Filomat 31:15 (2017), 4819–4831 https://doi.org/10.2298/FIL1715819F

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On the *g*-Hypergroupoids Associated with *g*-Hypergraphs

Mehdi Farshi^a, Bijan Davvaz^a, Saeed Mirvakili^b

^aDepartment of Mathematics, Yazd University, Yazd, Iran ^bDepartment of Mathematics, Payame Noor University, P. O. Box 19395-4697, Tehran, Iran

Abstract. In this paper, we associate a partial g-hypergroupoid with a given g-hypergraph and analyze the properties of this hyperstructure. We prove that a g-hypergroupoid may be a commutative hypergroup without being a join space. Next, we define diagonal direct product of g-hypergroupoids. Further, we construct a sequence of g-hypergroupoids and investigate some relationships between it's terms. Also, we study the quotient of a g-hypergroupoid by defining a regular relation. Finally, we describe fundamental relation of an H_v -semigroup as a g-hypergroupoid.

1. Introduction and Preliminaries

Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. More exactly, let P(X) be the set of all subsets of a given set X. A *partial hypergroupoid* is a pair (X, *), where X is a non-empty set and * is a *partial hyperoperation*, i.e.,

$$*: X \times X \to P(X), \quad (x, y) \mapsto x * y.$$

Every map from $X \times X$ to $P^*(X)$ is called a *hyperoperation*, where $P^*(X) = P(X) - \{\emptyset\}$. If $A, B \in P^*(X)$, then we define $A * B = \bigcup \{a * b \mid a \in A, b \in B\}$, $x * B = \{x\} * B$ and $A * y = A * \{y\}$. If $A = \emptyset$ or $B = \emptyset$ we define $A * B = \emptyset$. A partial hypergroupoid (X, *) is called a *hypergroupoid* if * is a hyperoperation. A hypergroupoid (X, *) is called a *semihypergroup* if the associative axiom is valid, i.e., x * (y * z) = (x * y) * z, for all $x, y, z \in X$ and it is called *reproductive* if x * X = X * x = X, for all $x \in X$. A *hypergroup* is a reproductive semihypergroup. A commutative hypergroup (X, *) (i.e., x * y = y * x for all $x, y \in X$) is called a *join space* if the following implication holds for all elements a, b, c, d of X:

$$a/b \cap c/d \neq \emptyset \Rightarrow a * d \cap b * c \neq \emptyset,$$

where $a/b = \{x \mid a \in x * b\}.$

 H_v -structures which satisfy the corresponding structure-like axioms are the largest class of algebraic hyperstructures. The notion of H_v -structures has been introduced by Vougiouklis [13] as a generalization

²⁰¹⁰ Mathematics Subject Classification. Primary 05C65; Secondary 20N20

Keywords. g-hypergraph, partial g-hypergroupoid, H_v-semigroup, regular relation, fundamental relation

Received: 29 June 2016; Accepted: 02 March 2017

Communicated by Francesco Belardo

Email addresses: m.farshi@yahoo.com (Mehdi Farshi), davvaz@yazd.ac.ir (Bijan Davvaz), saeed_mirvakili@pnu.ac.ir (Saeed Mirvakili)

of well-known algebraic hyperstructures (semihypergroups, hypergroups, hyperrings and so on) which satisfy the weak axioms where the non-empty intersection replaces the equality. A comprehensive review of the theory of H_v -structures appears in [1, 5, 6]. A hypergroupoid (X, *) is called an H_v -semigroup if the weak associative axiom is valid, i.e.,

$$x * (y * z) \cap (x * y) * z \neq \emptyset$$
, for all $x, y, z \in X$

and it is called an H_v -group if it is a reproductive H_v -semigroup.

Let *X* be a non-empty set. By an *h*-relation *R* on *X* we mean a subset of $X \times P^*(X)$. The domain of *R* is the set $Dom(R) = \{x \in X \mid (x, A) \in R \text{ for some } A \in P(X)\}$ and codomain of *R* is the set $Cod(R) = \{A \in P(X) \mid (x, A) \in R \text{ for some } x \in X\}$. Also, for any $x \in X$, we define $x_R = \{A \mid (x, A) \in R\}$.

The notion of hypergraph has been introduced around 1960 as a generalization of graph and one of the initial concerns was to extend some classical results of graph theory. In [2], there is a very good presentation of graph and hypergraph theory. Connections between hypergraphs and hyperstructures are studied by many authors, for example, see [4, 8, 10, 11]. A *hypergraph* is a pair $\Gamma = (X, A)$, where X is a finite set of vertices and $A = \{A_1, \ldots, A_m\}$ is a set of hyperedges which are non-empty subsets of X. Figure 1 is an example of a hypergraph with 2 hyperedges $A_1 = \{1, 2, 3\}$ and $A_2 = \{2, 3, 4\}$.

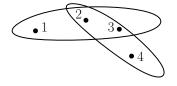


Figure 1: An example of hypergraph with 2 hyperedges.

2. Partial g-Hypergroupoids

In this section we generalize the notion of hypergraphs to generalized hypergraphs and then we associate a partial hypergroupoid to each generalized hypergraph.

Definition 2.1. [12] A generalized hypergraph or, in short, a g-hypergraph is an ordered pair $\mathcal{G} = (X, R)$, where X is a non-empty set and R is an h-relation on X. The elements of X are called the vertices and the sets in $\mathcal{E} = Cod(R)$ are called the hyperedges of the g-hypergraph.

