On the g-Hypergroupoids Associated with g-Hypergraphs

Mehdi Farshi ${ }^{\text {a }}$, Bijan Davvaz ${ }^{\text {a }}$, Saeed Mirvakili ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Yazd University, Yazd, Iran
${ }^{b}$ Department of Mathematics, Payame Noor University, P. O. Box 19395-4697, Tehran, Iran

Abstract

In this paper, we associate a partial g-hypergroupoid with a given g-hypergraph and analyze the properties of this hyperstructure. We prove that a g-hypergroupoid may be a commutative hypergroup without being a join space. Next, we define diagonal direct product of g -hypergroupoids. Further, we construct a sequence of g-hypergroupoids and investigate some relationships between it's terms. Also, we study the quotient of a g-hypergroupoid by defining a regular relation. Finally, we describe fundamental relation of an H_{v}-semigroup as a g-hypergroupoid.

1. Introduction and Preliminaries

Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. More exactly, let $P(X)$ be the set of all subsets of a given set X. A partial hypergroupoid is a pair $(X, *)$, where X is a non-empty set and $*$ is a partial hyperoperation, i.e.,

$$
*: X \times X \rightarrow P(X), \quad(x, y) \mapsto x * y
$$

Every map from $X \times X$ to $P^{*}(X)$ is called a hyperoperation, where $P^{*}(X)=P(X)-\{\emptyset\}$. If $A, B \in P^{*}(X)$, then we define $A * B=\bigcup\{a * b \mid a \in A, b \in B\}, x * B=\{x\} * B$ and $A * y=A *\{y\}$. If $A=\emptyset$ or $B=\emptyset$ we define $A * B=\emptyset$. A partial hypergroupoid $(X, *)$ is called a hypergroupoid if $*$ is a hyperoperation. A hypergroupoid $(X, *)$ is called a semihypergroup if the associative axiom is valid, i.e., $x *(y * z)=(x * y) * z$, for all $x, y, z \in X$ and it is called reproductive if $x * X=X * x=X$, for all $x \in X$. A hypergroup is a reproductive semihypergroup. A commutative hypergroup $(X, *)$ (i.e., $x * y=y * x$ for all $x, y \in X$) is called a join space if the following implication holds for all elements a, b, c, d of X :

$$
a / b \cap c / d \neq \emptyset \Rightarrow a * d \bigcap b * c \neq \emptyset
$$

where $a / b=\{x \mid a \in x * b\}$.
H_{v}-structures which satisfy the corresponding structure-like axioms are the largest class of algebraic hyperstructures. The notion of H_{v}-structures has been introduced by Vougiouklis [13] as a generalization

[^0]of well-known algebraic hyperstructures (semihypergroups, hypergroups, hyperrings and so on) which satisfy the weak axioms where the non-empty intersection replaces the equality. A comprehensive review of the theory of H_{v}-structures appears in $[1,5,6]$. A hypergroupoid $(X, *)$ is called an H_{v}-semigroup if the weak associative axiom is valid, i.e.,
$$
x *(y * z) \bigcap(x * y) * z \neq \emptyset, \text { for all } x, y, z \in X
$$
and it is called an H_{v}-group if it is a reproductive H_{v}-semigroup.
Let X be a non-empty set. By an h-relation R on X we mean a subset of $X \times P^{*}(X)$. The domain of R is the set $\operatorname{Dom}(R)=\{x \in X \mid(x, A) \in R$ for some $A \in P(X)\}$ and codomain of R is the set $\operatorname{Cod}(R)=\{A \in P(X) \mid(x, A) \in$ R for some $x \in X\}$. Also, for any $x \in X$, we define $x_{R}=\{A \mid(x, A) \in R\}$.

The notion of hypergraph has been introduced around 1960 as a generalization of graph and one of the initial concerns was to extend some classical results of graph theory. In [2], there is a very good presentation of graph and hypergraph theory. Connections between hypergraphs and hyperstructures are studied by many authors, for example, see $[4,8,10,11]$. A hypergraph is a pair $\Gamma=(X, A)$, where X is a finite set of vertices and $A=\left\{A_{1}, \ldots, A_{m}\right\}$ is a set of hyperedges which are non-empty subsets of X. Figure 1 is an example of a hypergraph with 2 hyperedges $A_{1}=\{1,2,3\}$ and $A_{2}=\{2,3,4\}$.

Figure 1: An example of hypergraph with 2 hyperedges.

2. Partial g-Hypergroupoids

In this section we generalize the notion of hypergraphs to generalized hypergraphs and then we associate a partial hypergroupoid to each generalized hypergraph.

Definition 2.1. [12] A generalized hypergraph or, in short, a g-hypergraph is an ordered pair $\mathcal{G}=(X, R)$, where X is a non-empty set and R is an h-relation on X. The elements of X are called the vertices and the sets in $\mathcal{E}=\operatorname{Cod}(R)$ are called the hyperedges of the g-hypergraph.

It is worth mentioning that in this paper we deal only with g-hypergraphs $\mathcal{G}=(X, R)$ in which X is a finite set. A g-hypergraph $\mathcal{G}=(X, R)$ is called v-linked if $x_{R} \neq \emptyset$, for all $x \in X$ and it is called plenary if $\underset{A \in \operatorname{Cod}(R)}{\bigcup} A=X$.

Figure 2: An example of a g-hypergraph.

Let $\mathcal{G}=(X, R)$ be a g-hypergraph. The partial hypergroupoid $X_{\mathcal{G}}=(X, \circ)$ where the partial hyperoperation \circ is defined by

$$
x \circ y=\mathcal{N}(x) \cup \mathcal{N}(y), \text { for all }(x, y) \in X^{2}
$$

is called the partial g-hypergroupoid associated with \mathcal{G}, where $\mathcal{N}(x)=\underset{(x, A) \in R}{ } A$. In the case that \circ is a hyperoperation, $X_{\mathcal{G}}$ is called a g-hypergroupoid.
Lemma 2.2. $X_{\mathcal{G}}$ is a g-hypergroupoid if and only if \mathcal{G} is v-linked.
Proof. It is obvious.
Remark 2.3. In [4], Corsini associated to a given hypergraph $\Gamma=\left(H,\left\{A_{i}\right\}_{i}\right)$ an h.g. hypergroupoid $H_{\Gamma}=(H, \circ)$ where the hyperoperation \circ has defined as follows:

$$
x \circ y=E(x) \cup E(y), \text { for all } x, y \in H^{2}
$$

where $E(x)=\bigcup_{x \in A_{i}} A_{i}$. Let $\Gamma=\left(H,\left\{A_{i}\right\}_{i}\right)$ be a hypergraph. If we define the h-relation $R=\left\{\left(x, A_{i}\right) \mid x \in A_{i}\right\}$ on H, then Γ becomes a v-linked and plenary g-hypergraph. Thus, every hypergraph can be considered as a g-hypergraph and there is no difference between h.g. hypergroupoids and g-hypergroupoids when we deal with hypergraphs. In other words, each h.g. hypergroupoid can be considered as a g-hypergroupoid. As we will see, h.g. hypergroupoids does not coincide with g-hypergroupoids. For example, by Theorem 3 of [4], each h.g. hypergroupoid is a join space whereas there are g-hypergroupoids which are not join spaces (see Example 2.4).

Example 2.4. Consider the following g-hypergraph and the table of it's associated g-hypergroupoid:

\circ	1	2	3
1	$\{2\}$	$\{1,2\}$	$\{1,2,3\}$
2	$\{1,2\}$	$\{1,2\}$	$\{1,2,3\}$
3	$\{1,2,3\}$	$\{1,2,3\}$	$\{1,3\}$

It is not difficult to see that $(X=\{1,2,3\}, \circ)$ is a hypergroup. We have $1 / 3=\{1,2,3\}$ and $3 / 1=\{3\}$. It implies that $1 / 3 \bigcap 3 / 1 \neq \emptyset$, but $1 \circ 1 \bigcap 3 \circ 3=\emptyset$. Hence (X, \circ) is not a join space.

