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Abstract. We define Mann iterative scheme in CAT(0) spaces and obtain 4-convergence and strong
convergence of the iterative scheme to a fixed point of multi-valued nonexpansive non-self mappings. We
also obtain strong convergence of the scheme to a fixed point of multi-valued quasi-nonexpansive non-self
mappings under appropriate conditions. Our theorems improve and unify most of the results that have
been proved for this important class of nonlinear operators.

1. Introduction

Let K be a nonempty subset of a CAT(0) space X. The set K is called proximinal, if for each x ∈ X there exists
u ∈ K such that

d(x,u) = inf{d(x, y) : y ∈ K} = d(x,K),where d is a metric on X.

It is well known [4] that every nonempty, closed and convex subset of a complete CAT(0) space is proximi-
nal. We denote the family of nonempty proximinal bounded subsets of K by Prox(K).

Let CB(X) be the family of nonempty, closed and bounded subsets of a CAT(0) space X. For A,B ∈ CB(X),
we shall denote the Hausdorff distance between A and B by D(A,B), i.e,

D(A,B) = max {sup
x∈B

d(x,A), sup
x∈A

d(x,B)}.

A mapping T : K→ 2X is said to be L-Lipschitz if there exists L ≥ 0 such that

D(Tx,Ty) ≤ Ld(x, y), for all x, y ∈ K.

T is called nonexpansive mapping if L = 1 and it is called contraction mapping if L < 1. It is easy to observe
that the class of Lipschitz mappings includes the class of nonexpansive mappings and hence the class of
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contraction mappings.

A point x ∈ K is called a fixed point of a mapping T : K → 2X if x ∈ Tx. The set of all fixed points of T is
denoted by F(T). A mapping T : K → 2X is said to be quasi-nonexpansive if F(T) , ∅ and D(Tx,Tp) ≤ d(x, p)
for all x ∈ K and all p ∈ F(T). Clearly, every nonexpansive mapping T with F(T) , ∅ is quasi-nonexpansive
mapping.

The study of fixed points of nonlinear mappings stems mainly from its applications in convex optimization,
control theory, differential inclusions and economics. Consequently, the existence of fixed points and their
approximations for contraction and nonexpansive mappings and their generalizations have been studied
by several authors (see, e.g. [1, 18, 21-24, 27, 29-31] and the references therein). More specifically, fixed
point theorems in a CAT(0) space can be applied to graph theory, biology and computer sciences (see, e.g.
[3, 11, 13, 17]).

Mann iteration for multi-valued mappings is first introduced by Sastry and Babu [20] in a Hilbert space
settings. Let X = H, a real Hilbert space, T : K→ Prox(K) be a multi-valued mapping and fix p ∈ F(T). Then
they define sequence of Mann iterates as:

x0 ∈ K, xn+1 = αnyn + (1 − αn)xn,n ≥ 0,

where yn ∈ Txn such that ||yn − p|| = d(p,Txn) and αn ∈ [0, 1]. They obtained strong convergence of the
scheme to points in F(T) assuming that K is compact and convex subset of H, T is nonexpansive mapping
with F(T) , ∅ and αn, βn ∈ [0, 1] satisfying certain conditions.

In 2009, Laowang and Panyanak [16] defined Mann iteration for multi-valued self-mapping T in a CAT(0)
space X as follows.

x0 ∈ K, xn+1 = αnxn ⊕ (1 − αn)yn,n ≥ 0, (1)

where yn ∈ Txn such that d(yn, yn+1) ≤ D(Txn,Txn+1) + γn, {αn} ⊆ [0, 1) and γn ∈ (0,∞) such that lim
n→∞

γn = 0.
Then they proved the following result.

Theorem LP. [16] Let K be a nonempty, compact and convex subset of a complete CAT(0) space X. Suppose
that T : K→ CB(K) is a multi-valued nonexpansive mapping and F(T) , ∅ satisfying Tp = {p} for any fixed
point p ∈ F(T). If {xn} is the sequence of Mann iterates defined by (1) such that one of the following two
conditions is satisfied:

1) αn ∈ [0, 1) and
∞∑

n=0

αn = ∞.

2) 0 < lim infαn ≤ lim supαn < 1.

Then the sequence {xn} converges strongly to a fixed point of T.

For approximating fixed points of single-valued non-self mappings, several Mann-type iterative schemes
have been studied (see, eg., [25, 26]) with the use of metric projection or sunny nonexpansive retraction
mappings in Banach spaces which are not easy to use in practical applications.

Recently, Colao and Marino [7] studied the following iterative scheme which is relatively easy to use in
practical applications. Let K be a nonempty, convex and closed subset of a real Hilbert space H and let
T : K→ H be a mapping. Let {xn} be generated from arbitrary x0 ∈ K by

α0 = max{ 12 , h(x0)},
xn+1 = αnxn + (1 − αn)Txn,
αn+1 = max{αn, h(xn+1)},

(2)
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where h : K → R is defined by h(x) = inf{λ ≥ 0 : λx + (1 − λ)Tx ∈ K}. They obtained strong and weak
convergence of the sequence {xn} under certain conditions on {αn}, the mapping T and the domain K. The
idea of using metric projection and sunny nonexpansive retraction are dispensed with in their setting.