It is worth mentioning that in this paper we deal only with g-hypergraphs $\mathcal{G} = (X, R)$ in which X is a finite set. A g-hypergraph $\mathcal{G} = (X, R)$ is called *v-linked* if $x_R \neq \emptyset$, for all $x \in X$ and it is called *plenary* if $\bigcup_{A \in Cod(R)} A = X$.

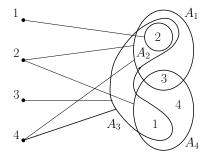


Figure 2: An example of a g-hypergraph.

Let $\mathcal{G} = (X, R)$ be a g-hypergraph. The partial hypergroupoid $X_{\mathcal{G}} = (X, \circ)$ where the partial hyperoperation \circ is defined by

$$x \circ y = \mathcal{N}(x) \bigcup \mathcal{N}(y)$$
, for all $(x, y) \in X^2$,

is called the *partial g-hypergroupoid* associated with \mathcal{G} , where $\mathcal{N}(x) = \bigcup_{(x,A)\in \mathbb{R}} A$. In the case that \circ is a hyperoperation, $X_{\mathcal{G}}$ is called a *g-hypergroupoid*.

Lemma 2.2. X_G is a g-hypergroupoid if and only if G is v-linked.

Proof. It is obvious. \Box

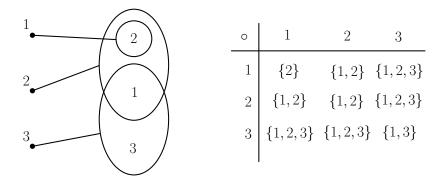
Remark 2.3. In [4], Corsini associated to a given hypergraph $\Gamma = (H, \{A_i\}_i)$ an h.g. hypergroupoid $H_{\Gamma} = (H, \circ)$ where the hyperoperation \circ has defined as follows:

$$x \circ y = E(x) \bigcup E(y)$$
, for all $x, y \in H^2$,

where $E(x) = \bigcup_{x \in A_i} A_i$. Let $\Gamma = (H, \{A_i\}_i)$ be a hypergraph. If we define the h-relation $R = \{(x, A_i) \mid x \in A_i\}$ on H, then

 Γ becomes a v-linked and plenary g-hypergraph. Thus, every hypergraph can be considered as a g-hypergraph and there is no difference between h.g. hypergroupoids and g-hypergroupoids when we deal with hypergraphs. In other words, each h.g. hypergroupoid can be considered as a g-hypergroupoid. As we will see, h.g. hypergroupoids does not coincide with g-hypergroupoids. For example, by Theorem 3 of [4], each h.g. hypergroupoid is a join space whereas there are g-hypergroupoids which are not join spaces (see Example 2.4).

Example 2.4. Consider the following g-hypergraph and the table of it's associated g-hypergroupoid:



It is not difficult to see that $(X = \{1, 2, 3\}, \circ)$ is a hypergroup. We have $1/3 = \{1, 2, 3\}$ and $3/1 = \{3\}$. It implies that $1/3 \cap 3/1 \neq \emptyset$, but $1 \circ 1 \cap 3 \circ 3 = \emptyset$. Hence (X, \circ) is not a join space.

Here, we give an example of a g-hypergraph such that it's associated g-hypergroup is a join space.

Example 2.5. In the following, we have drawing a g-hypergraph G and the table of the g-hypergroupoid associated with G:

M. Farshi et al. / Filomat 31:15 (2017), 4819-4831



One can check that (X, \circ) is a hypergroup. On the other hand, we have $x \circ y \cap z \circ w \neq \emptyset$, for all $x, y, z, w \in X$. This implies that (X, \circ) is a join space.

Definition 2.6. *A partial hypergroupoid* (X, \circ) *is called separable if the following property holds:*

 $x \circ y = x \circ x \bigcup y \circ y$, for all $x, y \in X$.

Remark 2.7. Let (X, \circ) be a separable hypergroupoid. Define $R = \{(x, x \circ x) \mid x \in X\}$. Then, (X, \circ) is the *g*-hypergroupoid associated with the *v*-linked *g*-hypergraph $\mathcal{G} = (X, R)$. Therefore, every separable hypergroupoid can be considered as a *g*-hypergroupoid.

The next lemma can be proved easily by using the previous notions.

Lemma 2.8. Let (X, \circ) be a partial g-hypergroupoid. Then, for all $x, y \in X$ and $A \subseteq X$ we have

(1) $x \circ y = y \circ x$, (2) $(x \circ x) \circ (x \circ x) = \bigcup_{t \in x \circ x} t \circ t$, (3) $(A \circ A) \circ (A \circ A) = \bigcup_{t \in A \circ A} t \circ t$.

Lemma 2.9. Let (X, \circ) be a separable hypergroupoid. Then

- (1) for each $x, y, z \in X$ we have $(x \circ y) \circ z = [(x \circ x) \circ (x \circ x)] \cup z \circ z \cup [(y \circ y) \circ (y \circ y)],$ $x \circ (y \circ z) = [(y \circ y) \circ (y \circ y)] \cup x \circ x \cup [(z \circ z) \circ (z \circ z)].$
- (2) (X, \circ) is an H_v -semigroup.