Here, we give an example of a g-hypergraph such that it's associated g-hypergroup is a join space.
Example 2.5. In the following, we have drawing a g-hypergraph \mathcal{G} and the table of the g-hypergroupoid associated with \mathcal{G} :

One can check that (X, \circ) is a hypergroup. On the other hand, we have $x \circ y \cap z \circ w \neq \emptyset$, for all $x, y, z, w \in X$. This implies that (X, \circ) is a join space.
Definition 2.6. A partial hypergroupoid (X, \circ) is called separable if the following property holds:

$$
x \circ y=x \circ x \bigcup y \circ y, \text { for all } x, y \in X
$$

Remark 2.7. Let (X, \circ) be a separable hypergroupoid. Define $R=\{(x, x \circ x) \mid x \in X\}$. Then, (X, o) is the g hypergroupoid associated with the v-linked g-hypergraph $\mathcal{G}=(X, R)$. Therefore, every separable hypergroupoid can be considered as a g-hypergroupoid.
The next lemma can be proved easily by using the previous notions.
Lemma 2.8. Let (X, \circ) be a partial g-hypergroupoid. Then, for all $x, y \in X$ and $A \subseteq X$ we have
(1) $x \circ y=y \circ x$,
(2) $(x \circ x) \circ(x \circ x)=\bigcup_{t \in x \circ x} t \circ t$,
(3) $(A \circ A) \circ(A \circ A)=\bigcup_{t \in A \circ A} t \circ t$.

Lemma 2.9. Let (X, \circ) be a separable hypergroupoid. Then
(1) for each $x, y, z \in X$ we have

$$
\begin{aligned}
& (x \circ y) \circ z=[(x \circ x) \circ(x \circ x)] \cup z \circ z \bigcup[(y \circ y) \circ(y \circ y)], \\
& x \circ(y \circ z)=[(y \circ y) \circ(y \circ y)] \cup x \circ x \bigcup[(z \circ z) \circ(z \circ z)] .
\end{aligned}
$$

(2) (X, \circ) is an H_{v}-semigroup.

Proof. (1) For each $x, y, z \in X$ we have

$$
(x \circ y) \circ z=(x \circ x \bigcup y \circ y) \circ z=(x \circ x) \circ z \bigcup(y \circ y) \circ z,
$$

and

$$
x \circ(y \circ z)=(y \circ z) \circ x=(y \circ y \bigcup z \circ z) \circ x=(y \circ y) \circ x \bigcup(z \circ z) \circ x .
$$

Moreover,

$$
(x \circ x) \circ z=\bigcup_{t \in x \circ x} t \circ z=\left(\bigcup_{t \in x \circ x} t \circ t\right) \cup z \circ z=[(x \circ x) \circ(x \circ x)] \cup z \circ z
$$

Therefore, we have

$$
(x \circ y) \circ z=[(x \circ x) \circ(x \circ x)] \cup z \circ z \cup[(y \circ y) \circ(y \circ y)]
$$

and

$$
x \circ(y \circ z)=[(y \circ y) \circ(y \circ y)] \bigcup x \circ x \bigcup[(z \circ z) \circ(z \circ z)] .
$$

(2) We have $\emptyset \neq[(y \circ y) \circ(y \circ y)] \subseteq(x \circ y) \circ z \bigcap x \circ(y \circ z)$. This completes the proof.

Notice that every partial g-hypergroupoid is separable and so we have the following corollary.
Corollary 2.10. Every g-hypergroupoid is an H_{v}-semigroup.
Corollary 2.11. A partial g-hypergroupoid $X_{\mathcal{G}}$ is an H_{v}-semigroup if and only if \mathcal{G} is v-linked.
Theorem 2.12. Let $\mathcal{G}=(X, R)$ be a v-linked g-hypergraph. Then, the g-hypergroupoid $X_{\mathcal{G}}=(X, \circ)$ is an H_{v}-group if and only if \mathcal{G} is plenary.

Proof. Suppose that $X_{\mathcal{G}}=(X, \circ)$ is an H_{v}-group. It suffices to show that $X \subseteq \underset{A \in \operatorname{Cod}(R)}{ } A$. Let $x \in X$ be an arbitrary element. By assumption, we have $x \circ X=X$ and so there is $y \in X$ such that $x \in x \circ y=\mathcal{N}(x) \cup \mathcal{N}(y)$. Thus, there is $A \in \operatorname{Cod}(R)$ such that $x \in A \subseteq \underset{A \in \operatorname{Cod}(R)}{\bigcup} A$.

Conversely, let \mathcal{G} be plenary and $x \in X$ be an arbitrary element. By Corollary 2.10, it is sufficient to show that $x \circ X=X \circ x=X$. It is obvious that $x \circ X \subseteq X$. We show that $X \subseteq x \circ X$. Since \mathcal{G} is plenary, if $z \in X$ is an arbitrary element, then there is $A \in \operatorname{Cod}(R)$ such that $z \in A$. Since $A \in \operatorname{Cod}(R)$, it follows that there is $y \in X$ such that $(y, A) \in R$ and so we have $z \in x \circ y \subseteq x \circ X$. This implies that $X \subseteq x \circ X$ and so $x \circ X=X$. Clearly $X \circ x=X$ since \circ is commutative. Therefore, $X_{\mathcal{G}}$ is an H_{v}-group.

Corollary 2.13. $X_{\mathcal{G}}$ is a reproductive g-hypergroupoid if and only if \mathcal{G} is v-linked and plenary.
Theorem 2.14. Let (X, \circ) be a separable hypergroupoid. Then, \circ is associative if and only if the following conditions hold:
(1) $x \circ x \subseteq(x \circ x) \circ(x \circ x), \quad$ for all $x \in X$,
(2) $[(x \circ x) \circ(x \circ x)]-x \circ x \subseteq(y \circ y) \circ(y \circ y), \quad$ for all $x, y \in X$.

Proof. Suppose that \circ is associative and x, y are arbitrary elements of X. First, we show that $x \circ x \subseteq(x \circ x) \circ$ $(x \circ x)$. Suppose that $x \circ x=\left\{x_{1}, \ldots, x_{n}\right\}$ and $x_{i} \in x \circ x$ is an arbitrary element. Since $x \circ x_{i}=x \circ x \cup x_{i} \circ x_{i}$, it follows that $x_{i} \in x \circ x_{i}$ and so $x_{i} \in x \circ\left(x \circ x_{i}\right)$. Associativity of \circ implies that

$$
x_{i} \in(x \circ x) \circ x_{i}=x_{1} \circ x_{1} \cup \ldots \cup x_{n} \circ x_{n}=(x \circ x) \circ(x \circ x) .
$$

Thus (1) holds. Now, to prove the condition (2) we have

$$
\begin{gathered}
(y \circ y) \circ x=\bigcup_{t \in y \circ y} t \circ x=\left(\bigcup_{t \in y \circ y} t \circ t\right) \cup x \circ x=[(y \circ y) \circ(y \circ y)] \cup x \circ x, \\
y \circ(y \circ x)=\bigcup_{t \in y \circ x} y \circ t=\bigcup_{t \in y \circ x}(y \circ y \cup t \circ t)=y \circ y \cup\left(\bigcup_{t \in y \circ y} t \circ t\right) \cup\left(\bigcup_{t \in x \circ x} t \circ t\right) \\
=[(y \circ y) \circ(y \circ y)] \cup[(x \circ x) \circ(x \circ x)] .
\end{gathered}
$$