Very recently, Tufa and Zegeye [28], extended the result of Colao and Marino [7] to multi-valued mappings.
Precisely, they proved the following theorem.

Theorem TZ. [28] Let K be a nonempty, closed and convex subset of a real Hilbert space H and T : K →
Prox(H) be an inward nonexpansive mapping with F(T) , ∅ and Tp = {p}. Let {xn} be a sequence of
Mann-type given by

x1 ∈ K, xn+1 = αnxn + (1 − αn)zn,n ≥ 1, (3)

where zn ∈ Txn such that ||zn − zn+1|| ≤ D(Txn,Txn+1), α1 := max{ 12 , hz1 (x1)}, αn+1 := max{αn, hzn+1 (xn+1)}, hzn (xn)
:= inf{λ ≥ 0 : λxn + (1−λ)zn ∈ K}. Then {xn}weakly converges to a fixed point of T.Moreover, if K is strictly

convex and
∞∑

n=1

(1 − αn) < ∞, then the convergence is strong.

It is our purpose in this paper to construct Mann iterative scheme for multi-valued nonexpansive non-
self mappings and obtain 4−convergence and strong convergence of the scheme to a fixed point of the
mappings in CAT(0) spaces. We also obtain strong convergence of the Mann iterative scheme to a fixed
point of multi-valued Lipschitz quasi-nonexpansive non-self mappings under appropriate conditions. In
the construction, the choice of the coefficient αn is not made a priori, rather it is constructed step by step
and determined by the values of the mapping T and the geometry of the set K.

2. Preliminaries

Let (X, d) be a metric space and x, y ∈ X. A geodesic path joining x to y is a map r : [0, l] ⊂ R→ X such that
r(0) = x, r(l) = y and d(r(t), r(t0)) = |t − t0| for all t, t0 ∈ [0, l]. We note that r is an isometry and d(x, y) = l. The
image of r is called a geodesic segment joining x and y.When it is unique this geodesic segment is denoted by
[x, y]. The metric space (X, d) is said to be a geodesic space if every two points of X are joined by a geodesic and
it is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X. A uniquely
geodesic space (X, d) is said to be anR-tree, if x, y, z ∈ X with [x, y]∩ [y, z] = {y} implies [x, z] = [x, y]∪ [y, z].
For the sake of convenience we use X for a geodesic space (X, d) throughout this paper.

A geodesic triangle 4(x1, x2, x3) in a geodesic space X consists of three points x1, x2, x3 of X (the vertices of
4) and three geodesic segments joining each pair of vertices (the edges of 4). A comparison triangle for
the geodesic triangle 4(x1, x2, x3) in (X, d) is the triangle 4̄(x1, x2, x3) := 4(x̄1, x̄2, x̄3) in the Euclidean planeR2

such that d(xi, x j) = dR2 (x̄i, x̄ j) for i, j ∈ {1, 2, 3}.

A geodesic space X is said to be a CAT(0) space if all geodesic triangles satisfy the following compari-
son axiom:

d(x, y) ≤ dR2 (x̄, ȳ) ∀x, y ∈ 4, x̄, ȳ ∈ 4̄, (4)

where 4 is a geodesic triangle in X and 4̄ is its comparison triangle in R2. It is well known that a CAT(0)
space X is uniquely geodesic. Thus, for each x, y ∈ X and t ∈ [0, 1] there exists a unique point z ∈ [x, y] such
that d(x, z) = (1 − t)d(x, y) and d(y, z) = td(x, y), and we denote z by tx ⊕ (1 − t)y. A subset K of a CAT(0)
space X is said to be convex if K includes every geodesic segment joining any two of its points. Pre-Hilbert
spaces,R−trees and Euclidean buildings are examples of CAT(0) spaces. For details we refer the readers to
standard texts such as [4, 5, 15].

Given a CAT(0) space X, we denote the pair (x, y) ∈ X × X by −→xy and call it a vector. Then a mapping
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〈., .〉 : (X × X) × (X × X) → R defined by
〈
−→xy,−→wz

〉
= 1

2 [d2(x, z) + d2(y,w) − d2(x,w) − d2(y, z)], x, y,w, z ∈ X is
said to be quasilinearization.

A geodesic space is said to satisfy the Cauchy-Schwarz inequality if〈
−→xy,−→wz

〉
≤ d(x, y)d(w, z) ∀x, y,w, z ∈ X.

It is well known [2] that a geodesic metric space is CAT(0) space if and only if it satisfies the Cauchy-Schwarz
inequality.

Let {xn} be a bounded sequence in a CAT(0) space X. For x ∈ X, we set r(x, {xn}) = lim sup
n→∞

d(x, xn). The

asymptotic radius r({xn}) of {xn} is given by r({xn}) = inf{r(x, {xn}) : x ∈ X} and the asymptotic center A({xn})
of {xn} is the set A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is known [9] that in a CAT(0) space X, A({xn}) consists of exactly one point. A sequence {xn} ⊆ X
is said to be 4-convergent to x ∈ X if A({xnk }) = {x} for every subsequence {xnk } of {xn}. Uniqueness of
asymptotic center implies that CAT(0) space X satisfies Opial’s property, i.e., for given {xn} ⊆ X such that
{xn} 4-converges to x and given y ∈ X with y , x, lim sup

n→∞
d(xn, x) < lim sup

n→∞
d(xn, y).

