: X \rightarrow X$ a surjection. Suppose that for distinct elements u and v in $X,(f u, f v) \in E(G)$ implies

$$
\tau+F\left(d\left(T_{q}(u), T_{r}(v)\right)\right) \leq F(d(f u, f v))
$$

for all $q, r \in \mathbb{N}$, and there exist $m \in \mathbb{N}$ and $v_{0} \in X$ such that:
(i) $T_{1}\left(v_{0}\right) \cap\left[f v_{0}\right]_{G}^{m} \neq \emptyset$;
(ii) For any sequence $\left\{v_{n}\right\}$ in X such that $v_{n} \rightarrow v$ and $v_{n}=T_{n}\left(v_{n-1}\right) \cap\left[v_{n-1}\right]_{G}^{m}$ for all $n \in \mathbb{N}$, there exists a subsequence $\left\{v_{n_{k}}\right\}$ of $\left\{v_{n}\right\}$ such that $\left(v_{n_{k}}, v\right) \in E(G)$ for all $k \in \mathbb{N}$.

Then f and the sequence $\left\{T_{q}\right\}_{q=1}^{\infty}$ have a coincidence point, i.e., there exists $v^{*} \in X$ such that $f v^{*}=\bigcap_{q \in \mathbb{N}} T_{q}\left(v^{*}\right)$.
Corollary 2.7. Let (X, d) be a complete metric space with a graph $G, T: X \rightarrow X$, and $f: X \rightarrow X$ a surjection. Let u and v be distinct elements in X such that $(f u, f v) \in E(G)$ implies

$$
\begin{equation*}
\tau+F(d(T(u), T(v))) \leq F(d(f u, f v)) \tag{2.14}
\end{equation*}
$$

and let there exist $m \in \mathbb{N}$ and $v_{0} \in X$, such that:
(i) $T\left(v_{0}\right) \cap\left[f v_{0}\right]_{G}^{m} \neq \emptyset ;$
(ii) For any sequence $\left\{v_{n}\right\}$ in X converging to $v \in X$ and such that $v_{n}=T\left(v_{n-1}\right) \cap\left[v_{n-1}\right]_{G}^{m}$ for all $n \in \mathbb{N}$ there exists a subsequence $\left\{v_{n_{k}}\right\}$ of $\left\{v_{n}\right\}$ such that $\left(v_{n_{k}}, v\right) \in E(G)$ for all $k \in \mathbb{N}$.

Then f and T have a coincidence point, i.e., there exists $v^{*} \in X$ such that $f v^{*}=T v^{*}$.
Corollary 2.8. Let (X, d) be a complete metric space with a graph $G, T: X \rightarrow X$. Assume that for distinct $u, v \in X$, $(u, v) \in E(G)$ implies
$\tau+F(d(T(u), T(v))) \leq F(d(u, v))$,
and that there exist $m \in \mathbb{N}$ and $v_{0} \in X$ such that:
(i) $T\left(v_{0}\right) \cap\left[v_{0}\right]_{G}^{m} \neq \emptyset ;$
(ii) For any sequence $\left\{v_{n}\right\}$ in X which converges to $v \in X$ and satisfies $v_{n}=T\left(v_{n-1}\right) \cap\left[v_{n-1}\right]_{G}^{m}$ for all $n \in \mathbb{N}$ there is a subsequence $\left\{v_{n_{k}}\right\}$ such that $\left(v_{n_{k}}, v\right) \in E(G)$ for all $k \in \mathbb{N}$.

Then T has a fixed point v^{*}.
Remark 2.9. Using the notion from [9], G_{0} is the graph associated with metric space (X, d) with $E(G)=X \times X$. If we assume the graph $G=G_{0}$ and $F(t)=\ln t$ in Corollary 2.8, then the contractive condition (2.15) is applicable for all u and v in X. Thus Corollary 2.8 reduces to the Banach contraction principle.

3. Applications

A. Homotopy theory

By using some ideas from [12], we give an application in homotopy theory as a consequences of Corollary 2.8 with $G=G_{0}$.