Consequently, (2) holds.
Conversely, suppose that x, y, z are arbitrary elements of X and the conditions (1) and (2) hold. From point (1) of Lemma 2.9, we have

$$
(x \circ y) \circ z=[(x \circ x) \circ(x \circ x)] \bigcup z \circ z \bigcup[(y \circ y) \circ(y \circ y)]
$$

and

$$
x \circ(y \circ z)=[(y \circ y) \circ(y \circ y)] \cup x \circ x \bigcup[(z \circ z) \circ(z \circ z)] .
$$

By setting $A=[(x \circ x) \circ(x \circ x)] \cup z \circ z$ and $B=[(z \circ z) \circ(z \circ z)] \cup x \circ x$ we have $(x \circ y) \circ z=[(y \circ y) \circ$ $(y \circ y)] \cup A$ and $x \circ(y \circ z)=[(y \circ y) \circ(y \circ y)] \cup B$. By using the conditions (1) and (2) we have

$$
\begin{aligned}
A & =([(x \circ x) \circ(x \circ x)]-x \circ x) \cup x \circ x \cup z \circ z \\
& \subseteq[(z \circ z) \circ(z \circ z)] \cup z \circ z \bigcup x \circ x \\
& =[(z \circ z) \circ(z \circ z)] \cup x \circ x=B .
\end{aligned}
$$

In a similar way the inverse inclusion is proved and then \circ is associative.

Theorem 2.15. Let (X, \circ) be a separable hypergroupoid. Then, \circ is associative if and only if the following conditions hold:
(1) $A \circ A \subseteq(A \circ A) \circ(A \circ A), \quad$ for all $A \subseteq X$,
(2) $[(A \circ A) \circ(A \circ A)]-A \circ A \subseteq(B \circ B) \circ(B \circ B), \quad$ for all $A, B \subseteq X$.

Proof. Suppose that \circ is associative and A, B are arbitrary subsets of X. Then, by using Theorem 2.14 we have

$$
\begin{aligned}
A \circ A & =\bigcup_{a \in A} a \circ a \subseteq \bigcup_{a \in A}(a \circ a) \circ(a \circ a)=\bigcup_{a \in A}\left(\bigcup_{t \in a \circ a} t \circ t\right)=\bigcup_{t \in A \circ A} t \circ t \\
& =(A \circ A) \circ(A \circ A) .
\end{aligned}
$$

Hence, (1) is true. For every $b \in B$ we have

$$
[(A \circ A) \circ(A \circ A)]-A \circ A \subseteq \bigcup_{a \in A}[((a \circ a) \circ(a \circ a))-a \circ a] \subseteq(b \circ b) \circ(b \circ b)
$$

On the other hand, we have $(b \circ b) \circ(b \circ b) \subseteq(B \circ B) \circ(B \circ B)$. Hence, the assertion (2) holds too.
Conversely, suppose that the assertions (1) and (2) hold for all subsets A and B of X. Let x, y be arbitrary elements of X. By setting $A=\{x\}$ and $B=\{y\}$, the assertions (1) and (2) of Theorem 2.14 hold and therefore \circ is associative.

Corollary 2.16. If a reproductive g-hypergroupoid $X_{\mathcal{G}}=(X, \circ)$ satisfies anyone of the following conditions:

$$
\begin{aligned}
& (x \circ x) \circ(x \circ x)=x \circ x, \text { for all } x \in X, \\
& (x \circ x) \circ(x \circ x)=X, \text { for all } x \in X,
\end{aligned}
$$

then it is a hypergroup.
Example 2.17. The g-hypergroupoid associated with the g-hypergraph of Figure 2 has the following table:

\circ	1	2	3	4
1	$\{2\}$	X	$\{1,2\}$	$\{1,2,3\}$
2	X	X	X	X
3	$\{1,2\}$	X	$\{1,2\}$	$\{1,2,3\}$
4	$\{1,2,3\}$	X	$\{1,2,3\}$	$\{1,2,3\}$

where $X=\{1,2,3,4\}$. It is easy to verify that $(x \circ x) \circ(x \circ x)=X$, for all $x \in X$. On the other hand, for every $x \in X$ we have $x \circ X=X \circ x=X$. So, by Corollary 2.16, (X, \circ) is a hypergroup.

Example 2.18. Consider the g-hypergroupoid of Example 2.4. By Theorem 2.14, (X, \circ) is a hypergroup. Also, we have $(1 \circ 1) \circ(1 \circ 1)=\{1,2\}$. This shows that the converse of Corollary 2.16 is not true.

3. Higher-order Hypergroupoids

Let (X, \circ) be a separable hypergroupoid. We construct a sequence of hypergroupoids $X_{0}=\left(X, \circ_{0}\right), X_{1}=$ $\left(X, \circ_{1}\right), X_{2}=\left(X, \circ_{2}\right), \ldots$ recursively as follows: for all $x, y \in X$ we define $x \circ_{0} y=x \circ y, x \circ_{k+1} x=\left(x \circ_{k} x\right) \circ_{k}\left(x \circ_{k} x\right)$ and $x \circ_{k+1} y=x \circ_{k+1} x \bigcup y \circ_{k+1} y$, where $k \geq 0$. Set $\mathcal{N}_{k}(x)=x \circ_{k} x$. We define $\mathcal{N}_{k}(A)=\bigcup_{a \in A} \mathcal{N}_{k}(a)$, where A is a subset of X. The following properties are immediate:
(1) $\mathcal{N}_{k}(A)=A \circ_{k} A$, for all $A \subseteq X$,
(2) $\mathcal{N}_{k+1}(x)=\mathcal{N}_{k}\left(\mathcal{N}_{k}(x)\right)$, for all $x \in X$ and $k \geq 0$,
(3) $\boldsymbol{N}_{k}\left(\mathcal{N}_{k+1}(x)\right)=\mathcal{N}_{k+1}\left(\mathcal{N}_{k}(x)\right)$, for all $x \in X$ and $k \geq 0$,
(4) $\mathcal{N}_{k+1}(A)=\mathcal{N}_{k}\left(\mathcal{N}_{k}(A)\right)$, for all $A \subseteq X$ and $k \geq 0$,
(5) $A \subseteq B$ implies that $\mathcal{N}_{k}(A) \subseteq \mathcal{N}_{k}(B)$, for all $A, B \subseteq X$,
(6) $\mathcal{N}_{k}(x)=\mathcal{N}_{k+1}(x)$ implies that $\mathcal{N}_{k}(x)=\mathcal{N}_{r}(x)$, for all $r \geq k$.

By Theorem 2.14, X_{k} is a semihypergroup if and only if the following conditions hold:
(a) $\mathcal{N}_{k}(x) \subseteq \mathcal{N}_{k+1}(x), \quad$ for all $x \in X$,
(β) $\mathcal{N}_{k+1}(x)-\mathcal{N}_{k}(x) \subseteq \mathcal{N}_{k+1}(y), \quad$ for all $x, y \in X$.
Lemma 3.1. The above hyperoperation \circ_{k} has the following properties:
(1) $A \circ_{k+1} A=\left(A \circ_{k} A\right) \circ_{k}\left(A \circ_{k} A\right)$, for all $A \subseteq X$,
(2) $x \circ_{k+2} x=\left(\left(x \circ_{k+1} x\right) \circ_{k}\left(x \circ_{k+1} x\right)\right) \circ_{k}\left(\left(x \circ_{k+1} x\right) \circ_{k}\left(x \circ_{k+1} x\right)\right)$, for all $x \in X$.