Let K be a nonempty subset of a CAT(0) space X and T : K → 2X be a mapping. Then the mapping
I − T is said to be demiclosed at zero, if for any sequence {xn} ⊆ K such that {xn} 4−converges to p and
d(xn,Txn)→ 0, then p ∈ Tp.

Let x ∈ K. The set IK(x) = {w ∈ X : w = x or y = (1 − 1
λ )x ⊕ 1

λw, for some y ∈ K, λ ≥ 1} is called an
inward set at x. A multi-valued mapping T is said to be inward on K if Tx ⊆ IK(x).

A multi-valued mapping T : K→ CB(X) is said to satisfy Condition (I) if there exists an increasing function
f : [0,∞)→ [0,∞) with f (0) = 0, f (r) > 0 for r ∈ (0,∞) such that d(x,T(x)) ≥ f (d(x,F(T))) for all x ∈ K.

A subset K of a CAT(0) space X is said to be strictly convex if it is convex and with the property that
x, y ∈ ∂K and t ∈ (0, 1) implies that tx ⊕ (1 − t)y ∈ K̊, where ∂K and K̊ denotes boundary and interior of K
respectively.

We make use of the following lemmas in the sequel.

Lemma 2.1. [14] Every bounded sequence in a complete CAT(0) space always has a 4−convergent subsequence.

Lemma 2.2. [6] Let X be a CAT(0) space. Then for each x, y, z ∈ X and λ ∈ [0, 1], one has

d(λx ⊕ (1 − λ)y, µx ⊕ (1 − µ)y) ≤ |λ − µ|d(x, y).

Lemma 2.3. [10] Let X be a CAT(0) space. Then the following inequalities hold true for all x, y, z ∈ X and λ ∈ [0, 1].

i) d(λx ⊕ (1 − λ)y, z) ≤ λd(x, z) + (1 − λ)d(y, z).

ii) d2(λx ⊕ (1 − λ)y, z) ≤ λd2(x, z) + (1 − λ)d2(y, z) − λ(1 − λ)d2(x, y).

Lemma 2.4. [8] If K is a closed convex subset of a complete CAT(0) space and if {xn} is a bounded sequence in K,
then the asymptotic center of {xn} is in K.

Lemma 2.5. [12] Let X be a complete CAT(0) space, {xn} be a sequence in X and x ∈ X. Then {xn} 4-converges to x
if and only if

〈
−−→xxn,
−→xy

〉
≤ 0, for all y ∈ K.
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Lemma 2.6. [19] Let X be a metric space. If A,B ∈ Prox(X) and a ∈ A, then there exists b ∈ B such that
d(a, b) ≤ D(A,B).

Lemma 2.7. [18] Let X be a metric space. If A,B ∈ CB(X) and a ∈ A, then for every γ > 0, there exists b ∈ B such
that d(a, b) ≤ D(A,B) + γ.

3. Main Results

Lemma 3.1. Let K be a nonempty subset of a CAT(0) space X. If a multi-valued mapping T : K → CB(X) is
L−Lipschitz quasi-nonexpansive with Tp = {p},∀p ∈ F(T), then F(T) is closed and convex.

Proof. Let {xn} ⊆ F(T) such that xn → x∗ as n→∞. Then since T is L−Lipschitz, we have that

d(x∗,Tx∗) = lim
n→∞

d(xn,Tx∗)

≤ lim
n→∞

D(Txn,Tx∗)

≤ lim
n→∞

Ld(xn, x∗) = 0.

Thus, x∗ ∈ Tx∗ and hence F(T) is closed.
Now, let p, q ∈ F(T), x = tp⊕ (1− t)q and u ∈ Tx. Then since T is quasi-nonexpansive, by Lemma 2.3, we have

d2(x,u) ≤ td2(p,u) + (1 − t)d2(q,u) − t(1 − t)d2(p, q)
= td2(Tp,u) + (1 − t)d2(Tq,u) − t(1 − t)d2(p, q)
≤ tD2(Tp,Tx) + (1 − t)D2(Tq,Tx) − t(1 − t)d2(p, q)
≤ td2(x, p) + (1 − t)d2(x, q) − t(1 − t)d2(p, q)
= t(1 − t)2d2(p, q) + (1 − t)t2d2(p, q) − t(1 − t)d2(p, q) = 0.

Hence, x = u ∈ Tx. Then x ∈ F(T) and hence F(T) is convex.

Lemma 3.2. Let K be a nonempty, closed and convex subset of a complete CAT(0) space X. If a multi-valued mapping
T : K→ CB(X) is nonexpansive, then I − T is demiclosed at zero.