Proof. (1) For each $x, y, z \in X$ we have

$$(x \circ y) \circ z = (x \circ x \bigcup y \circ y) \circ z = (x \circ x) \circ z \bigcup (y \circ y) \circ z,$$

and

$$x \circ (y \circ z) = (y \circ z) \circ x = (y \circ y \bigcup z \circ z) \circ x = (y \circ y) \circ x \bigcup (z \circ z) \circ x.$$

Moreover,

$$(x \circ x) \circ z = \bigcup_{t \in x \circ x} t \circ z = \left(\bigcup_{t \in x \circ x} t \circ t\right) \bigcup z \circ z = \left[(x \circ x) \circ (x \circ x)\right] \bigcup z \circ z.$$

Therefore, we have

$$(x \circ y) \circ z = \left[(x \circ x) \circ (x \circ x) \right] \bigcup z \circ z \bigcup \left[(y \circ y) \circ (y \circ y) \right]$$

and

$$x \circ (y \circ z) = \Big[(y \circ y) \circ (y \circ y) \Big] \bigcup x \circ x \bigcup \Big[(z \circ z) \circ (z \circ z) \Big].$$

(2) We have $\emptyset \neq [(y \circ y) \circ (y \circ y)] \subseteq (x \circ y) \circ z \cap x \circ (y \circ z)$. This completes the proof. \Box

Notice that every partial g-hypergroupoid is separable and so we have the following corollary.

Corollary 2.10. *Every g-hypergroupoid is an H_v-semigroup.*

Corollary 2.11. A partial g-hypergroupoid X_G is an H_v -semigroup if and only if G is v-linked.

Theorem 2.12. Let $\mathcal{G} = (X, R)$ be a v-linked g-hypergraph. Then, the g-hypergroupoid $X_{\mathcal{G}} = (X, \circ)$ is an H_v -group if and only if \mathcal{G} is plenary.

Proof. Suppose that $X_{\mathcal{G}} = (X, \circ)$ is an H_v -group. It suffices to show that $X \subseteq \bigcup_{A \in Cod(R)} A$. Let $x \in X$ be an arbi-

trary element. By assumption, we have $x \circ X = X$ and so there is $y \in X$ such that $x \in x \circ y = \mathcal{N}(x) \bigcup \mathcal{N}(y)$. Thus, there is $A \in Cod(R)$ such that $x \in A \subseteq \bigcup_{A \in Cod(R)} A$.

Conversely, let G be plenary and $x \in X$ be an arbitrary element. By Corollary 2.10, it is sufficient to show that $x \circ X = X \circ x = X$. It is obvious that $x \circ X \subseteq X$. We show that $X \subseteq x \circ X$. Since G is plenary, if $z \in X$ is an arbitrary element, then there is $A \in Cod(R)$ such that $z \in A$. Since $A \in Cod(R)$, it follows that there is $y \in X$ such that $(y, A) \in R$ and so we have $z \in x \circ y \subseteq x \circ X$. This implies that $X \subseteq x \circ X$ and so $x \circ X = X$. Clearly $X \circ x = X$ since \circ is commutative. Therefore, X_G is an H_v -group. \Box

Corollary 2.13. X_G is a reproductive g-hypergroupoid if and only if G is v-linked and plenary.

Theorem 2.14. *Let* (X, \circ) *be a separable hypergroupoid. Then,* \circ *is associative if and only if the following conditions hold:*

- (1) $x \circ x \subseteq (x \circ x) \circ (x \circ x)$, for all $x \in X$,
- (2) $[(x \circ x) \circ (x \circ x)] x \circ x \subseteq (y \circ y) \circ (y \circ y), \text{ for all } x, y \in X.$

Proof. Suppose that \circ is associative and x, y are arbitrary elements of X. First, we show that $x \circ x \subseteq (x \circ x) \circ (x \circ x)$. Suppose that $x \circ x = \{x_1, \ldots, x_n\}$ and $x_i \in x \circ x$ is an arbitrary element. Since $x \circ x_i = x \circ x \bigcup x_i \circ x_i$, it follows that $x_i \in x \circ x_i$ and so $x_i \in x \circ (x \circ x_i)$. Associativity of \circ implies that

$$x_i \in (x \circ x) \circ x_i = x_1 \circ x_1 \bigcup \ldots \bigcup x_n \circ x_n = (x \circ x) \circ (x \circ x).$$

Thus (1) holds. Now, to prove the condition (2) we have

$$(y \circ y) \circ x = \bigcup_{t \in y \circ y} t \circ x = \left(\bigcup_{t \in y \circ y} t \circ t\right) \bigcup x \circ x = \left[(y \circ y) \circ (y \circ y)\right] \bigcup x \circ x, y \circ (y \circ x) = \bigcup_{t \in y \circ x} y \circ t = \bigcup_{t \in y \circ x} (y \circ y \bigcup t \circ t) = y \circ y \bigcup \left(\bigcup_{t \in y \circ y} t \circ t\right) \bigcup \left(\bigcup_{t \in x \circ x} t \circ t\right) \\ = \left[(y \circ y) \circ (y \circ y)\right] \bigcup \left[(x \circ x) \circ (x \circ x)\right].$$

Consequently, (2) holds.