Proof. (1) Let A be a subset of X. Then,

$$
A \circ_{k+1} A=\mathcal{N}_{k+1}(A)=\mathcal{N}_{k}\left(\mathcal{N}_{k}(A)\right)=\mathcal{N}_{k}(A) \circ_{k} \mathcal{N}_{k}(A)=\left(A \circ_{k} A\right) \circ_{k}\left(A \circ_{k} A\right) .
$$

(2) The result follows from part (1) and the definition of \circ_{k+2}.

Theorem 3.2. Let (X, \circ) be a separable hypergroupoid.
(1) If $X_{k}=\left(X, o_{k}\right)$ satisfies condition (α) for some $k \geq 0$, then $\mathcal{N}_{r}(x) \subseteq \mathcal{N}_{r+1}(x)$, for all $x \in X$ and $r \geq k$.
(2) If $X_{k}=\left(X, o_{k}\right)$ satisfies condition (β) for some $k \geq 0$, then $\mathcal{N}_{r+1}(x) \subseteq \mathcal{N}_{r}(x)$, for all $x \in X$ and $r>k$.

Proof. (1) Let $x \in X$ be an arbitrary element. We prove the result by induction on r. If $r=k$, then there is nothing to prove. Assume that $\mathcal{N}_{r-1}(x) \subseteq \mathcal{N}_{r}(x)$ for $r>k$, the induction hypothesis. Thus we have

$$
\begin{aligned}
\mathcal{N}_{r}(x) & =\mathcal{N}_{r-1}\left(\mathcal{N}_{r-1}(x)\right) \subseteq \mathcal{N}_{r-1}\left(\mathcal{N}_{r}(x)\right)=\mathcal{N}_{r}\left(\mathcal{N}_{r-1}(x)\right) \\
& \subseteq \mathcal{N}_{r}\left(\mathcal{N}_{r}(x)\right)=\mathcal{N}_{r+1}(x)
\end{aligned}
$$

(2) Let $x \in X$ be an arbitrary element. First, we show that $\mathcal{N}_{k}\left(\mathcal{N}_{k+1}(x)\right) \subseteq \mathcal{N}_{k+1}(x)$. Assume to the contrary that $t \in \mathcal{N}_{k}\left(\mathcal{N}_{k+1}(x)\right)-\boldsymbol{N}_{k+1}(x)$. Then, $t \notin \boldsymbol{N}_{k+1}(x)$ and there is $a \in \mathcal{N}_{k+1}(x)$ such that $t \in \mathcal{N}_{k}(a)$. Since $a \in \boldsymbol{N}_{k+1}(x)$, it follows that there is $b \in \mathcal{N}_{k}(x)$ such that $a \in \mathcal{N}_{k}(b)$ and so $t \in \mathcal{N}_{k}\left(\mathcal{N}_{k}(b)\right)=\mathcal{N}_{k+1}(b)$. On the other hand, $t \notin \mathcal{N}_{k+1}(x)$ implies that $t \notin \mathcal{N}_{k}(b)$ and so $t \in \mathcal{N}_{k+1}(b)-\mathcal{N}_{k}(b)$. By hypothesis we have $\boldsymbol{N}_{k+1}(b)-\mathcal{N}_{k}(b) \subseteq \mathcal{N}_{k+1}(x)$ which implies that $t \in \mathcal{N}_{k+1}(x)$ contradicting to $t \notin \mathcal{N}_{k+1}(x)$. Now, we prove the result by induction on r. We have $\mathcal{N}_{k+2}(x)=\mathcal{N}_{k}\left(\mathcal{N}_{k}\left(\mathcal{N}_{k+1}(x)\right)\right) \subseteq \mathcal{N}_{k}\left(\mathcal{N}_{k+1}(x)\right) \subseteq \mathcal{N}_{k+1}(x)$. So, we are done with the initial step. Assume that $\mathcal{N}_{r+1}(x) \subseteq \mathcal{N}_{r}(x)$ for $r>k$, the induction hypothesis. We obtain

$$
\begin{aligned}
\mathcal{N}_{r+2}(x) & =\mathcal{N}_{r+1}\left(\mathcal{N}_{r+1}(x)\right) \subseteq \mathcal{N}_{r+1}\left(\mathcal{N}_{r}(x)\right)=\mathcal{N}_{r}\left(\mathcal{N}_{r+1}(x)\right) \\
& \subseteq \mathcal{N}_{r}\left(\mathcal{N}_{r}(x)\right)=\boldsymbol{N}_{r+1}(x)
\end{aligned}
$$

Corollary 3.3. If $\left(X, o_{k}\right)$ is a separable semihypergroup, then $\mathcal{N}_{r}(x)=\mathcal{N}_{r+1}(x)$, for all $x \in X$ and $r>k$.
Corollary 3.4. If $\left(X, o_{k}\right)$ is a separable semihypergroup, then $\mathcal{N}_{r}(A)=\mathcal{N}_{r+1}(A)$, for all $A \subseteq X$ and $r>k$.
Next example shows that the converse of Corollary 3.3 is not true.

Example 3.5. Let $(X=\{1,2,3\}, \circ)$ be a hypergroupoid with the following table:

\circ	1	2	3
1	$\{2\}$	X	$\{2\}$
2	X	$\{1,3\}$	X
3	$\{2\}$	X	$\{2\}$

We can see that $\mathcal{N}_{0}(1)=\{2\}$ and $\mathcal{N}_{1}(1)=\{1,3\}$. Since $\mathcal{N}_{0}(x) \nsubseteq \mathcal{N}_{1}(x)$ by Theorem $2.14,(X, o)$ is not a semihypergroup. We can check that $\mathcal{N}_{k}(x)=\mathcal{N}_{k+1}(x)$, for all $x \in X$ and $k>0$. This means that the converse of Corollary 3.3 is not true.
Proposition 3.6. If there exists a natural number k such that $\mathcal{N}_{k}(x)=\mathcal{N}_{k+1}(x)$, for all $x \in X$, then
(1) $X_{k}=\left(X, o_{k}\right)$ is a semihypergroup,
(2) $X_{r}=X_{k}$, for all $r \geq k$.

At the beginning of this section, we construct a sequence of separable hypergroupoids $X_{0}=\left(X, \circ_{0}\right), X_{1}=$ $\left(X, \circ_{1}\right), X_{2}=\left(X, \circ_{2}\right), \ldots$ by a given separable hypergroupoid (X, \circ). Let \mathcal{G} be a v-linked g-hypergraph and $X_{\mathcal{G}}$ be the g-hypergroupoid associated with \mathcal{G}. Set $X_{0}=X_{\mathcal{G}}$. For $k>0$, we define an h-relation R_{k} on X as follows:

$$
R_{k}=\left\{\left(x, x \circ_{k} x\right) \mid x \in X\right\}
$$

and therefore we have a sequence $\mathcal{G}_{0}, \mathcal{G}_{1}, \mathcal{G}_{2}, \ldots$ of g-hypergraphs where $\mathcal{G}_{0}=\mathcal{G}$ and $\mathcal{G}_{k}=\left(X, R_{k}\right)$, for $k>0$. It is easy to verify that X_{k} is the g-hypergroupoid associated with \mathcal{G}_{k}. Now, by Corollary 3.3 and Proposition 3.6 we conclude that if X_{k} is an associative g-hypergroupoid, then $\mathcal{G}_{r}=\mathcal{G}_{k+1}$ and $X_{r}=X_{k}$, for all $r>k$. For a given g-hypergraph \mathcal{G} we define

$$
n(\mathcal{G})=\min \left\{k \mid \mathcal{N}_{k}(x)=\mathcal{N}_{k+1}(x) \text { for all } x \in X\right\}
$$

and

$$
s(\mathcal{G})=\min \left\{k \mid X_{k} \text { is a semihypergroup }\right\} .
$$

Obviously, $s(\mathcal{G}) \leq n(\mathcal{G})$. Consider the g-hypergraph \mathcal{G} of Figure 2. In Example 2.17 we showed that $X_{\mathcal{G}}$ is a hypergroup and so we have $s(\mathcal{G})=0$ whereas $n(\mathcal{G})=1$. This means that the inequality $s(\mathcal{G}) \leq n(\mathcal{G})$ may be hold strictly.