Proof. Let {xn} ⊆ K such that {xn} is 4− convergent to x∗ and d(xn,Txn)→ 0 as n→ ∞. Then by Lemma 2.4,
x∗ ∈ K. Now, for each x ∈ X, let f (x) := lim sup

n→∞
d2(xn, x). From quasilineariztion, we obtain

d2(xn, x∗) + d2(x, x∗) = 2
〈
−−→
x∗xn,

−→
x∗x

〉
+ d2(xn, x).

This together with Lemma 2.5 implies that

f (x∗) + d2(x, x∗) ≤ f (x),∀x ∈ K. (5)

Let u be arbitrary but fixed element of Tx∗. Then from (5), we have

f (x∗) + d2(u, x∗) ≤ f (u). (6)

Now, since T is nonexpansive, we have

d2(xn,u) ≤ (d(xn,Txn) + d(Txn,u))2

≤ d2(xn,Txn) + d2(Txn,u) + 2d(xn,Txn)d(Txn,u)
≤ d2(xn,Txn) + D2(Txn,Tx∗) + 2d(xn,Txn)d(Txn,u)
≤ d2(xn,Txn) + d2(xn, x∗) + 2d(xn,Txn)d(Txn,u). (7)

Then since d(xn,Txn)→ 0 as n→∞, (7) implies

f (u) ≤ f (x∗). (8)

Thus, from (6) and (8), it follows that x∗ = u ∈ Tx∗.
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Lemma 3.3. Let K be a nonempty, closed and convex subset of a CAT(0) space X and T : K→ CB(X) be a mapping.
Define hv : K→ R by hv(x) = inf{λ ≥ 0 : λx ⊕ (1 − λ)v ∈ K}, where v is an arbitrary fixed element of T(x). Then for
any x ∈ K the following hold:

(1) hv(x) ∈ [0, 1] and hv(x) = 0 if and only if v ∈ K;

(2) if β ∈ [hv(x), 1], then βx ⊕ (1 − β)v ∈ K;

(3) if T is inward mapping, then hv(x) < 1;

(4) if v < K, then hv(x)x ⊕ (1 − hv(x))v ∈ ∂K.

Proof. The proof of (1) and (2) follows directly from the definition of hv(x).
(3) Suppose that T is inward mapping. Then for any arbitrary fixed element v of Tx, we have v = x or
y = (1 − 1

c )x ⊕ 1
c v f or some y ∈ K, c ≥ 1. If v = x, then hv(x) = 0 and hence the result holds. Assume that

y = (1 − 1
c )x ⊕ 1

c v for some y ∈ K. This implies that

hv(x) = inf{λ ≥ 0 : λx ⊕ (1 − λ)v ∈ K} ≤ 1 −
1
c
< 1.

4) Let v < K. Then hv(x) > 0. Let {wn} ⊆ (0, hv(x)) be a real sequence such that wn → hv(x). By the definition
of hv, we have zn := wnx ⊕ (1 − wn)v < K. Now, since wn → hv(x), Lemma 2.2 implies that

d(zn, hv(x)x ⊕ (1 − hv(x))v) = d(wnx ⊕ (1 − wn)v, hv(x)x ⊕ (1 − hv(x))v)
≤ |wn − hv(x)|d(x, v)→ 0 as n→∞.

Thus, zn → hv(x)x ⊕ (1 − hv(x))v ∈ K. But since zn = wnx ⊕ (1 − wn)v < K, for all n ≥ 1, we have

hv(x)x ⊕ (1 − hv(x))v ∈ ∂K.

Theorem 3.4. Let K be a nonempty, closed and convex subset of a complete CAT(0) space X, T : K → Prox(X) be
a nonexpansive inward mapping with F(T) , ∅ and Tp = {p} for all p ∈ F(T). Let {xn} be generated from arbitrary
initial point x0 ∈ K by

α0 = max{ 12 , hy0 (x0)},
xn+1 = αnxn ⊕ (1 − αn)yn,
αn+1 = max{αn, hyn+1 (xn+1)},n ≥ 0,

(9)

where yn ∈ Txn such that d(yn, yn+1) ≤ D(Txn,Txn+1) and hyn (xn) := inf{λ ≥ 0 : λxn ⊕ (1 − λ)yn ∈ K}. Then {xn}

4-converges to x∗ ∈ F(T). Moreover, if K is strictly convex and
∞∑

n=0

(1 − αn) < ∞, then the convergence is strong.

Proof. The existence of yn ∈ Txn which satisfies the conditions of (9) is guaranteed by Lemma 2.6. Note that
αn ∈ [hyn (xn), 1), for all n. Then xn+1 = αnxn ⊕ (1 − αn)yn ∈ K and hence the algorithm is well defined. Let
p ∈ F(T). Then since T is nonexpansive, from (9) and Lemma 2.3, we have

d2(xn+1, p) = d2(αnxn ⊕ (1 − αn)yn, p)
≤ αnd2(xn, p) + (1 − αn)d2(yn, p) − αn(1 − αn)d2(xn, yn)
≤ αnd2(xn, p) + (1 − αn)D2(Txn,Tp) − αn(1 − αn)d2(xn, yn)
≤ αnd2(xn, p) + (1 − αn)d2(xn, p) − αn(1 − αn)d2(xn, yn)
≤ d2(xn, p) − αn(1 − αn)d2(xn, yn) (10)
≤ d2(xn, p).
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Then {d(xn, p)} is decreasing and hence lim
n→∞

d(xn, p) exists. Moreover, {xn} is bounded and so does {yn}.