Conversely, suppose that x, y, z are arbitrary elements of X and the conditions (1) and (2) hold. From point (1) of Lemma 2.9, we have

$$(x \circ y) \circ z = \left[(x \circ x) \circ (x \circ x) \right] \bigcup z \circ z \bigcup \left[(y \circ y) \circ (y \circ y) \right],$$

and

$$\kappa \circ (y \circ z) = \left[(y \circ y) \circ (y \circ y) \right] \bigcup x \circ x \bigcup \left[(z \circ z) \circ (z \circ z) \right].$$

By setting $A = [(x \circ x) \circ (x \circ x)] \cup z \circ z$ and $B = [(z \circ z) \circ (z \circ z)] \cup x \circ x$ we have $(x \circ y) \circ z = [(y \circ y) \circ (y \circ y)] \cup A$ and $x \circ (y \circ z) = [(y \circ y) \circ (y \circ y)] \cup B$. By using the conditions (1) and (2) we have

$$A = \left(\begin{bmatrix} (x \circ x) \circ (x \circ x) \end{bmatrix} - x \circ x \right) \bigcup x \circ x \bigcup z \circ z$$

$$\subseteq \begin{bmatrix} (z \circ z) \circ (z \circ z) \end{bmatrix} \bigcup z \circ z \bigcup x \circ x$$

$$= \begin{bmatrix} (z \circ z) \circ (z \circ z) \end{bmatrix} \bigcup x \circ x = B.$$

In a similar way the inverse inclusion is proved and then \circ is associative. \Box

Theorem 2.15. *Let* (X, \circ) *be a separable hypergroupoid. Then,* \circ *is associative if and only if the following conditions hold:*

(1)
$$A \circ A \subseteq (A \circ A) \circ (A \circ A)$$
, for all $A \subseteq X$,

(2)
$$|(A \circ A) \circ (A \circ A)| - A \circ A \subseteq (B \circ B) \circ (B \circ B)$$
, for all $A, B \subseteq X$.

Proof. Suppose that \circ is associative and *A*, *B* are arbitrary subsets of *X*. Then, by using Theorem 2.14 we have

$$A \circ A = \bigcup_{a \in A} a \circ a \subseteq \bigcup_{a \in A} (a \circ a) \circ (a \circ a) = \bigcup_{a \in A} \left(\bigcup_{t \in a \circ a} t \circ t \right) = \bigcup_{t \in A \circ A} t \circ t$$
$$= (A \circ A) \circ (A \circ A).$$

Hence, (1) is true. For every $b \in B$ we have

$$\left[(A \circ A) \circ (A \circ A) \right] - A \circ A \subseteq \bigcup_{a \in A} \left[\left((a \circ a) \circ (a \circ a) \right) - a \circ a \right] \subseteq (b \circ b) \circ (b \circ b).$$

On the other hand, we have $(b \circ b) \circ (b \circ b) \subseteq (B \circ B) \circ (B \circ B)$. Hence, the assertion (2) holds too.

Conversely, suppose that the assertions (1) and (2) hold for all subsets *A* and *B* of *X*. Let *x*, *y* be arbitrary elements of *X*. By setting $A = \{x\}$ and $B = \{y\}$, the assertions (1) and (2) of Theorem 2.14 hold and therefore \circ is associative. \Box

Corollary 2.16. If a reproductive g-hypergroupoid $X_G = (X, \circ)$ satisfies anyone of the following conditions:

$$(x \circ x) \circ (x \circ x) = x \circ x$$
, for all $x \in X$,
 $(x \circ x) \circ (x \circ x) = X$, for all $x \in X$,

then it is a hypergroup.

Example 2.17. The g-hypergroupoid associated with the g-hypergraph of Figure 2 has the following table:

0	-		3	-
1	{2}	Х	{1,2}	{1,2,3}
2	Х	Х	X	X
3	{1,2}	Х	{1,2}	{1,2,3}
4		Х	$\{1, 2, 3\}$	$\{1, 2, 3\}$

where $X = \{1, 2, 3, 4\}$. It is easy to verify that $(x \circ x) \circ (x \circ x) = X$, for all $x \in X$. On the other hand, for every $x \in X$ we have $x \circ X = X \circ x = X$. So, by Corollary 2.16, (X, \circ) is a hypergroup.

Example 2.18. Consider the g-hypergroupoid of Example 2.4. By Theorem 2.14, (X, \circ) is a hypergroup. Also, we have $(1 \circ 1) \circ (1 \circ 1) = \{1, 2\}$. This shows that the converse of Corollary 2.16 is not true.

3. Higher-order Hypergroupoids

Let (X, \circ) be a separable hypergroupoid. We construct a sequence of hypergroupoids $X_0 = (X, \circ_0), X_1 = (X, \circ_1), X_2 = (X, \circ_2), \dots$ recursively as follows: for all $x, y \in X$ we define $x \circ_0 y = x \circ y, x \circ_{k+1} x = (x \circ_k x) \circ_k (x \circ_k x)$ and $x \circ_{k+1} y = x \circ_{k+1} x \bigcup y \circ_{k+1} y$, where $k \ge 0$. Set $\mathcal{N}_k(x) = x \circ_k x$. We define $\mathcal{N}_k(A) = \bigcup_{a \in A} \mathcal{N}_k(a)$, where A is

a subset of X. The following properties are immediate:

- (1) $\mathcal{N}_k(A) = A \circ_k A$, for all $A \subseteq X$,
- (2) $\mathcal{N}_{k+1}(x) = \mathcal{N}_k(\mathcal{N}_k(x))$, for all $x \in X$ and $k \ge 0$,

- (3) $\mathcal{N}_k(\mathcal{N}_{k+1}(x)) = \mathcal{N}_{k+1}(\mathcal{N}_k(x))$, for all $x \in X$ and $k \ge 0$,
- (4) $\mathcal{N}_{k+1}(A) = \mathcal{N}_k(\mathcal{N}_k(A))$, for all $A \subseteq X$ and $k \ge 0$,
- (5) $A \subseteq B$ implies that $\mathcal{N}_k(A) \subseteq \mathcal{N}_k(B)$, for all $A, B \subseteq X$,
- (6) $\mathcal{N}_k(x) = \mathcal{N}_{k+1}(x)$ implies that $\mathcal{N}_k(x) = \mathcal{N}_r(x)$, for all $r \ge k$.