4. Quotient g-Hypergroupoids

In this section, by considering a regular equivalence relation on a g-hypergroupoid, we define a quotient g-hypergroupoid. Next, we investigate some relationships between diagonal direct product of hypergroupoids and direct product of g-hypergraphs. In this regards we recall some definitions and results which we need for the development of the rest of paper.

Let $(X, *)$ be a hypergroupoid and ρ be an equivalence relation on X. If A and B are non-empty subsets of X, then $A \bar{\rho} B$ means that for all $a \in A$, there exists $b \in B$ such that $a \rho b$ and for all $b^{\prime} \in B$ there exists $a^{\prime} \in A$ such that $a^{\prime} \rho b^{\prime}$. We say that ρ is regular if for all $a \in X$ from $x \rho y$, it follows that $(a * x) \bar{\rho}(a * y)$ and $(x * a) \bar{\rho}(y * a)$. For an equivalence relation ρ on X, we may use $\rho(x)$ to denote the equivalence class of $x \in X$. Moreover, generally, if A is a non-empty subset of X, then $\rho(A)=\bigcup\{\rho(x) \mid x \in A\}$. Let X / ρ be the family $\{\rho(x) \mid x \in X\}$ of classes of ρ. By Theorem 2.5.2 of [6], if $(X, *)$ is a hypergroupoid and ρ is a regular equivalence relation on X, then the following hyperoperation on X / ρ is well defined:

$$
\rho(x) \odot \rho(y)=\{\rho(z) \mid z \in x * y\} .
$$

Let $\mathcal{G}=(X, R)$ be a v-linked g-hypergraph and (X, \circ) be the g-hypergroupoid associated with \mathcal{G}. We define the relation $\rho_{\mathcal{G}}$ on X as follows:

$$
x \rho_{\mathcal{G}} y \text { if and only if } x_{R}=y_{R}
$$

Lemma 4.1. The relation $\rho_{\mathcal{G}}$ is a regular equivalence relation.
Proof. Obviously, $\rho_{\mathcal{G}}$ is an equivalence relation. Let $z \in X$ be an arbitrary element and $x \rho_{\mathcal{G}} y$. First, we show that $x \circ z=y \circ z$ which implies that $(x \circ z) \bar{\rho}_{G}(y \circ z)$. Let $r \in x \circ z=\mathcal{N}(x) \cup \mathcal{N}(z)$ be an arbitrary element. In the case that $r \in \mathcal{N}(z)$, there is nothing to prove. If $r \in \mathcal{N}(x)$, then there is a hyperedge A such that $(x, A) \in R$ and $r \in A$. By assumption, we have $x_{R}=y_{R}$ and therefore we have $(y, A) \in R$. This implies that $r \in \mathcal{N}(y)$. Hence $x \circ z \subseteq y \circ z$. The reverse inclusion can be shown similarly. In a similar way we can show that $(z \circ x) \bar{\rho}_{\mathcal{G}}(z \circ y)$.

Definition 4.2. Let $\mathcal{G}_{1}=\left(X_{1}, R_{1}\right)$ and $\mathcal{G}_{2}=\left(X_{2}, R_{2}\right)$ be two g-hypergraphs. Then, the direct product of \mathcal{G}_{1} and \mathcal{G}_{2} is the g-hypergraph $\mathcal{G}_{1} \times \mathcal{G}_{2}=\left(X_{1} \times X_{2}, R_{1} \times R_{2}\right)$ where $R_{1} \times R_{2}=\left\{((x, y), A \times B) \mid(x, A) \in R_{1},(y, B) \in R_{2}\right\}$.

Lemma 4.3. Let $\mathcal{G}_{1}=\left(X_{1}, R_{1}\right)$ and $\mathcal{G}_{2}=\left(X_{2}, R_{2}\right)$ be two g-hypergraphs. Then, for every $(x, y),(u, v) \in X_{1} \times X_{2}$,

$$
(x, y) \rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}(u, v) \Leftrightarrow x \rho_{\mathcal{G}_{1}} \text { u and } y \rho_{\mathcal{G}_{2}} v
$$

Proof. It is obvious.
Definition 4.4. Let $(X, *)$ and (Y, \circ) be two hypergroupoids. We define the hyperoperation \times_{d} on the Cartesian product $X \times Y$ as follows:

$$
\left(x_{1}, y_{1}\right) \times_{d}\left(x_{2}, y_{2}\right)=\Delta\left(\left(x_{1}, y_{1}\right)\right) \cup \Delta\left(\left(x_{2}, y_{2}\right)\right)
$$

where $\Delta((a, b))=\{(x, y) \mid x \in a * a$ and $y \in b \circ b\}$. The hypergroupoid $\left(X \times Y, \times_{d}\right)$ is called the diagonal direct product of $(X, *)$ and (Y, \circ).

Theorem 4.5. Let $\left(X_{1}, *\right)$ and $\left(X_{2}, \circ\right)$ be the g-hypergroupoids associated with the v-linked g-hypergraphs $\mathcal{G}_{1}=$ $\left(X_{1}, R_{1}\right)$ and $\mathcal{G}_{2}=\left(X_{2}, R_{2}\right)$, respectively. Then, the diagonal direct product of $\left(X_{1}, *\right)$ and $\left(X_{2}, \circ\right)$ is the g-hypergroupoid associated with $\mathcal{G}_{1} \times \mathcal{G}_{2}$.

Proof. Let $\left(X_{1} \times X_{2}, \times_{d}\right)$ be the diagonal direct product of $\left(X_{1}, *\right)$ and $\left(X_{2}, 0\right)$. It suffices to show that

$$
(x, y) \times_{d}(x, y)=\bigcup\left\{A \times B \mid((x, y), A \times B) \in R_{1} \times R_{2}\right\},
$$

where (x, y) is an arbitrary element of $X_{1} \times X_{2}$. This can be seen by the following argument. Let $(r, s) \in(x, y) \times_{d}$ (x, y) be an arbitrary element. Then, $r \in x * x$ and $s \in y \circ y$. Since $\left(X_{1}, *\right)$ and $\left(X_{2}, \circ\right)$ are the g-hypergroupoids associated with the g-hypergraphs $\mathcal{G}_{1}=\left(X_{1}, R_{1}\right)$ and $\mathcal{G}_{2}=\left(X_{2}, R_{2}\right)$, respectively, there are hyperedges A and B such that $(x, A) \in R_{1},(y, B) \in R_{2}$ and $(r, s) \in A \times B$. By the definition of $R_{1} \times R_{2}$ we have $((x, y), A \times B) \in R_{1} \times R_{2}$ and therefore $(r, s) \in \bigcup\left\{A \times B \mid((x, y), A \times B) \in R_{1} \times R_{2}\right\}$. Hence $(x, y) \times_{d}(x, y) \subseteq \bigcup\left\{A \times B \mid((x, y), A \times B) \in R_{1} \times R_{2}\right\}$. The reverse inclusion can be shown similarly.