If
∞∑

n=0

(1 − αn) = ∞, then since αn ≥
1
2 , we have that

∞∑
n=0

αn(1 − αn) = ∞. But, from (10), it follows that

∞∑
n=0

αn(1 − αn)d2(xn, yn) < ∞. Then we obtain that

lim inf
n→∞

d(xn, yn) = 0. (11)

From Lemma 2.3 and the fact that d(xn, xn+1) = (1−αn)d(xn, yn) and d(yn, yn+1) ≤ d(Txn,Txn+1) for each n ≥ 0,
we have

d2(xn+1, yn+1) = d2(αnxn ⊕ (1 − αn)yn, yn+1)
≤ αnd2(xn, yn+1) + (1 − αn)d2(yn, yn+1) − αn(1 − αn)d2(xn, yn)
≤ αnd2(xn, yn+1) + (1 − αn)D2(Txn,Txn+1) − αn(1 − αn)d2(xn, yn)

≤ αn

[
d2(xn, xn+1) + d2(xn+1, yn+1)

]
+ 2αnd(xn, xn+1)d(xn+1, yn+1) + (1 − αn)d2(xn, xn+1)

−αn(1 − αn)d2(xn, yn)
≤ αn(1 − αn)2d2(xn, yn) + αnd2(xn+1, yn+1) + 2αn(1 − αn)d(xn, yn)d(xn+1, yn+1)

+(1 − αn)3d2(xn, yn) − αn(1 − αn)d2(xn, yn)
≤ (1 − αn)(1 − 2αn)d2(xn, yn) + αnd2(xn+1, yn+1) + 2αn(1 − αn)d(xn, yn)d(xn+1, yn+1).

Putting βn = d(xn, yn), we have

(1 − αn)β2
n+1 ≤ (1 − αn)(1 − 2αn)β2

n + 2αn(1 − αn)βnβn+1. (12)

Note that 1 − αn > 0 and we may assume that βn > 0 and hence we have[βn+1

βn

]2
− 2αn

βn+1

βn
+ 2αn − 1 ≤ 0.

Solving this quadratic inequality, we obtain that βn+1 ≤ βn. Thus, the sequence {d(xn, yn)} is decreasing and
hence it follows from (11) that lim

n→∞
d(xn, yn) = 0. Then since d(xn,Txn) ≤ d(xn, yn), we have

lim
n→∞

d(xn,Txn) = 0. (13)

Moreover, since {xn} is bounded, it follows from Lemma 2.1 that w4(xn) , ∅, where w4(xn) := {x ∈ X : xni 4−

converges to x for some subsequence {xni } of {xn}}. Let x ∈ w4(xn). Then there exists a subsequence {xni } of
{xn} which 4-converges to x. Now, by Lemma 3.2, I − T is demiclosed at zero, which implies that x ∈ F(T)
and hence w4(xn) ⊆ F(T). We show that w4(xn) is singleton. Let x, y ∈ w4(xn) and let {xni } and {xn j } be
subsequences of {xn}which 4-converges to x and y, respectively. If x , y, then from the fact that lim

n→
d(xn, x)

exists for all x ∈ F(T) and CAT(0) space satisfies Opial’s property, we have

lim
n→∞

d(xn, x) = lim
i→∞

d(xni , x) < lim
i→∞

d(xni , y)

= lim
n→∞

d(xn, y) = lim
j→∞

d(xn j , y)

< lim
j→∞

d(xn j , x) = lim
n→∞

d(xn, x),

which is a contradiction and hence x = y. Therefore, {xn} 4-converges to x ∈ F(T).

If
∞∑

n=0

(1 − αn) < ∞, then since {xn} and {yn} are bounded, from the fact that d(xn, xn+1) = (1 − αn)d(xn, yn), we
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have
∞∑

n=0

d(xn, xn+1) < ∞. Thus, {xn} is strongly Cauchy sequence and hence xn → x∗ ∈ K as n→ ∞. In addi-

tion from the fact that d(yn, yn+1) ≤ D(Txn,Txn+1) ≤ d(xn, xn+1),we get that {yn} is strongly Cauchy sequence.
Then there exists y∗ ∈ X such that yn → y∗ as n→ ∞. Then since d(yn,Tx∗) ≤ D(Txn,Tx∗) ≤ d(xn, x∗)→ 0 as
n→∞, it follows that d(y∗,Tx∗) = 0 and hence y∗ ∈ Tx∗. Now, since T is inward mapping, hy∗ (x∗) < 1. Thus,
for any β ∈ (hy∗ (x∗), 1), we obtain that βx∗ ⊕ (1 − β)y∗ ∈ K.