Theorem 3.1. Let (X, d) be a complete metric space, W an open subset of X, and $U:[0,1] \times \bar{W} \rightarrow C B(X)$ a multivalued mapping satisfying the following conditions:
(a) $\alpha \notin U(\mu, \alpha)$ for each $\alpha \in \partial W$, where ∂W is the boundary of W, and $\mu \in[0,1]$;
(b) $U(\mu, \cdot): \bar{W} \rightarrow \mathrm{CB}(X)$ is a multivalued map such that;

$$
\tau+F\left(H\left(U(\mu, \alpha), U\left(\mu^{\prime}, \beta\right)\right) \leq F(d(\alpha, \beta))\right.
$$

for each $\mu, \mu^{\prime} \in[0,1], \alpha, \beta \in X$;
(c) there exists a continuous increasing function $\psi:(0,1] \rightarrow \mathbb{R}$ such that

$$
F(H(U(\lambda, \alpha), U(\mu, \beta))) \leq F(\psi(\lambda)-\psi(\mu))
$$

for all $\lambda, \mu \in[0,1]$ and all $\alpha, \beta \in \bar{W}$.
Then $U(0, \cdot)$ has a fixed point if and only if $U(1, \cdot)$ has a fixed point.
Proof. Suppose $U(0, \cdot)$ has a fixed point p, so $p \in U(0, p)$; it follows from (a), $p \in W$.
Define

$$
A:=\{(\mu, \alpha) \in[0,1] \times W: \alpha \in U(\mu, \alpha)\} .
$$

Clearly $A \neq \emptyset$. We define the partial ordering in A as follows:

$$
(\mu, \alpha) \precsim(\lambda, \beta) \Longleftrightarrow \mu \leq \lambda \text { and } d(\alpha, \beta) \leq \frac{2}{1-e^{-\tau}}(\psi(\lambda)-\psi(\mu)):=r
$$

Claim 1. A has a maximal element.
Let L be a totally ordered subset of A and

$$
\mu^{*}=\sup \{\mu:(\mu, \alpha) \in L\} .
$$

Consider a sequence $\left\{\left(\mu_{n}, \alpha_{n}\right)\right\}$ in L such that, $\left(\mu_{n}, \alpha_{n}\right) \precsim\left(\mu_{n+1}, \alpha_{n+1}\right)$ and $\mu_{n} \rightarrow \mu^{*}$ as $n \rightarrow \infty$. Then for $m>n$, we have

$$
d\left(\alpha_{m}, \alpha_{n}\right) \leq \frac{2}{1-e^{-\tau}}\left(\psi\left(\mu_{m}\right)-\psi\left(\mu_{n}\right)\right) \rightarrow \theta, \text { as } n, m \rightarrow \infty,
$$

which means that $\left\{\alpha_{n}\right\}$ is a Cauchy sequence. Since (X, d) is a complete metric space, there exists $\zeta \in X$, such that $\alpha_{n} \rightarrow \zeta$.

Now consider

$$
\tau+F\left(H\left(U\left(\mu_{n}, \alpha_{n}\right), U\left(\mu^{*}, \zeta\right)\right)\right) \leq F\left(d\left(\alpha_{n}, \zeta\right)\right)
$$

which implies

$$
H\left(U\left(\mu_{n}, \alpha_{n}\right), U\left(\mu^{*}, \zeta\right)\right)<d\left(\alpha_{n}, \zeta\right)
$$

Since $\alpha_{n+1} \in U\left(\mu_{n}, \alpha_{n}\right)$ we have

$$
d\left(\alpha_{n_{k+1}}, U\left(\mu^{*}, \zeta\right)\right)<d\left(\alpha_{n}, \zeta\right)
$$

By [8, Lemma 3] there exists $\zeta_{n_{k}} \in U\left(\mu^{*}, \zeta\right)$ such that

$$
d\left(\alpha_{n+1}, \zeta_{n_{k}}\right)<d\left(\alpha_{n}, \zeta\right)
$$

Further,

$$
\begin{aligned}
d\left(\zeta, \zeta_{n}\right) & \leq d\left(\zeta, \alpha_{n+1}\right)+d\left(\alpha_{n+1}, \zeta_{n}\right) \\
& <d\left(\zeta, \alpha_{n_{k+1}}\right)+a d\left(\alpha_{n_{k}}, \zeta\right) \rightarrow 0 \text { for all } n \rightarrow \infty .
\end{aligned}
$$