Definition 4.6. Let $\left(X_{1}, *\right)$ and $\left(X_{2}, \circ\right)$ be two hypergroupoids. A map $\varphi: X_{1} \rightarrow X_{2}$ is called a homomorphism if for all $x, y \in X_{1}$ we have $\varphi(x * y)=\varphi(x) \circ \varphi(y)$. If φ is one to one (onto) we say that φ is a monomorphism (epimorphism). If there exists a one to one epimorphism from X_{1} onto X_{2} we say that X_{1} is isomorphic to X_{2} and we write $X_{1} \cong X_{2}$.

Theorem 4.7. Let $\left(X_{1}, *\right)$ and $\left(X_{2}, \circ\right)$ be the g-hypergroupoids associated with the v-linked g-hypergraphs $\mathcal{G}_{1}=$ $\left(X_{1}, R_{1}\right)$ and $\mathcal{G}_{2}=\left(X_{2}, R_{2}\right)$, respectively. Then,

$$
X_{1} / \rho_{\mathcal{G}_{1}} \times_{d} X_{2} / \rho_{\mathcal{G}_{2}} \cong\left(X_{1} \times_{d} X_{2}\right) / \rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}
$$

Proof. We equip $X_{1} / \rho_{\mathcal{G}_{1}}, X_{2} / \rho_{\mathcal{G}_{2}}$ and $\left(X_{1} \times_{d} X_{2}\right) / \rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}$ with hyperoperations \odot, \square and \odot, respectively. Define

$$
\varphi: X_{1} / \rho_{\mathcal{G}_{1}} \times_{d} X_{2} / \rho_{\mathcal{G}_{2}} \rightarrow\left(X_{1} \times_{d} X_{2}\right) / \rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}
$$

by

$$
\left.\varphi\left(\left(\rho_{\mathcal{G}_{1}}(x), \rho_{\mathcal{G}_{2}}(y)\right)\right)=\rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}(x, y)\right), \text { for all }(x, y) \in X_{1} \times X_{2}
$$

First, we prove φ is well defined. Consider

$$
\left(\rho_{\mathcal{G}_{1}}(x), \rho_{\mathcal{G}_{2}}(y)\right)=\left(\rho_{\mathcal{G}_{1}}\left(x^{\prime}\right), \rho_{\mathcal{G}_{2}}\left(y^{\prime}\right)\right) .
$$

Hence, we have $x_{R_{1}}=x_{R_{1}}^{\prime}$ and $y_{R_{2}}=y_{R_{2}}^{\prime}$. Since

$$
\begin{aligned}
A \times B \in(x, y)_{R_{1} \times R_{2}} & \Leftrightarrow A \in x_{R_{1}}, B \in y_{R_{2}} \Leftrightarrow A \in x_{R_{1}}^{\prime}, B \in y_{R_{2}}^{\prime} \\
& \Leftrightarrow A \times B \in\left(x^{\prime}, y^{\prime}\right)_{R_{1} \times R_{2}},
\end{aligned}
$$

we obtain $\rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}((x, y))=\rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}\left(\left(x^{\prime}, y^{\prime}\right)\right)$, i.e., φ is well defined. Now, we check that φ is one to one. Suppose that $\rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}((x, y))=\rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}\left(\left(x^{\prime}, y^{\prime}\right)\right)$. We obtain

$$
\begin{aligned}
A \in x_{R_{1}}, B \in y_{R_{2}} & \Leftrightarrow A \times B \in(x, y)_{R_{1} \times R_{2}} \Leftrightarrow A \times B \in\left(x^{\prime}, y^{\prime}\right)_{R_{1} \times R_{2}} \\
& \Leftrightarrow A \in x_{R_{1}}^{\prime}, B \in y_{R_{2}}^{\prime} .
\end{aligned}
$$

This implies that $\left(\rho_{\mathcal{G}_{1}}(x), \rho_{\mathcal{G}_{2}}(y)\right)=\left(\rho_{\mathcal{G}_{1}}\left(x^{\prime}\right), \rho_{\mathcal{G}_{2}}\left(y^{\prime}\right)\right)$. Clearly φ is onto. We need only to show that φ is a homomorphism. Before that we show that $\varphi\left(\Delta\left(\left(\rho_{\mathcal{G}_{1}}(x), \rho_{\mathcal{G}_{2}}(y)\right)\right)\right)=\rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}(\Delta(x, y))$, for all $(x, y) \in X_{1} \times X_{2}$. We know that

$$
\begin{aligned}
& \Delta\left(\left(\rho_{\mathcal{G}_{1}}(x), \rho_{\mathcal{G}_{2}}(y)\right)\right) \\
& =\left\{\left(\rho_{\mathcal{G}_{1}}(r), \rho_{\mathcal{G}_{2}}(s)\right) \mid \rho_{\mathcal{G}_{1}}(r) \in \rho_{\mathcal{G}_{1}}(x) \odot \rho_{\mathcal{G}_{1}}(x), \rho_{\mathcal{G}_{2}}(s) \in \rho_{\mathcal{G}_{2}}(y) \boxtimes \rho_{\mathcal{G}_{2}}(y)\right\},
\end{aligned}
$$

and so we have

$$
\begin{aligned}
& \varphi\left(\Delta\left(\left(\rho_{\mathcal{G}_{1}}(x), \rho_{\mathcal{G}_{2}}(y)\right)\right)\right) \\
& \left.=\left\{\rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}(r, s)\right) \mid \rho_{\mathcal{G}_{1}}(r) \in \rho_{\mathcal{G}_{1}}(x) \odot \rho_{\mathcal{G}_{1}}(x), \rho_{\mathcal{G}_{2}}(s) \in \rho_{\mathcal{G}_{2}}(y) \boxtimes \rho_{\mathcal{G}_{2}}(y)\right\} .
\end{aligned}
$$

But $\rho_{\mathcal{G}_{1}}(r) \in \rho_{\mathcal{G}_{1}}(x) \odot \rho_{\mathcal{G}_{1}}(x)$ if and only if there is $u \in x * x$ such that $\rho_{\mathcal{G}_{1}}(r)=\rho_{\mathcal{G}_{1}}(u)$ and $\rho_{\mathcal{G}_{2}}(s) \in \rho_{\mathcal{G}_{2}}(y) \boxtimes \rho_{\mathcal{G}_{2}}(y)$ if and only if there is $v \in y \circ y$ such that $\rho_{\mathcal{G}_{2}}(s)=\rho_{\mathcal{G}_{2}}(v)$. Now, by using Lemma 4.3 we have

$$
\begin{aligned}
\varphi\left(\Delta\left(\left(\rho_{\mathcal{G}_{1}}(x), \rho_{\mathcal{G}_{2}}(y)\right)\right)\right) & \left.=\left\{\rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}(r, s)\right) \mid r \in x * x, s \in y \circ y\right\} \\
& \left.=\left\{\rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}(r, s)\right) \mid(r, s) \in \Delta((x, y))\right\} \\
& =\rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}(\Delta(x, y)) .
\end{aligned}
$$

