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Abstract. Let k be a positive integer, let F be a family of zero-free meromorphic functions in a domain D,
all of whose poles are multiple, and let h be a meromorphic function in D, all of whose poles are simple,
h . 0,∞. If for each f ∈ F , f (k)(z) − h(z) has at most k zeros in D, ignoring multiplicities, then F is normal
in D. The examples are provided to show that the result is sharp.

1. Introduction and Main Results

Let D be a domain in C and F be a family of functions meromorphic in D. F is said to be normal in
D, in the sense of Montel, if each sequence { fn} ⊂ F has a subsequence { fn j } which converges spherically
locally uniformly in D, to a meromorphic function or the constant∞ (see [6, 12, 14]).

Let f and h be two functions meromorphic in D on C, and let a ∈ C ∪ {∞}. If f (z) − h(z) , 0 in D, then
we say that h is an exceptional function in D. If f (z) − h(z) has at least a zero in D, then we say that h is a
nonexceptional function in D. In particular, when h(z) ≡ a, we say that a is an exceptional(nonexceptional)
value in D.

In 1959, Hayman [5, cf. 6] proved the following result known as “Hayman’s Alternative”.
Theorem A. Let k be a positive integer, and let f be a nonconstant meromorphic function in C. Then

f (z) or f (k)(z) − 1 has at least one zero. Moreover, if f is transcendental, then f (z) or f (k)(z) − 1 has infinitely
many zeros.

The normality corresponding to Theorem A was conjectured by Hayman [7, Problem 5.11] and confirmed
by Gu [4].

Theorem B. Let k be a positive integer, and let F be a family of zero-free meromorphic functions in a
domain D. If for each f ∈ F , f (k)(z) , 1 in D, then F is normal in D.

In [2], Chang improved Theorem B by allowing f (k)(z) − 1 to have zeros but restricting their numbers,
and proved the following result.

Theorem C. Let k be a positive integer, and let F be a family of zero-free meromorphic functions in a
domain D. If for each f ∈ F , f (k)(z)− 1 has at most k zeros in D, ignoring multiplicities, then F is normal in
D.
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Recently, Deng, Fang, and Liu [3] considered the case that a nonexceptional value was replaced by a
nonexceptional holomorphic function in Theorem C, and obtained the following theorem.

Theorem D. Let k be a positive integer, letF be a family of zero-free meromorphic functions in a domain
D, and let h be a holomorphic function in D, h . 0. If for each f ∈ F , f (k)(z) − h(z) has at most k zeros in D,
ignoring multiplicities, then F is normal in D.

It is natural to ask what can be said if a nonexceptional holomorphic function is replaced by a nonex-
ceptional meromorphic function in Theorem D. In this paper, we study this problem and first prove the
following result.

Theorem 1. Let k be a positive integer, letF be a family of zero-free meromorphic functions in a domain
D, all of whose poles are multiple, and let h be a zero-free meromorphic function in D, all of whose poles
are simple, h . ∞. If for each f ∈ F , f (k)(z) − h(z) has at most k zeros in D, ignoring multiplicities, then F is
normal in D.

Example 1. Let k be a positive integer, D = {z : |z| < 1}, h(z) = 1/z, and F = { f j(z) = 1/( jz) : j ≥ k! + 1}.

Then, for each f j ∈ F , f j(z) , 0 and f (k)
j (z) − h(z) =

(−1)kk!− jzk

jzk+1 has exactly k zeros in D, ignoring multiplicities.
But F fails to be normal in D. This shows that the condition in Theorem 1 that the poles of the functions in
F are multiple cannot be weakened.

Example 2. Let k be a positive integer, D = {z : |z| < 1}, h(z) = 1/z2, andF = { f j(z) = 1/( jz2) : j ≥ (k+1)!+1}.

Then, for each f j ∈ F , f j(z) , 0 and f (k)
j (z)−h(z) =

(−1)k(k+1)!− jzk

jzk+2 has exactly k zeros in D, ignoring multiplicities.
But F fails to be normal in D. This shows that the condition in Theorem 1 that the poles of h are simple
cannot be removed.

Example 3. Let k be a positive integer, D = {z : |z| < 1}, h(z) = 1/z, andF = { f j(z) = 1/( jz2) : j ≥ (k+1)!+1}.

Then, for each f j ∈ F , f j(z) , 0 and f (k)
j (z) − h(z) =

(−1)k(k+1)!− jzk+1

jzk+2 has exactly k + 1 zeros in D, ignoring

multiplicities. But F fails to be normal in D. This shows that the condition in Theorem 1 that f (k)(z) − h(z)
has at most k zeros is best possible.

Since normality is a local property, combining Theorem D with Theorem 1, we can obtain the following
theorem, which generalizes Theorem B, Theorem C, and Theorem D.