Thus $\zeta_{n} \rightarrow \zeta \in U\left(\mu^{*}, \zeta\right)$ and since $\left.U\left(\mu^{*}, \zeta\right) \in \mathrm{CB}(X)\right), \zeta \in W$. From here we get $\left(\mu^{*}, \zeta\right) \in A$. Thus $(\mu, \alpha) \precsim\left(\mu^{*}, \zeta\right)$ for all $(\mu, \alpha) \in \Omega$, which means that $\left(\mu^{*}, \zeta\right)$ is an upper bound of Ω. Hence by Zorn's Lemma, A has the maximal element $\left(\mu^{*}, \zeta\right)$. This completes the proof of Claim 1.

Claim 2. $\mu^{*}=1$.
Suppose that $\mu^{*}<1$ and choose $\mu \geq \mu^{*}$ such that

$$
\bar{B}_{d}(\zeta, r) \subset W \text {, where } r=\psi\left(\mu^{*}\right)-\psi(\mu) .
$$

For any $\xi \in \bar{B}_{d}(\zeta, r)$, we have

$$
d(\alpha, \zeta)<r .
$$

Now for any $\xi \in \bar{B}_{d}(\zeta, r)$ consider

$$
\tau+F\left(H\left(U\left(\mu^{*}, \zeta\right), U(\mu, \alpha)\right)\right) \leq F(d(\alpha, \zeta))
$$

which implies

$$
H(U(\stackrel{\circ}{\mu}, \zeta), U(\mu, \alpha))<d(\alpha, \zeta)<r .
$$

Thus the contractive condition holds for multivalued map $U(\mu, \alpha): \bar{B}_{d}(\zeta, r) \rightarrow \mathrm{CB}(X)$ in the complete metric space $\left(\bar{B}_{d}(\zeta, r), d\right)$. By Corollary 2.8, for each $\mu \in[0,1]$, there exist some $\alpha \in \bar{B}_{d}(\zeta, r)$, such that $\alpha \in U(\mu, \alpha)$. As

$$
d(\zeta, \alpha)<r=\psi\left(\mu^{*}\right)-\psi(\mu)
$$

we have

$$
\left(\mu^{*}, \zeta\right) \precsim(\mu, \alpha),
$$

a contradiction. Thus $\mu^{*}=1$ and hence $U(\cdot, 1)$ has a fixed point.
Conversely, if $U(1, \cdot)$ has a fixed point, then in a similar way we prove that $U(0, \cdot)$ has a fixed point.

B. System of integral equations

Consider the system of Urysohn integral equations

$$
\begin{equation*}
f x(t)=\int_{\Omega} K_{i}(t, s, x(s)) d s+h_{i}(t), t \in \Omega \text { and } i \in \mathbb{N} \tag{3.1}
\end{equation*}
$$

where Ω is a closed and bounded subset of a finite dimensional Euclidean space and x, h_{i} are in $C\left[\Omega, \mathbb{R}^{n}\right]$. (1) Suppose that $K_{i}: \Omega^{2} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for $i=1,2, \ldots, n$ are such that $F_{i, x} \in C\left[\Omega, \mathbb{R}^{n}\right]$ for each $x \in X$, where

$$
F_{i, x}(t)=\int_{\Omega} K_{i}(t, s, f x(s)) d s, \text { for all } t \in \Omega \text { and } i \in \mathbb{N}
$$

(2) There is $\tau>0$ such that for every x, y in $C\left[\Omega, \mathbb{R}^{n}\right]$ it holds

$$
\left|F_{m, x}(t)-F_{n, y}(t)+h_{n}(t)-h_{q}(t)\right| \leq e^{-\tau}|f x(t)-f y(t)|, \text { for all } m, n \in \mathbb{N} .
$$

Theorem 3.2. Under the assumptions (1) and (2) the system of Urysohn integral equations (3.1) have a unique common solution in $C\left[\Omega, \mathbb{R}^{n}\right]$.