By Theorem 2.14, X_k is a semihypergroup if and only if the following conditions hold:

- (α) $\mathcal{N}_k(x) \subseteq \mathcal{N}_{k+1}(x)$, for all $x \in X$,
- (β) $\mathcal{N}_{k+1}(x) \mathcal{N}_k(x) \subseteq \mathcal{N}_{k+1}(y)$, for all $x, y \in X$.

Lemma 3.1. The above hyperoperation \circ_k has the following properties:

- (1) $A \circ_{k+1} A = (A \circ_k A) \circ_k (A \circ_k A)$, for all $A \subseteq X$,
- (2) $x \circ_{k+2} x = ((x \circ_{k+1} x) \circ_k (x \circ_{k+1} x)) \circ_k ((x \circ_{k+1} x) \circ_k (x \circ_{k+1} x)), \text{ for all } x \in X.$

Proof. (1) Let *A* be a subset of *X*. Then,

$$A \circ_{k+1} A = \mathcal{N}_{k+1}(A) = \mathcal{N}_k(\mathcal{N}_k(A)) = \mathcal{N}_k(A) \circ_k \mathcal{N}_k(A) = (A \circ_k A) \circ_k (A \circ_k A).$$

(2) The result follows from part (1) and the definition of \circ_{k+2} . \Box

Theorem 3.2. *Let* (X, \circ) *be a separable hypergroupoid.*

- (1) If $X_k = (X, \circ_k)$ satisfies condition (α) for some $k \ge 0$, then $\mathcal{N}_r(x) \subseteq \mathcal{N}_{r+1}(x)$, for all $x \in X$ and $r \ge k$.
- (2) If $X_k = (X, \circ_k)$ satisfies condition (β) for some $k \ge 0$, then $\mathcal{N}_{r+1}(x) \subseteq \mathcal{N}_r(x)$, for all $x \in X$ and r > k.

Proof. (1) Let $x \in X$ be an arbitrary element. We prove the result by induction on r. If r = k, then there is nothing to prove. Assume that $N_{r-1}(x) \subseteq N_r(x)$ for r > k, the induction hypothesis. Thus we have

$$\mathcal{N}_r(x) = \mathcal{N}_{r-1}(\mathcal{N}_{r-1}(x)) \subseteq \mathcal{N}_{r-1}(\mathcal{N}_r(x)) = \mathcal{N}_r(\mathcal{N}_{r-1}(x))$$
$$\subseteq \mathcal{N}_r(\mathcal{N}_r(x)) = \mathcal{N}_{r+1}(x).$$

(2) Let $x \in X$ be an arbitrary element. First, we show that $N_k(N_{k+1}(x)) \subseteq N_{k+1}(x)$. Assume to the contrary that $t \in N_k(N_{k+1}(x)) - N_{k+1}(x)$. Then, $t \notin N_{k+1}(x)$ and there is $a \in N_{k+1}(x)$ such that $t \in N_k(a)$. Since $a \in N_{k+1}(x)$, it follows that there is $b \in N_k(x)$ such that $a \in N_k(b)$ and so $t \in N_k(N_k(b)) = N_{k+1}(b)$. On the other hand, $t \notin N_{k+1}(x)$ implies that $t \notin N_k(b)$ and so $t \in N_{k+1}(b) - N_k(b)$. By hypothesis we have $N_{k+1}(b) - N_k(b) \subseteq N_{k+1}(x)$ which implies that $t \in N_{k+1}(x)$ contradicting to $t \notin N_{k+1}(x)$. Now, we prove the result by induction on r. We have $N_{k+2}(x) = N_k(N_k(N_{k+1}(x))) \subseteq N_k(N_{k+1}(x)) \subseteq N_{k+1}(x)$. So, we are done with the initial step. Assume that $N_{r+1}(x) \subseteq N_r(x)$ for r > k, the induction hypothesis. We obtain

$$\mathcal{N}_{r+2}(x) = \mathcal{N}_{r+1}(\mathcal{N}_{r+1}(x)) \subseteq \mathcal{N}_{r+1}(\mathcal{N}_r(x)) = \mathcal{N}_r(\mathcal{N}_{r+1}(x))$$
$$\subseteq \mathcal{N}_r(\mathcal{N}_r(x)) = \mathcal{N}_{r+1}(x).$$

Corollary 3.3. If (X, \circ_k) is a separable semihypergroup, then $\mathcal{N}_r(x) = \mathcal{N}_{r+1}(x)$, for all $x \in X$ and r > k.

Corollary 3.4. If (X, \circ_k) is a separable semihypergroup, then $\mathcal{N}_r(A) = \mathcal{N}_{r+1}(A)$, for all $A \subseteq X$ and r > k.

Next example shows that the converse of Corollary 3.3 is not true.

Example 3.5. Let $(X = \{1, 2, 3\}, \circ)$ be a hypergroupoid with the following table:

We can see that $N_0(1) = \{2\}$ and $N_1(1) = \{1,3\}$. Since $N_0(x) \not\subseteq N_1(x)$ by Theorem 2.14, (X, \circ) is not a semihypergroup. We can check that $N_k(x) = N_{k+1}(x)$, for all $x \in X$ and k > 0. This means that the converse of Corollary 3.3 is not true.