Theorem 2. Let k be a positive integer, letF be a family of zero-free meromorphic functions in a domain
D, all of whose poles are multiple, and let h be a meromorphic function in D, all of whose poles are simple,
h . 0,∞. If for each f ∈ F , f (k)(z) − h(z) has at most k zeros in D, ignoring multiplicities, then F is normal
in D.

2. Some Lemmas

Lemma 1.(see [11, 15]) Let α ∈ R satisfy −1 < α < +∞, and let F be a family of zero-free meromorphic
functions in a domain D. Then, if F is not normal at some point z0 ∈ D, there exist

(i) points z j ∈ D, z j → z0,
(ii) functions f j ∈ F , and
(iii) positive numbers ρ j → 0

such that
f j(z j + ρ jζ)

ραj
= 1 j(ζ)→ 1(ζ)

locally uniformly with respect to the spherical metric, where 1 is a nonconstant zero-free meromorphic
function on C of order at most 2. In particular, if 1 is an entire function, then 1 is of order at most 1.

Lemma 2.(see [10]) Let k be a positive integer, let f be a transcendental meromorphic function of finite
order, all of whose zeros are of multiplicity at least k + 1, and let p be a polynomial, p . 0. Then f (k)(z)− p(z)
has infinitely many zeros.

Lemma 3.(see [2]) Let k be a positive integer, and let f be a nonconstant zero-free rational function. Then
f (k)(z) − 1 has at least k + 1 distinct zeros in C.
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Lemma 4. Let k be a positive integer, let { fn} be a sequence of zero-free meromorphic functions in a
domain D, and let {hn} be a sequence of holomorphic functions in D such that hn → h locally uniformly in
D, where h(z) , 0, z ∈ D. If, for every n, f (k)

n (z) − hn(z) has at most k zeros in D, ignoring multiplicities, then
{ fn} is normal in D.

Proof. Suppose that { fn} is not normal at z0 ∈ D. Without loss of generality, we may assume that
h(z0) = 1. Then by Lemma 1 there exist points zn → z0, numbers ρn → 0+, and a subsequence of { fn}, which
we continue to denote by { fn}, such that

fn(zn + ρnζ)

ρk
n

= 1n(ζ)→ 1(ζ)

spherically locally uniformly on C, where 1 is a nonconstant zero-free meromorphic function of order at
most two.

We claim that 1(k)(ζ) − 1 has at most k distinct zeros.
Suppose that 1(k)(ζ) − 1 has at least k + 1 distinct zeros ζi, 1 ≤ i ≤ k + 1. Clearly, 1(k)(ζ) . 1, for otherwise

1 would be a nonconstant polynomial of degree k, which contradicts the fact that 1 is zero-free. Then by
Hurwitz’s theorem and noting that

1
(k)
n (ζ) − hn(zn + ρnζ) = f (k)

n (zn + ρnζ) − hn(zn + ρnζ)→ 1(k)(ζ) − 1

uniformly on compact subsets of C disjoint from the poles of 1, there exist ζn,i, i = 1, 2, · · · , k + 1, ζn,i → ζi,
such that, for n sufficiently large, f (k)

n (zn + ρnζn,i) = hn(zn + ρnζn,i). However f (k)
n (z) − hn(z) has at most k

distinct zeros in D, and zn + ρnζn,i → z0, which is a contradiction. Hence 1(k)(ζ) − 1 has at most k distinct
zeros.

Now from Lemma 2 it follows that 1 is a rational function. But this contradicts Lemma 3, which shows
that { fn} is normal in D.

This completes the proof of Lemma 4.
Lemma 5.(see [13]) Let k be a positive integer, let f be a transcendental meromorphic function, and let R

be a rational function, R . 0. Suppose that, with at most finitely many exceptions, all poles of f are multiple
and all zeros of f have multiplicity at least k + 1. Then f (k)(z) − R(z) has infinitely many zeros.

Lemma 5 generalizes the main result of [1], where the case k = 1 was proved. Actually, for the case
k = 1, the result remains valid without any assumption on the poles of f , see [9].

Using the idea of [2], we get the following lemma.
Lemma 6. Let f be a nonconstant zero-free rational function, all of whose poles are multiple. Then

f (k)(z) − 1/(z − c) has at least k + 1 distinct zeros in C, where c is a constant.
Proof. Since f is a nonconstant zero-free rational function, f is not a polynomial. Then by the assumption

we know that f has at least one finite multiple pole. Thus we can write

f (z) =
C1∏q

i=1(z + zi)pi
, (2.1)

where C1 is a nonzero constant, q and pi ≥ 2 (when 1 ≤ i ≤ q) are positive integers, the zi (when 1 ≤ i ≤ q)
are distinct complex numbers, p =