Proof. Consider a space $X=C\left[\Omega, \mathbb{R}^{n}\right]$ with the metric $d_{\tau}: X \times X \rightarrow \mathbb{R}$ defined by:

$$
d_{\tau}(x, y)=\max _{t \in \Omega}|x(t)-y(t)|
$$

For each $i \in \mathbb{N}$ define $S_{i}: X \rightarrow X$ by

$$
S_{i} x=F_{i, x}+h_{i}
$$

Consider,

$$
\begin{aligned}
\left|S_{m} x(t)-S_{n} y(t)\right| & =\left|F_{m, x}(t)-F_{n, y}(t)+h_{m}(t)-h_{n}(t)\right|: m \neq n \\
& \leq \max _{t \in \Omega}\left|F_{m, x}(t)-F_{n, y}(t)+h_{m}(t)-h_{n}(t)\right| \\
& \leq e^{-\tau} \max _{t \in \Omega}|f x(t)-f y(t)| .
\end{aligned}
$$

Equivalently we have

$$
d_{\tau}\left(S_{m} x, S_{n} y\right) \leq e^{-\tau} d_{\tau}(f x, f y) \text { for all } m, n \in \mathbb{N}
$$

Further,

$$
\ln \left(d_{\tau}\left(S_{m} x, S_{n} y\right)\right) \leq-\tau+\ln \left(d_{\tau}(f x, f y)\right)
$$

or

$$
\tau+\ln \left(d_{\tau}\left(S_{m} x, S_{n} y\right)\right) \leq \ln \left(d_{\tau}(f x, f y)\right)
$$

Now we observe that the function $F: \mathbb{R}^{+} \rightarrow \mathbb{R}$ defined by $F(t)=\ln t$ for each t in Ω, and $\tau>0$ is in F. Thus all conditions of Corollary 2.6 of Theorem 2.1 are satisfied, so the system of Urysohn integral equations (3.1) and f have a coincidence point as a solution.

C. Fractional differential equation

In the next application, we discuss a generalization of a fractional differential equation described in [3]. For the function $g \in C(I)$ and a continuous function $f: I \times \mathbb{R} \rightarrow \mathbb{R}$, where $I=[0,1]$ and $C(I)$ is the Banach space of continuous real-valued functions on I with the uniform topology, consider the fractional differential equation

$$
\begin{equation*}
D^{\alpha} x(t)+f(t, g(x(t)))=0 \quad(0 \leq t \leq 1, \alpha>1, x \in C(I)) \tag{3.2}
\end{equation*}
$$

with boundary conditions $x(0)=x(1)=0$. Note that the associated Green function with the problem (3.2) is:

$$
G(t, s)= \begin{cases}(t(1-s))^{\alpha-1}-(t-s)^{\alpha-1} & 0 \leq s \leq t \leq 1 \\ \frac{t(1-s))^{\alpha-1}}{\Gamma(\alpha)} & 0 \leq t \leq s \leq 1\end{cases}
$$

Theorem 3.3. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ and $f: I \times I \rightarrow \mathbb{R}$ be continuous functions which satisfy
(i) $|(f(s, g(x(s)))-f(s, g(y(s))))| \leq|g(x(s))-g(y(s))| \quad$ for all $s \in I$;
(ii) $\sup _{t \in I} \int_{0}^{1} G(t, s) d s \leq e^{-\tau}$ for some $\tau>0$.

Then the problem (3.2) has a unique solution.

Proof. For the space $X=C(I)$ we have $d(x, y)=\max _{t \in[0,1]}|x(t)-y(t)|$ for x and y in X. It is well known that $x \in(X, \mathbb{R})$ is a solution of (3.2) if and only if it is a solution of the integral equation

$$
x(t)=\int_{0}^{1} G(t, s) f(s,(g x)(s)) d s \text { for all } t \in I
$$

Define the operators $F: X \rightarrow X$ and $S: X \rightarrow X$ by

$$
F x(t)=\int_{0}^{1} G(t, s) f(s,(g x)(s)) d s \text { for all } t \in I
$$

and

$$
S x(t)=(g x)(t) \text { for } t \in I
$$

Thus, for finding a solution of (3.2) it is sufficient to show that F and g have a coincidence point. Let $x, y \in C(I)$. For all $t, s \in I$ we have