Proposition 3.6. If there exists a natural number k such that $\mathcal{N}_k(x) = \mathcal{N}_{k+1}(x)$, for all $x \in X$, then

- (1) $X_k = (X, \circ_k)$ is a semihypergroup,
- (2) $X_r = X_k$, for all $r \ge k$.

At the beginning of this section, we construct a sequence of separable hypergroupoids $X_0 = (X, \circ_0), X_1 = (X, \circ_1), X_2 = (X, \circ_2), \dots$ by a given separable hypergroupoid (X, \circ) . Let \mathcal{G} be a v-linked g-hypergraph and $X_{\mathcal{G}}$ be the g-hypergroupoid associated with \mathcal{G} . Set $X_0 = X_{\mathcal{G}}$. For k > 0, we define an h-relation R_k on X as follows:

$$R_k = \{(x, x \circ_k x) \mid x \in X\}$$

and therefore we have a sequence $\mathcal{G}_0, \mathcal{G}_1, \mathcal{G}_2, ...$ of g-hypergraphs where $\mathcal{G}_0 = \mathcal{G}$ and $\mathcal{G}_k = (X, R_k)$, for k > 0. It is easy to verify that X_k is the g-hypergroupoid associated with \mathcal{G}_k . Now, by Corollary 3.3 and Proposition 3.6 we conclude that if X_k is an associative g-hypergroupoid, then $\mathcal{G}_r = \mathcal{G}_{k+1}$ and $X_r = X_k$, for all r > k. For a given g-hypergraph \mathcal{G} we define

$$n(\mathcal{G}) = \min\{k \mid \mathcal{N}_k(x) = \mathcal{N}_{k+1}(x) \text{ for all } x \in X\}$$

and

$$s(\mathcal{G}) = \min\{k \mid X_k \text{ is a semihypergroup}\}.$$

Obviously, $s(\mathcal{G}) \le n(\mathcal{G})$. Consider the g-hypergraph \mathcal{G} of Figure 2. In Example 2.17 we showed that $X_{\mathcal{G}}$ is a hypergroup and so we have $s(\mathcal{G}) = 0$ whereas $n(\mathcal{G}) = 1$. This means that the inequality $s(\mathcal{G}) \le n(\mathcal{G})$ may be hold strictly.

4. Quotient g-Hypergroupoids

In this section, by considering a regular equivalence relation on a g-hypergroupoid, we define a quotient g-hypergroupoid. Next, we investigate some relationships between diagonal direct product of hypergroupoids and direct product of g-hypergraphs. In this regards we recall some definitions and results which we need for the development of the rest of paper.

Let (*X*, *) be a hypergroupoid and ρ be an equivalence relation on *X*. If *A* and *B* are non-empty subsets of *X*, then $A\overline{\rho}B$ means that for all $a \in A$, there exists $b \in B$ such that $a\rho b$ and for all $b' \in B$ there exists $a' \in A$ such that $a'\rho b'$. We say that ρ is *regular* if for all $a \in X$ from $x\rho y$, it follows that $(a * x)\overline{\rho}(a * y)$ and $(x * a)\overline{\rho}(y * a)$. For an equivalence relation ρ on *X*, we may use $\rho(x)$ to denote the equivalence class of $x \in X$. Moreover, generally, if *A* is a non-empty subset of *X*, then $\rho(A) = \bigcup \{\rho(x) \mid x \in A\}$. Let X/ρ be the family $\{\rho(x) \mid x \in X\}$ of classes of ρ . By Theorem 2.5.2 of [6], if (*X*, *) is a hypergroupoid and ρ is a regular equivalence relation on *X*, then the following hyperoperation on X/ρ is well defined:

 $\rho(x) \odot \rho(y) = \{ \rho(z) \mid z \in x * y \}.$

Let $\mathcal{G} = (X, R)$ be a v-linked g-hypergraph and (X, \circ) be the g-hypergroupoid associated with \mathcal{G} . We define the relation ρ_{c} on X as follows:

 $x \rho_{c} y$ if and only if $x_{R} = y_{R}$.

Lemma 4.1. The relation ρ_{G} is a regular equivalence relation.

Proof. Obviously, $\rho_{\mathcal{G}}$ is an equivalence relation. Let $z \in X$ be an arbitrary element and $x\rho_{\mathcal{G}} y$. First, we show that $x \circ z = y \circ z$ which implies that $(x \circ z)\overline{\rho}_{\mathcal{G}}(y \circ z)$. Let $r \in x \circ z = \mathcal{N}(x) \bigcup \mathcal{N}(z)$ be an arbitrary element. In the case that $r \in \mathcal{N}(z)$, there is nothing to prove. If $r \in \mathcal{N}(x)$, then there is a hyperedge A such that $(x, A) \in R$ and $r \in A$. By assumption, we have $x_R = y_R$ and therefore we have $(y, A) \in R$. This implies that $r \in \mathcal{N}(y)$. Hence $x \circ z \subseteq y \circ z$. The reverse inclusion can be shown similarly. In a similar way we can show that $(z \circ x)\overline{\rho}_{\mathcal{G}}(z \circ y)$.