On the other hand, since lim
n→∞

αn = 1 and αn = max{αn−1, hyn (xn)}, we can choose a subsequence {xni }

such that {hyni
(xni )} is non-decreasing and lim

i→∞
hyni

(xni ) = 1 for some yni ∈ Txni . In particular, for any β < 1,

tni := βxni ⊕ (1 − β)yni < K, eventually holds. Now choose β1, β2 ∈ (hy∗ (x∗), 1) such that β1 , β2 and let
v1 = β1x∗ ⊕ (1 − β1)y∗, v2 = β2x∗ ⊕ (1 − β2)y∗. Note that for any β such that β1 ≤ β ≤ β2, we have

v := βx∗ ⊕ (1 − β)y∗ ∈ K.

Since xni → x∗ and yni → y∗ as i → ∞, it follows that tni → v as i → ∞ and hence v ∈ ∂K. Furthermore,
since β is arbitrary, it follows that [v1, v2] ⊆ ∂K. Then by strict convexity of K, we have that v1 = v2. Then
d(v1, y∗) = d(v2, y∗) which implies that β1d(x∗, y∗) = β2d(x∗, y∗). Then since β1 , β2,we have that x∗ = y∗ ∈ Tx∗.
Therefore, {xn} strongly converges to x∗ ∈ F(T).

If, in Theorem 3.4, T is assumed to be single-valued mapping we get the following corollary.

Corollary 3.5. Let K be a nonempty, closed and convex subset of a complete CAT(0) space X, T : K → X be a
nonexpansive inward mapping with F(T) , ∅. Let {xn} be generated from arbitrary initial point x0 ∈ K by

α0 = max{ 12 , h(x0)},
xn+1 = αnxn ⊕ (1 − αn)Txn,
αn+1 = max{αn, h(xn+1)},n ≥ 0,

(14)

where h(xn) := inf{λ ≥ 0 : λxn ⊕ (1 − λ)Txn ∈ K}. Then {xn} 4-converges to x∗ ∈ F(T). Moreover, if K is strictly

convex and
∞∑

n=0

(1 − αn) < ∞, then the convergence is strong.

To remove the condition Tp = {p},∀p ∈ F(T), we define the following Mann iterative scheme. Let T : K →
Prox(X) be a multi-valued mapping and PTx := {y ∈ Tx : d(x, y) = d(x,Tx)}. The sequence of Mann iterates
is defined by

x0 ∈ K,
α0 = max{ 12 , hy0 (x0)},
xn+1 = αnxn ⊕ (1 − αn)yn,
αn+1 = max{αn, hyn+1 (xn+1)},n ≥ 0,

(15)

where yn ∈ PTxn such that d(yn, yn+1) ≤ D(PTxn,PTxn+1) and hyn (xn) := inf{λ ≥ 0 : λxn ⊕ (1 − λ)yn ∈ K}.

Theorem 3.6. Let K be a nonempty, closed and convex subset of a complete CAT(0) space X, T : K→ Prox(X) be an
inward mapping with F(T) , ∅. Suppose that PT is nonexpansive. Let {xn} be a sequence of Mann iterates defined by

(15). Then {xn} 4-converges to x∗ ∈ F(T).Moreover, if K is strictly convex and
∞∑

n=0

(1−αn) < ∞, then the convergence

is strong.

Proof. From the definition PT, one can easily observe that F(T) = F(PT) and PTp = {p} for all p ∈ F(T). Then
following the method of the proof of Theorem 3.4, we obtain the required result.
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Theorem 3.7. Let K be a nonempty, closed and strictly convex subset of a complete CAT(0) space X, T : K→ CB(X)
be L−Lipschitz quasi-nonexpansive inward mapping. Suppose that T satisfies the Condition (I) and Tp = {p} for all

p ∈ F(T). Let {γn} ⊆ (0, 1] such that
∞∑

n=0

γn < ∞ and let {xn} be generated from arbitrary initial point x0 ∈ K by


α0 = max{ 12 , hy0 (x0)},
xn+1 = αnxn ⊕ (1 − αn)yn,
αn+1 = max{αn, hyn+1 (xn+1)},n ≥ 0,

(16)

where yn ∈ Txn such that d(yn, yn+1) ≤ D(Txn,Txn+1) + γn and hyn (xn) := inf{λ ≥ 0 : λxn ⊕ (1 − λ)yn ∈ K}. Then
{xn} strongly converges to x∗ ∈ F(T).

Proof. Note that the existence of yn ∈ Txn which satisfies the conditions of (16) is guaranteed by Lemma 2.7.
Let p ∈ F(T). Then following the method of the proof of Theorem 3.4, we obtain that

d2(xn+1, p) ≤ d2(xn, p) − αn(1 − αn)d2(xn, yn) (17)
≤ d2(xn, p).

Then {d(xn, p)} is decreasing and hence lim
n→∞

d(xn, p) exists.

If
∞∑

n=0

(1−αn) = ∞, then it follows that
∞∑

n=0

αn(1−αn) = ∞. Thus, from (17), we have lim inf
n→∞

d(xn, yn) = 0,which

implies that lim inf
n→∞

d(xn,Txn) = 0. Then since T satisfies Condition (I), we have lim inf
n→∞

f (d(xn,F(T))) = 0

for some increasing function f : [0,∞) → [0,∞) with f (0) = 0, f (r) > 0 for r ∈ (0,∞), which implies
that lim inf

n→∞
d(xn,F(T)) = 0. But since d(xn+1, p) ≤ d(xn, p), taking infimum over all p ∈ F(T), we have

d(xn+1,F(T)) ≤ d(xn,F(T)). Then the sequence {d(xn,F(T))} is decreasing and hence lim
n→∞

d(xn,F(T)) = 0.