∑q
i=1 pi. By induction, we deduce from (2.1) that

f (k)(z) =
P(z)∏q

i=1(z + zi)pi+k
, (2.2)

where P(z) is a polynomial of degree (q − 1)k. Further, by simple calculation, f (k)(z) − 1
z−c has at least one

zero in C.
Next we discuss two cases.
Case 1. Suppose that for all i (1 ≤ i ≤ q), zi , −c. Then we can write

f (k)(z) −
1

z − c
=

C2
∏s

i=1(z + ωi)li

(z − c)
∏q

i=1(z + zi)pi+k
, (2.3)
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where C2 is a nonzero constant, s and li are positive integers, the −c, ωi (when 1 ≤ i ≤ s), and zi (when
1 ≤ i ≤ q) are distinct complex numbers. From (2.2)-(2.3), we have

q∏
i=1

(z + zi)pi+k + C2

s∏
i=1

(z + ωi)li = (z − c)P(z). (2.4)

Then by (2.4) it follows that
∑s

i=1 li =
∑q

i=1

(
pi + k

)
= p + qk, C2 = −1, and so

q∏
i=1

(1 + zit)pi+k
−

s∏
i=1

(1 + ωit)li = tp+k−1Q(t), (2.5)

where Q(t) = −t(q−1)k+1(1/t − c)P(1/t) is a polynomial of degree less than (q − 1)k + 1. From (2.5), we get∏q
i=1(1 + zit)pi+k∏s
i=1(1 + ωit)li

= 1 +
tp+k−1Q(t)∏s
i=1(1 + ωit)li

= 1 + O
(
tp+k−1

)
, (2.6)

as t→ 0. Thus by taking logarithmic derivatives of both sides of (2.6), it follows that

q∑
i=1

(
pi + k

)
zi

1 + zit
−

s∑
i=1

liωi

1 + ωit
= O

(
tp+k−2

)
, (2.7)

as t→ 0. Comparing the coefficients of (2.7) for t j, j = 0, 1, · · · , p + k − 3, we have

q∑
i=1

(
pi + k

)
z j

i −

s∑
i=1

liω
j
i = 0, j = 1, 2, · · · , p + k − 2. (2.8)

Let zq+i = ωi when 1 ≤ i ≤ s. Noting that
∑q

i=1

(
pi + k

)
=

∑s
i=1 li and using (2.8), we deduce that the system of

linear equations
q+s∑
i=1

z j
i xi = 0 (2.9)

where 0 ≤ j ≤ p + k − 2, has a nonzero solution(
x1, · · · , xq, xq+1, · · · , xq+s

)
=

(
p1 + k, · · · , pq + k,−l1, · · · ,−ls

)
.

If p + k − 1 ≥ q + s, then the determinant det
(
z j

i

)
(q+s)×(q+s)

of the coefficients of the system of the equations

(2.9) where 0 ≤ j ≤ q + s − 1 is equal to zero, by Cramer’s rule (see e.g. [8]). However, the zi are distinct
complex numbers when 1 ≤ i ≤ q + s, and the determinant is a Vandermonde determinant, so cannot be
zero (see e.g. [8]), which is a contradiction.

Hence we conclude that p + k − 1 < q + s. It follows from this and the two facts pi ≥ 2 (when 1 ≤ i ≤ q)
and p =

∑q
i=1 pi that s ≥ k + 1.

Case 2. Suppose that for some i (1 ≤ i ≤ q), say q, zq = −c. Then we can write

f (k)(z) −
1

z − c
=

C3
∏s

i=1(z + ωi)li∏q
i=1(z + zi)pi+k

, (2.10)

where C3 is a nonzero constant, s and li are positive integers, the ωi (when 1 ≤ i ≤ s) and zi (when 1 ≤ i ≤ q)
are distinct complex numbers. From (2.2) and (2.10), we have

(z + zq)pq−1+k
q−1∏
i=1

(z + zi)pi+k + C3

s∏
i=1

(z + ωi)li = P(z). (2.11)
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Then by (2.11) it follows that
∑s

i=1 li =
∑q

i=1

(
pi + k

)
− 1 = p + qk − 1, C3 = −1, and so

(1 + zqt)pq−1+k
q−1∏
i=1

(1 + zit)pi+k
−

s∏
i=1

(1 + ωit)li = tp+k−1Q1(t), (2.12)

where Q1(t) = −t(q−1)kP(1/t) is a polynomial of degree less than (q − 1)k. From (2.12), we get

(1 + zqt)pq−1+k ∏q−1
i=1 (1 + zit)pi+k∏s

i=1(1 + ωit)li
= 1 +

tp+k−1Q(t)∏s
i=1(1 + ωit)li

= 1 + O
(
tp+k−1

)
, (2.13)

as t→ 0. Thus by taking logarithmic derivatives of both sides of (2.13), it follows that

(pq − 1 + k)zq

1 + zqt
+

q−1∑
i=1

(
pi + k

)
zi

1 + zit
−

s∑
i=1

liωi

1 + ωit
= O

(
tp+k−2

)
, (2.14)

as t→ 0. Let

ni =

{
pi, 1 ≤ i ≤ q − 1,

pi − 1, i = q.