Definition 4.2. Let $\mathcal{G}_1 = (X_1, R_1)$ and $\mathcal{G}_2 = (X_2, R_2)$ be two *g*-hypergraphs. Then, the direct product of \mathcal{G}_1 and \mathcal{G}_2 is the *g*-hypergraph $\mathcal{G}_1 \times \mathcal{G}_2 = (X_1 \times X_2, R_1 \times R_2)$ where $R_1 \times R_2 = \{(x, y), A \times B\} \mid (x, A) \in R_1, (y, B) \in R_2\}$.

Lemma 4.3. Let $\mathcal{G}_1 = (X_1, R_1)$ and $\mathcal{G}_2 = (X_2, R_2)$ be two g-hypergraphs. Then, for every $(x, y), (u, v) \in X_1 \times X_2$,

$$(x, y)\rho_{\mathcal{G}_1 \times \mathcal{G}_2}(u, v) \Leftrightarrow x\rho_{\mathcal{G}_1} u \text{ and } y\rho_{\mathcal{G}_2} v.$$

Proof. It is obvious. \Box

Definition 4.4. Let (X, *) and (Y, \circ) be two hypergroupoids. We define the hyperoperation \times_d on the Cartesian product $X \times Y$ as follows:

$$(x_1, y_1) \times_d (x_2, y_2) = \Delta((x_1, y_1)) \cup \Delta((x_2, y_2)),$$

where $\Delta((a, b)) = \{(x, y) \mid x \in a * a \text{ and } y \in b \circ b\}$. The hypergroupoid $(X \times Y, \times_d)$ is called the diagonal direct product of (X, *) and (Y, \circ) .

Theorem 4.5. Let $(X_1, *)$ and (X_2, \circ) be the g-hypergroupoids associated with the v-linked g-hypergraphs $\mathcal{G}_1 = (X_1, R_1)$ and $\mathcal{G}_2 = (X_2, R_2)$, respectively. Then, the diagonal direct product of $(X_1, *)$ and (X_2, \circ) is the g-hypergroupoid associated with $\mathcal{G}_1 \times \mathcal{G}_2$.

Proof. Let $(X_1 \times X_2, \times_d)$ be the diagonal direct product of $(X_1, *)$ and (X_2, \circ) . It suffices to show that

$$(x, y) \times_d (x, y) = \bigcup \{A \times B \mid ((x, y), A \times B) \in R_1 \times R_2\},\$$

where (x, y) is an arbitrary element of $X_1 \times X_2$. This can be seen by the following argument. Let $(r, s) \in (x, y) \times_d$ (x, y) be an arbitrary element. Then, $r \in x * x$ and $s \in y \circ y$. Since $(X_1, *)$ and (X_2, \circ) are the g-hypergroupoids associated with the g-hypergraphs $\mathcal{G}_1 = (X_1, R_1)$ and $\mathcal{G}_2 = (X_2, R_2)$, respectively, there are hyperedges A and B such that $(x, A) \in R_1$, $(y, B) \in R_2$ and $(r, s) \in A \times B$. By the definition of $R_1 \times R_2$ we have $((x, y), A \times B) \in R_1 \times R_2$ and therefore $(r, s) \in \bigcup \{A \times B | ((x, y), A \times B) \in R_1 \times R_2\}$. Hence $(x, y) \times_d (x, y) \subseteq \bigcup \{A \times B | ((x, y), A \times B) \in R_1 \times R_2\}$. The reverse inclusion can be shown similarly. \Box

Definition 4.6. Let $(X_1, *)$ and (X_2, \circ) be two hypergroupoids. A map $\varphi : X_1 \to X_2$ is called a homomorphism if for all $x, y \in X_1$ we have $\varphi(x * y) = \varphi(x) \circ \varphi(y)$. If φ is one to one (onto) we say that φ is a monomorphism (epimorphism). If there exists a one to one epimorphism from X_1 onto X_2 we say that X_1 is isomorphic to X_2 and we write $X_1 \cong X_2$.

Theorem 4.7. Let $(X_1, *)$ and (X_2, \circ) be the g-hypergroupoids associated with the v-linked g-hypergraphs $G_1 = (X_1, R_1)$ and $G_2 = (X_2, R_2)$, respectively. Then,

$$X_1/\rho_{\mathcal{G}_1} \times_d X_2/\rho_{\mathcal{G}_2} \cong (X_1 \times_d X_2)/\rho_{\mathcal{G}_1 \times \mathcal{G}_2}$$

4827

Proof. We equip $X_1/\rho_{\mathcal{G}_1}$, $X_2/\rho_{\mathcal{G}_2}$ and $(X_1 \times_d X_2)/\rho_{\mathcal{G}_1 \times \mathcal{G}_2}$ with hyperoperations \odot , \square and \odot , respectively. Define

$$\varphi: X_1/\rho_{\mathcal{G}_1} \times_d X_2/\rho_{\mathcal{G}_2} \to (X_1 \times_d X_2)/\rho_{\mathcal{G}_1 \times \mathcal{G}_2}$$

by

$$\varphi\left((\rho_{\mathcal{G}_1}(x),\rho_{\mathcal{G}_2}(y))\right) = \rho_{\mathcal{G}_1 \times \mathcal{G}_2}(x,y), \text{ for all } (x,y) \in X_1 \times X_2.$$

First, we prove φ is well defined. Consider

$$(\rho_{\mathcal{G}_1}(x), \rho_{\mathcal{G}_2}(y)) = (\rho_{\mathcal{G}_1}(x'), \rho_{\mathcal{G}_2}(y')).$$