Now, by using the above argument, for every elements $(x, y),\left(x^{\prime}, y^{\prime}\right) \in X_{1} \times X_{2}$ we obtain

$$
\begin{aligned}
& \varphi\left(\left(\rho_{\mathcal{G}_{1}}(x), \rho_{\mathcal{G}_{2}}(y)\right) \times_{d}\left(\rho_{\mathcal{G}_{1}}\left(x^{\prime}\right), \rho_{\mathcal{G}_{2}}\left(y^{\prime}\right)\right)\right) \\
& =\varphi\left(\Delta\left(\left(\rho_{\mathcal{G}_{1}}(x), \rho_{\mathcal{G}_{2}}(y)\right)\right) \cup \Delta\left(\left(\rho_{\mathcal{G}_{1}}\left(x^{\prime}\right), \rho_{\mathcal{G}_{2}}\left(y^{\prime}\right)\right)\right)\right) \\
& =\rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}(\Delta(x, y)) \cup \rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}\left(\Delta\left(x^{\prime}, y^{\prime}\right)\right) \\
& =\rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}\left(\Delta((x, y)) \cup \Delta\left(\left(x^{\prime}, y^{\prime}\right)\right)\right) \\
& \left.=\rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}(x, y) \times_{d}\left(x^{\prime}, y^{\prime}\right)\right) \\
& \left.=\left\{\rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}(r, s)\right) \mid(r, s) \in(x, y) \times_{d}\left(x^{\prime}, y^{\prime}\right)\right\} \\
& \left.\left.=\rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}(x, y)\right) \odot \rho_{\mathcal{G}_{1} \times \mathcal{G}_{2}}\left(x^{\prime}, y^{\prime}\right)\right) \\
& =\varphi\left(\left(\rho_{\mathcal{G}_{1}}(x), \rho_{\mathcal{G}_{2}}(y)\right)\right) \odot \varphi\left(\left(\rho_{\mathcal{G}_{1}}\left(x^{\prime}\right), \rho_{\mathcal{G}_{2}}\left(y^{\prime}\right)\right)\right) .
\end{aligned}
$$

Hence, φ is an isomorphism.
Theorem 4.8. Let \mathcal{G} be a v-linked g-hypergraph and $\left(X_{2}, \circ\right)$ be the g-hypergroupoid associated with \mathcal{G}. If $\left(X_{1}, *\right)$ is a separable hypergroupoid and $\varphi: X_{1} \rightarrow X_{2}$ is an epimorphism, then there exists a regular equivalence relation μ on X_{1} such that

$$
X_{1} / \mu \cong X_{2} / \rho_{\mathcal{G}}
$$

Proof. Suppose that the relation μ on X_{1} is defined by $x \mu y \Leftrightarrow \varphi(x) \rho_{\mathcal{G}} \varphi(y)$, for all $x, y \in X_{1}$. Since $\rho_{\mathcal{G}}$ is an equivalence relation on X_{2}, then it is easy to check that μ is an equivalence relation on X_{1}. Let $x, y, z \in X_{1}$ be arbitrary elements such that $x \mu y$. We show that $(x * z) \bar{\mu}(y * z)$. From $x \mu y$ it follows that $\varphi(x) \circ \varphi(x)=\varphi(y) \circ \varphi(y)$ which implies that $\varphi(x * x)=\varphi(y * y)$. Let $r \in x * z$ be an arbitrary element. Then, we have $\varphi(r) \in \varphi(x * z)=\varphi(x * x) \bigcup \varphi(z * z)=\varphi(y * y) \bigcup \varphi(z * z)=\varphi(y * z)$. Therefore, there is $t \in y * z$ such that $\varphi(r)=\varphi(t)$. This means that $r \mu t$ and so $(x * z) \bar{\mu}(y * z)$. In a similar way we can show that $(z * x) \bar{\mu}(z * y)$. Thus μ is regular. Now, let $\psi: X_{1} / \mu \rightarrow X_{2} / \rho_{\mathcal{G}}$ is defined by $\psi(\mu(x))=\rho_{\mathcal{G}}(\varphi(x))$. Suppose that $x, y \in X_{1}$. Then,

$$
\mu(x)=\mu(y) \Leftrightarrow \varphi(x) \rho_{\mathcal{G}} \varphi(y) \Leftrightarrow \rho_{\mathcal{G}}(\varphi(x))=\rho_{\mathcal{G}}(\varphi(y)) \Leftrightarrow \psi(\mu(x))=\psi(\mu(y))
$$

Thus ψ is well defined and one to one. Since φ is onto, it follows that ψ is onto. We equip X_{1} / μ and $X_{1} / \rho_{\mathcal{G}}$ with the hyperoperations \odot and \odot, respectively. Let $x, y \in X_{1}$. The following argument shows that ψ is a homomorphism.

$$
\begin{aligned}
\psi(\mu(x)) \boxtimes \psi(\mu(y)) & =\rho_{\mathcal{G}}(\varphi(x)) \boxtimes \rho_{\mathcal{G}}(\varphi(y)) \\
& =\left\{\rho_{\mathcal{G}}(\varphi(z)) \mid \varphi(z) \in \varphi(x) \circ \varphi(y)\right\} \\
& =\left\{\rho_{\mathcal{G}}(\varphi(z)) \mid \varphi(z)=\varphi(t) \text { for some } t \in x * y\right\} \\
& =\left\{\rho_{\mathcal{G}}(\varphi(t)) \mid t \in x * y\right\} \\
& =\psi(\{\mu(t) \mid t \in x * y\}) \\
& =\psi(\mu(x) \odot \mu(y)) .
\end{aligned}
$$

Theorem 4.9. Let \mathcal{G} be a v-linked g-hypergraph and $\left(X_{1}, *\right)$ be the g-hypergroupoid associated with \mathcal{G}. If $\left(X_{2}, \circ\right)$ is a separable hypergroupoid and $\varphi: X_{1} \rightarrow X_{2}$ is a monomorphism, then there exists a regular equivalence relation μ^{\prime} on $\varphi\left(X_{1}\right)$ such that

$$
X_{1} / \rho_{\mathcal{G}} \cong \varphi\left(X_{1}\right) / \mu^{\prime}
$$

Proof. Suppose that the relation μ^{\prime} on $\varphi\left(X_{1}\right)$ is defined by $\varphi(x) \mu^{\prime} \varphi(y) \Leftrightarrow x \rho_{\mathcal{G}} y$, for all $x, y \in X_{1}$. It is easy to see that μ^{\prime} is a regular equivalence relation. Define $\psi: X_{1} / \rho_{\mathcal{G}} \rightarrow \varphi\left(X_{1}\right) / \mu^{\prime}$ by $\psi\left(\rho_{\mathcal{G}}(x)\right)=\mu^{\prime}(\varphi(x))$. One can easily checks that ψ is an isomorphism.

Lemma 4.10. Let ρ be a regular equivalence relation on a hypergroupoid (X, \circ). Then, $\pi: X \rightarrow X / \rho$ which is defined by $\pi(x)=\rho(x)$, for all $x \in X$, is an epimorphism which is called canonical epimorphism.

Proof. The proof is straightforward.
Theorem 4.11. $\operatorname{Let}\left(X_{1}, *\right)$ and $\left(X_{2}, \circ\right)$ be g-hypergroupoids associated with the v-linked g-hypergraphs $\mathcal{G}_{1}=\left(X_{1}, R_{1}\right)$ and $\mathcal{G}_{2}=\left(X_{2}, R_{2}\right)$, respectively. Let $\varphi: X_{1} \rightarrow X_{2}$ be an epimorphism such that $\varphi(x) \rho_{\mathcal{G}_{2}} \varphi(y)$ implies $x \rho_{\mathcal{G}_{1}} y$. If $\mu=\left\{(x, y) \in X_{1}^{2} \mid \varphi(x) \rho_{\mathcal{G}_{2}} \varphi(y)\right\}$ and $\mu^{\prime}=\left\{(\varphi(x), \varphi(y)) \in X_{2}^{2} \mid x \rho_{\mathcal{G}_{1}} y\right\}$, then there exists a unique homomorphism $\varphi^{*}: X_{1} / \mu \rightarrow X_{2} / \mu^{\prime}$ such that the following diagram is commutative; i.e., $\pi^{\prime} \circ \varphi=\varphi^{*} \circ \pi$, where π and π^{\prime} denote the