Then (2.14) can be rewritten
q∑

i=1

(ni + k) zi

1 + zit
−

s∑
i=1

liωi

1 + ωit
= O

(
tp+k−2

)
,

as t→ 0. Using the same argument as in Case 1, we can also get s ≥ k + 1.
This completes the proof of Lemma 6.

3. Proof of Theorem 1

By Lemma 4, it suffices to prove that F is normal at points at which h(z) has poles. So we may assume
that D = ∆ = {z : |z| < 1}, and that for z ∈ ∆, making standard normalizations,

h(z) =
1
z

+ a0 + a1z + · · · =
b(z)

z
,

where b(0) = 1, and h(z) , 0,∞ for 0 < |z| < 1. Next we only need to show that F is normal at 0. Suppose
not. Then we have by Lemma 1 (with α = k − 1) that there exist fn ∈ F , zn → 0, and ρn → 0+ such that

fn(zn + ρnζ)

ρk−1
n

= 1n(ζ)→ 1(ζ)

spherically uniformly on compact subsets of C, where 1 is a nonconstant zero-free meromorphic function
on C, all of whose poles are multiple. Moreover, 1 is of order at most two.

We consider two cases.
Case 1. Suppose that zn/ρn →∞. Consider

φn(ζ) = z1−k
n fn(zn + znζ) = z1−k

n fn (zn(1 + ζ)) .

Then
φ(k)

n (ζ) = zn f (k)
n (zn(1 + ζ)) .
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Obviously, φn is zero-free, all poles of φn are multiple, and b (zn(1 + ζ)) /(1 + ζ)→ 1/(1 + ζ) , 0 as n→∞ on
∆. A simple calculation now shows that

φ(k)
n (ζ) −

b (zn(1 + ζ))
1 + ζ

= zn f (k)
n (zn(1 + ζ)) −

b (zn(1 + ζ))
1 + ζ

= zn

(
f (k)
n (zn(1 + ζ)) −

b (zn(1 + ζ))
zn(1 + ζ)

)
= zn

(
f (k)
n (zn(1 + ζ)) − h (zn(1 + ζ))

)
.

Since f (k)
n (z)−h (z) has at most k zeros in ∆, ignoring multiplicities, the family {φn} is normal on ∆ by Lemma

4. Thus we may find a sequence {φni } and a function φ satisfying

φni (ζ) = z1−k
ni

fni

(
zni (1 + ζ)

)
→ φ(ζ)

and

1(k−1)(ζ) = lim
i→∞

f (k−1)
ni

(
zni + ρniζ

)
= lim

i→∞
f (k−1)
ni

(
zni

(
1 +

ρni

zni

ζ

))
= lim

i→∞
φ(k−1)

ni

(
ρni

zni

ζ

)
= φ(k−1) (0) .

Thereby we know that 1(k−1)(ζ) is constant, implying 1(k)(ζ) ≡ 0. It follows that 1(ζ) is a nonconstant
polynomial of degree at most k − 1. This contradicts that 1(ζ) is zero-free.

Case 2. So we may assume that zn/ρn → α, a finite complex number. We have

1
(k)
n (ζ) −

ρnb(zn + ρnζ)
zn + ρnζ

= ρn

(
f (k)
n

(
zn + ρnζ

)
−

b(zn + ρnζ)
zn + ρnζ

)
→ 1(k)(ζ) −

1
α + ζ

uniformly on compact subsets of C\{−α} disjoint from the poles of 1.
We claim that 1(k)(ζ) − 1

α+ζ has at most k distinct zeros.
Suppose that 1(k)(ζ) − 1

α+ζ has at least k + 1 distinct zeros ζi, 1 ≤ i ≤ k + 1. Clearly, 1(k)(ζ) − 1
α+ζ . 0 since

all poles of 1(k) are multiple. Now by Hurwitz’s theorem, there exist ζn,i, i = 1, 2, · · · , k + 1, ζn,i → ζi, such
that, for n sufficiently large,

f (k)
n

(
zn + ρnζn,i

)
−

b(zn + ρnζn,i)
zn + ρnζn,i

= f (k)
n

(
zn + ρnζn,i

)
− h(zn + ρnζn,i) = 0

However f (k)
n (z)− h(z) has at most k distinct zeros in ∆, and zn + ρ jζn,i → z0, which is a contradiction. Hence

1(k)(ζ) − 1
α+ζ has at most k distinct zeros.

But, from Lemma 5 and Lemma 6, we see that there do not exist nonconstant meromorphic functions
that have the above properties. This contradiction shows thatF is normal in D and so the proof of Theorem
1 is complete.
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