Now for arbitrary p ∈ F(T) and any n,m ≥ 1, we have d(xn+m, xn) ≤ d(xn+m, p) + d(xn, p) ≤ 2d(xn, p), which
implies that d(xn+m, xn) ≤ 2d(xn,F(T)). Then {xn} is a Cauchy sequence and hence xn → x∗ ∈ K as n → ∞.
But d(x∗,F(T)) ≤ d(x∗, xn) + d(xn,F(T)) → 0 as n → ∞ and since F(T) is closed by Lemma 3.1, it follows that
x∗ ∈ F(T).

If
∞∑

n=0

(1 − αn) < ∞, then the required result follows from the method of the proof of Theorem 3.4.

Theorem 3.8. Let K be a nonempty, closed and strictly convex subset of a complete CAT(0) space X, T : K→ CB(X)
be an inward mapping with F(T) , ∅. Suppose that PT is L−Lipschitz quasi-nonexpansive mapping and satisfies the

Condition (I). Let {γn} ⊆ (0, 1] such that
∞∑

n=0

γn < ∞ and let {xn} be generated from arbitrary initial point x0 ∈ K by


α0 = max{ 12 , hy0 (x0)},
xn+1 = αnxn ⊕ (1 − αn)yn,
αn+1 = max{αn, hyn+1 (xn+1)},n ≥ 0,

(18)

where yn ∈ PTxn such that d(yn, yn+1) ≤ D(PTxn,PTxn+1) + γn and hyn (xn) := inf{λ ≥ 0 : λxn ⊕ (1 − λ)yn ∈ K}.
Then {xn} converges strongly to x∗ ∈ F(T).

Proof. Following the method of the proof of Theorem 3.7, we get that {xn} converges strongly to x∗ ∈ F(PT).
But from the definition of PT it follows that F(T) = F(PT) and hence x∗ ∈ F(T).
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To remove the restriction that T satisfies the Condition (I) in Theorem 3.7, we define the following Mann
iterative scheme.

x0 ∈ K,
α0 = max{ 12 , hy0 (x0)},
xn+1 = αnxn ⊕ (1 − αn)yn,
αn+1 = max{αn, hyn+1 (xn+1), 1 − 1

(n+1)2 },n ≥ 0,

(19)

where yn ∈ Txn such that hyn (xn) := inf{λ ≥ 0 : λxn ⊕ (1 − λ)yn ∈ K} and d(yn, yn+1) ≤ D(Txn,Txn+1) + γn, for

any real sequence {γn} in (0, 1] with
∞∑

n=0

γn < ∞.

Theorem 3.9. Let K be a nonempty, closed and strictly convex subset of a complete CAT(0) space X, T : K→ CB(X)
be L−Lipschitz quasi-nonexpansive inward mapping with Tp = {p} for all p ∈ F(T). Let {xn} be a Mann iterative
scheme defined by (19). Then {xn} converges strongly to x∗ ∈ F(T).

Proof. Let p ∈ F(T). Then since T is quasi-nonexpansive, from (19) and Lemma 2.3, we have

d(xn+1, p) = d(αnxn ⊕ (1 − αn)yn, p)
≤ αnd(xn, p) + (1 − αn)d(yn, p)
≤ αnd(xn, p) + (1 − αn)D(Txn,Tp)
≤ αnd(xn, p) + (1 − αn)d(xn, p)
= d(xn, p).

Then {d(xn, p)} is decreasing and hence lim
n→∞

d(xn, p) exists. Thus, {xn} and {yn} are bounded. Note that from

the hypothesis,
∞∑

n=0

(1−αn) < ∞ and d(xn, xn+1) = (1−αn)d(xn, yn),which imply that
∞∑

n=0

d(xn, xn+1) < ∞. Thus,

{xn} is strongly Cauchy sequence and hence xn → x∗ ∈ K as n→∞.

Moreover, from the fact that d(yn, yn+1) ≤ D(Txn,Txn+1) + γn ≤ Ld(xn, xn+1) + γn, we get that {yn} is
strongly Cauchy sequence and hence there exists y∗ ∈ X such that yn → y∗ as n → ∞. Then since
d(yn,Tx∗) ≤ D(Txn,Tx∗) ≤ Ld(xn, x∗) → 0 as n → ∞, it follows that y∗ ∈ Tx∗. The rest of the proof fol-
lows from the proof of Theorem 3.4.

If, in Theorems 3.7 and 3.9, we assume that T is nonexpansive mapping with F(T) , ∅, then T is 1−Lipschitz
quasi-nonexpansive mapping and hence we have the following corollaries.

Corollary 3.10. Let K be a nonempty, closed and strictly convex subset of a complete CAT(0) space X, T : K→ CB(X)
be nonexpansive inward mapping with F(T) , ∅. Suppose that T satisfies the Condition (I) and Tp = {p} for all
p ∈ F(T). Let {xn} be a Mann iterative scheme given by (16). Then {xn} converges strongly to x∗ ∈ F(T).