$$
\begin{aligned}
|F x(t)-F y(t)| & =\left|\int_{0}^{1} G(t, s)(f(s,(g x)(s))-f(s,(g y)(s))) d s\right| \\
& \leq \int_{0}^{1}|G(t, s)||(f(s,(g x)(s))-f(s,(g y)(s)))| d s \\
& \leq \int_{0}^{1}|G(t, s)||(g x)(s)-(g y)(s)| d s \\
& \leq|(S x)(s)-(S y)(s)| \sup _{t \in I} \int_{0}^{1}|G(t, s)| d s \\
& \leq e^{-\tau}|(S x)(s)-(S y)(s)| .
\end{aligned}
$$

This implies that for each $x, y \in X$ we have

$$
\ln d(F x, F y) \leq-\tau+\ln d(S x, S y)
$$

Observe that the function $F: \mathbb{R}^{+} \rightarrow \mathbb{R}$ defined by $F(t)=\ln t, t \in I$, and $\tau>0$ is in F. Thus by using Corollary 2.7 with graph $G=G_{0}$ we have $x^{*} \in X$ such that $F x^{*}=S x^{*}$ with $\left(S x^{*}\right)(t)=\left(g x^{*}\right)(t)$ for $t \in I$. Thus x^{*} is the required coincidence point of F and g.

References

[1] I. Altun, M. Olgun, G. Minak, On a new class of multivalued weakly picard operators on complete metric spaces, Taiwanese J. Math. 19 (2015) 659-672.
[2] A. Azam, M. Arshad, Fixed points of a sequence of locally contractive multivalued maps, Comp. Math. Appl. 57 (2009) 96-100.
[3] D. Baleanu, Sh. Rezapour, M. Hakimeh, Some existence results on nonlinear fractional differential equations, Phil. Trans. Royal Soc. A371:20120144 (2013).
[4] R. Batra, S. Vashistha, Fixed points of an F-contraction on metric spaces with a graph, Int. J. Comput. Math. 91 (2014) 1-8.
[5] M. Cosentino, P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat 28 (2014) 715-722.
[6] T. Dinevari, M. Frigon, Fixed point results for multivalued contractions on a metric space with a graph, J. Math. Anal. Appl. 405 (2013) 507-517.
[7] W.S. Du, On coincidence point and fixed point theorems for nonlinear multivalued maps, Topology Appl. 159 (2012) 49-56.
[8] T. Hu, Fixed point theorems for multivalued mappings, Canad. Math. Bull. 23 (1980), 193-197.
[9] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008) $1359-1373$.
[10] R. Johnsonbaugh, Discrete Mathematics (4th edition), Prentice Hall, New Jersey, 1997.
[11] T. Kamran, Mizoguchi-Takahashi's type fixed point theorem, Comput. Math. Appl. 57 (2009) 507-511.
[12] N. Mehmood, A. Azam, Lj.D.R. Kočinac, Multivalued fixed point results in cone metric spaces, Topology Appl. 179 (2015) 156-170.
[13] N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989) 177-188.
[14] B. Nadler, Multivalued contraction mappings, Pacific J. Math. 30 (1969) 475-488.
[15] S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital. 5 (1972) 26-42.
[16] M. Sgroi, C. Vetro, Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat 27 (2013) 1259-1268.
[17] A. Sultana, V. Vetrivel, Fixed points of Mizoguchi-Takahashi contraction on a metric space with a graph and applications, J. Math. Anal. Appl. 417 (2014) 336-344.
[18] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), Article ID 94, 6 pages.

[^0]: 2010 Mathematics Subject Classification. Primary 47H10; Secondary 54H25
 Keywords. Graphic contraction, multivalued contraction, sequence of multivalued mappings, coincidence points
 Received: 18 April 2016; Accepted: 28 August 2016
 Communicated by Dragan S. Djordjević
 Email addresses: mailnouman@gmail.com (Muhammad Nouman Aslam Khan), akbarazam@yahoo.com (Akbar Azam), lkocinac@gmail.com (Ljubiša D.R. Kočinac)