canonical epimorphisms.
Proof. The proof of the fact that μ and μ^{\prime} are regular equivalence relations is analogous to the corresponding part of the proof of Theorem 4.8 and we omit the details. We equip X_{1} / μ and X_{2} / μ^{\prime} with the hyperoperations \odot and \odot, respectively. Let $\varphi^{*}: X_{1} / \mu \rightarrow X_{2} / \mu^{\prime}$ is defined by $\varphi^{*}(\mu(x))=\mu^{\prime}(\varphi(x))$, for all $x \in X_{1}$. First, we show that φ^{*} is well defined. Let $x, y \in X_{1}$ and $\mu(x)=\mu(y)$. Then, $\varphi(x) \rho_{\mathcal{G}_{2}} \varphi(y)$ and so $x \rho_{\mathcal{G}_{1}} y$. Therefore, φ^{*} is well defined. Moreover, it is easy to prove that $\varphi^{*}(\mu(x) \odot \mu(y))=\varphi^{*}(\mu(x)) \triangleright \varphi^{*}(\mu(y))$ and $\pi^{\prime} \circ \varphi=\varphi^{*} \circ \pi$. Now, we show that φ^{*} is unique. Let $g: X_{1} / \mu \rightarrow X_{2} / \mu^{\prime}$ be a homomorphism such that $\pi^{\prime} \circ \varphi=g \circ \pi$. Then, for all $x \in X_{1}, g(\mu(x))=g(\pi(x))=\pi^{\prime} \circ \varphi(x)=\varphi^{*} \circ \pi(x)=\varphi^{*}(\mu(x))$.

5. Fundamental Relation on a g-Hypergroupoid

One of the main tool to study hyperstructures is the fundamental relation β^{*} in an H_{v}-semigroup (X, \circ) as the smallest equivalence relation so that the quotient X / β^{*} would be a semigroup. The relation β^{*} was introduced on hypergroups by M. Koskas in 1970 [9] and was mainly studied intensively and in depth by Corsini [3], also see [7].

For a relation β on a non-empty set X, we denote by $\widehat{\beta}$ the transitive closure of β and define it as follows:

$$
\begin{aligned}
x \widehat{\beta} y \text { if and only if } & \text { there exists a natural number } k \text { and elements } \\
& x=a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}=y \text { in } X \text { such that } \\
& a_{1} \beta a_{2}, a_{2} \beta a_{3}, \ldots, a_{k-1} \beta a_{k} .
\end{aligned}
$$

Obviously, $\beta=\widehat{\beta}$ if β is transitive.
The proof of following theorem is similar to the proof of Theorem 1.2.2 of [14].
Theorem 5.1. Let (X, \circ) be an H_{v}-semigroup and denote \mathbf{U} the set of all finite products of elements of X. We define the relation β on X by setting $x \beta y$ if and only if $x=y$ or $\{x, y\} \subseteq u$ where $u \in \mathbf{U}$. Then, β^{*} is the transitive closure of β.

Theorem 5.2. Let $\mathcal{G}=(X, R)$ be a v-linked g-hypergraph and $X_{\mathcal{G}}=(X, \circ)$ be the g-hypergroupoid associated with \mathcal{G}. Then, we have

$$
\beta^{*}(x)= \begin{cases}S & \text { if } x \in S \\ \{x\} & \text { if } x \notin S\end{cases}
$$

where $S=\underset{A \in \operatorname{Cod}(R)}{ } A$ and β is the relation defined in Theorem 5.1.
Proof. First, we show that $\bigcup\{u \mid u \in \mathbf{U}\}=S$. Let $x \in S$ be an arbitrary element. Then, there exist $A \in \operatorname{Cod}(R)$ and $a \in X$ such that $(a, A) \in R$ and $x \in A$. Therefore, by setting $u=a \circ a$ we have $x \in u$. Hence $S \subseteq \bigcup\{u \mid u \in \mathbf{U}\}$. The reverse inclusion is obvious. We conclude that if $x, y \in X$ and $x \beta y$, then $x \in S$ if and only if $y \in S$. Now, let $x, y \in S$ be arbitrary elements. Then, there exist $A, B \in \operatorname{Cod}(R)$ and $a, b \in X$ such that $(a, A) \in R,(b, B) \in R$, $x \in A$ and $y \in B$. Therefore, $\{x, y\} \subseteq a \circ b$ which implies that $x \beta y$. Consequently, for every $x, y \in S$ we have $x \beta y$. By the above argument, we obtain

$$
\beta(x)= \begin{cases}S & \text { if } x \in S \\ \{x\} & \text { if } x \notin S\end{cases}
$$

It is easy to see that β is transitive and so we have $\widehat{\beta}=\beta$. By using Theorem 5.1 , we have $\beta^{*}=\widehat{\beta}$ which completes the proof.

Corollary 5.3. A v-linked g-hypergraph $\mathcal{G}=(X, R)$ is plenary if and only if $\beta^{*}=X \times X$.
By using the above corollary and Remark 2.7, we obtain the following corollary.
Corollary 5.4. For every separable H_{v}-group, we have $\beta^{*}=\beta$.

References

[1] R. Ameri and M. M. Zahedi, Hyperalgebraic systems, Ital. J. Pure Appl. Math. 6 (1999) 21-32.
[2] C. Berge, Graphs and Hypergraphs, North Holland, 1979.
[3] P. Corsini, Prolegomena of Hypergroup Theory, Aviani editor, Second edition, 1993.
[4] P. Corsini, Hypergraphs and hypergroups, Algebra Universalis 35 (1996) 548-555.
[5] B. Davvaz, A brief survey of the theory of H_{v}-structures, In 8th AHA Congress, pages 39-70, Spanidis Press, 2003.
[6] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, Palm Harbor, USA, 2007.
[7] D. Freni, A new characterization of the derived hypergroup via strongly regular equivalences, Comm. Algebra 30 (2002) 39773989.
[8] M. N. Iradmusa and A. Iranmanesh, The combinatorial and algebraic structure of the hypergroup associated to a hypergraph, J. Mult.-Valued Logic Soft Comput. 11 (2005) 127-136.
[9] M. Koskas, Groupoides, demi-hypergroups et hypergroups, J. Math. pures et Appl. 49 (1970) 155-192.
[10] V. Leoreanu-Fotea P. Corsini and A. Iranmanesh, On the sequence of hypergroups and membership functions determined by a hypergraph, J. Mult.-Valued Logic Soft Comput. 14 (2008), 565-577.
[11] V. Leoreanu and L. Leoreanu, Hypergroups associated with hypergraphs, Ital. J. Pure Appl. Math. 4 (1998) 119-126.
[12] M. K. Sen U. Dasgupta, Hyperrelations and generalized hypergraphs, Int. J. Mach. Learn. \& Cyber. 4 (2013) 565-574.
[13] T. Vougiouklis, The fundamental relation in hyperrings. the general hyperfield, In Proc. 4th AHA, pages 203-211, World Scientific, 1991.
[14] T. Vougiouklis, Hyperstructures and Their Representations, Aviani editor, Hardonic Press, Palm Harbor, USA, 1994.

[^0]: 2010 Mathematics Subject Classification. Primary 05C65; Secondary 20N20
 Keywords. g-hypergraph, partial g-hypergroupoid, H_{v}-semigroup, regular relation, fundamental relation
 Received: 29 June 2016; Accepted: 02 March 2017
 Communicated by Francesco Belardo
 Email addresses: m.farshi@yahoo.com (Mehdi Farshi), davvaz@yazd.ac.ir (Bijan Davvaz), saeed_mirvakili@pnu.ac.ir (Saeed Mirvakili)