Corollary 3.11. Let K be a nonempty, closed and strictly convex subset of a complete CAT(0) space X, T : K→ CB(X)
be a nonexpansive inward mapping with F(T) , ∅ and Tp = {p} for all p ∈ F(T). Let {xn} be a Mann iterative scheme
defined by (19). Then {xn} converges strongly to x∗ ∈ F(T).

Remark 3.12. Note that all the results hold true if in the Mann iterative schemes, the initial coefficient α1 =
max{ 12 , hy0 (x0)} is substituted by α1 = max{a, hy0 (x0)}, where a ∈ (0, 1) is an arbitrary fixed value.

Remark 3.13.

1) Theorem 3.4 extends Theorem 1 of Colao and Marino [7] in two ways. It extends the mapping from single-valued
to multi-valued and the space from Hilbert space to CAT(0) space.
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2) Theorem 3.7 extends Theorem 4.2 of Laowang and Panyanak [16] to Lipschitz quasi-nonexpansive mappings
more general than nonexpansive mappings.

Now we give an example of our main result, Theorem 3.4.

Example 3.14. Consider the set X = R2 with the distance between two points x = (x1, x2) and y = (y1, y2) in X
defined by

d(x, y) =

{
|x1| + |y1| + |x2 − y2|, x2 , y2,
|x1 − y1|, x2 = y2.

(20)

Then, by the arguments of remark (1) of [11], we have that X with this metric is an R-tree. But since every R-tree is
a CAT(0) space (see, [4]), (X, d) is CAT(0) space. Note that the geodesic segment joining x to y is a horizontal line
segment from x to y, parametrized by arc length in the ordinary Euclidean metric when x2 = y2. If x2 , y2, then
it consists of a horizontal line segment from x to (0, x2), followed by a vertical line segment from (0, x2) to (0, y2),
followed by a horizontal line segment from (0, y2) to y, with each part parametrized by arc length in the ordinary
Euclidean metric. To show completeness, let {(xn, yn)} be a Cauchy sequence in X. We may have two cases. The first
case is the situation where {yn} is eventually constant and the sequence {xn} is eventually contained in some open
interval not containing 0. In this case the sequence clearly converges. The second case is when {yn} is not eventually
constant and that lim

n→∞
xn = 0. In this case, {yn} is a Cauchy sequence inR and hence it converges, which implies that

{(xn, yn)} converges. Therefore, X is complete CAT(0) space.

Let K = {(x, y) ∈ R2 : d((x, y), (0, 0)) ≤ 1}. Then clearly K is nonempty, closed and strictly convex subset of X.
Let T : K → Prox(X) be defined by Tx = {(0, −1

2 ), (−x1,−x2 − 1)}. Clearly, T is inward multi-valued mapping
and F(T) = {(0, −1

2 )}. Next we show that T is nonexpansive mapping. Let x = (x1, x2), y = (y1, y2) ∈ K. Then
Tx = {(0, −1

2 ), (−x1,−x2 − 1)} and Ty = {(0, −1
2 ), (−y1,−y2 − 1)}. Then we have

D(Tx,Ty) = max {sup
a∈Ty

d(a,Tx), sup
b∈Tx

d(b,Ty)}

= max {d((−y1,−y2 − 1), {(0,
−1
2

), (−x1,−x2 − 1)}), d((−x1,−x2 − 1), {(0,
−1
2

), (−y1,−y2 − 1)}}

= max
{

min{d((−y1,−y2 − 1), (0,
−1
2

)), d((−y1,−y2 − 1), (−x1,−x2 − 1))},

min{d((−x1,−x2 − 1), (0,
−1
2

)), d((−x1,−x2 − 1), (−y1,−y2 − 1))}
}

≤ d((−x1,−x2 − 1), (−y1,−y2 − 1))
= d(x, y)

Therefore, T is nonexpansive mapping. Now let {xn} = {(x
(1)
n , x

(2)
n )} be a Mann sequence given by:

x0 = (x(1)
0 , x

(2)
0 ) ∈ K,

α0 = max{ 12 , hy0 (x0)},
xn+1 = αnxn ⊕ (1 − αn)yn,
αn+1 = max{αn, hyn+1 (xn+1)},n ≥ 0,

where yn ∈ Txn such that d(yn, yn+1) ≤ D(Txn,Txn+1). Then we have that Tx0 = {(0, −1
2 ), (−x(1)

0 ,−x(2)
0 − 1)}. If

y0 ∈ Tx0, then one can show that 1
2 x0 ⊕

1
2 y0 = (0, −1

2 ) ∈ K and hence hy0 (x0) ≤ 1
2 . Then α0 = 1

2 , which implies that
x1 = (0, −1

2 ). Thus, Tx1 = {x1} and y1 = x1 ∈ K. Then hy1 (x1) = 0 and hence α1 = 1
2 . Then x2 = (0, −1

2 ). Applying
similar computations, we obtain that αn = 1

2 and xn = (0, −1
2 ) for all n ≥ 2. Therefore, xn → (0, −1

2 ) ∈ F(T).
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