Hence, we have $x_{R_1} = x'_{R_1}$ and $y_{R_2} = y'_{R_2}$. Since

$$\begin{array}{ll} A \times B \in (x,y)_{R_1 \times R_2} & \Leftrightarrow A \in x_{R_1}, B \in y_{R_2} \Leftrightarrow A \in x'_{R_1}, B \in y'_{R_2} \\ & \Leftrightarrow A \times B \in (x',y')_{R_1 \times R_2}, \end{array}$$

we obtain $\rho_{\mathcal{G}_1 \times \mathcal{G}_2}((x, y)) = \rho_{\mathcal{G}_1 \times \mathcal{G}_2}((x', y'))$, i.e., φ is well defined. Now, we check that φ is one to one. Suppose that $\rho_{\mathcal{G}_1 \times \mathcal{G}_2}((x, y)) = \rho_{\mathcal{G}_1 \times \mathcal{G}_2}((x', y'))$. We obtain

$$A \in x_{R_1}, B \in y_{R_2} \quad \Leftrightarrow A \times B \in (x, y)_{R_1 \times R_2} \Leftrightarrow A \times B \in (x', y')_{R_1 \times R_2}$$
$$\Leftrightarrow A \in x'_{R_1}, B \in y'_{R_2}.$$

This implies that $(\rho_{\mathcal{G}_1}(x), \rho_{\mathcal{G}_2}(y)) = (\rho_{\mathcal{G}_1}(x'), \rho_{\mathcal{G}_2}(y'))$. Clearly φ is onto. We need only to show that φ is a homomorphism. Before that we show that $\varphi(\Delta((\rho_{\mathcal{G}_1}(x), \rho_{\mathcal{G}_2}(y)))) = \rho_{\mathcal{G}_1 \times \mathcal{G}_2}(\Delta(x, y))$, for all $(x, y) \in X_1 \times X_2$. We know that

$$\begin{split} &\Delta \Big(\big(\rho_{\mathcal{G}_1}(x), \rho_{\mathcal{G}_2}(y) \big) \Big) \\ &= \Big\{ \big(\rho_{\mathcal{G}_1}(r), \rho_{\mathcal{G}_2}(s) \big) \mid \rho_{\mathcal{G}_1}(r) \in \rho_{\mathcal{G}_1}(x) \odot \rho_{\mathcal{G}_1}(x), \rho_{\mathcal{G}_2}(s) \in \rho_{\mathcal{G}_2}(y) \boxdot \rho_{\mathcal{G}_2}(y) \Big\}, \end{split}$$

and so we have

$$\begin{split} &\varphi \Big(\Delta \Big(\big(\rho_{\mathcal{G}_1}(x), \rho_{\mathcal{G}_2}(y) \big) \Big) \Big) \\ &= \Big\{ \rho_{\mathcal{G}_1 \times \mathcal{G}_2}(r, s) \Big) \mid \rho_{\mathcal{G}_1}(r) \in \rho_{\mathcal{G}_1}(x) \odot \rho_{\mathcal{G}_1}(x), \rho_{\mathcal{G}_2}(s) \in \rho_{\mathcal{G}_2}(y) \boxdot \rho_{\mathcal{G}_2}(y) \Big\} \end{split}$$

But $\rho_{\mathcal{G}_1}(r) \in \rho_{\mathcal{G}_1}(x) \odot \rho_{\mathcal{G}_1}(x)$ if and only if there is $u \in x * x$ such that $\rho_{\mathcal{G}_1}(r) = \rho_{\mathcal{G}_1}(u)$ and $\rho_{\mathcal{G}_2}(s) \in \rho_{\mathcal{G}_2}(y) \Box \rho_{\mathcal{G}_2}(y)$ if and only if there is $v \in y \circ y$ such that $\rho_{\mathcal{G}_2}(s) = \rho_{\mathcal{G}_2}(v)$. Now, by using Lemma 4.3 we have

$$\begin{split} \varphi \Big(\Delta \Big(\big(\rho_{\mathcal{G}_1}(x), \rho_{\mathcal{G}_2}(y) \big) \Big) &= \Big\{ \rho_{\mathcal{G}_1 \times \mathcal{G}_2}(r, s) \Big) \mid r \in x * x, s \in y \circ y \Big\} \\ &= \Big\{ \rho_{\mathcal{G}_1 \times \mathcal{G}_2}(r, s) \Big) \mid (r, s) \in \Delta \Big((x, y) \Big) \Big\} \\ &= \rho_{\mathcal{G}_1 \times \mathcal{G}_2} \Big(\Delta (x, y) \Big). \end{split}$$

Now, by using the above argument, for every elements $(x, y), (x', y') \in X_1 \times X_2$ we obtain

$$\begin{split} &\varphi\left((\rho_{g_1}(x),\rho_{g_2}(y))\times_d(\rho_{g_1}(x'),\rho_{g_2}(y'))\right)\\ &=\varphi\left(\Delta\left((\rho_{g_1}(x),\rho_{g_2}(y))\right)\cup\Delta\left((\rho_{g_1}(x'),\rho_{g_2}(y'))\right)\right)\\ &=\rho_{g_1\times g_2}(\Delta(x,y))\cup\rho_{g_1\times g_2}(\Delta(x',y'))\\ &=\rho_{g_1\times g_2}(\Delta((x,y))\cup\Delta\left((x',y')\right))\\ &=\rho_{g_1\times g_2}(x,y)\times_d(x',y'))\\ &=\left\{\rho_{g_1\times g_2}(x,y)\mid (r,s)\in(x,y)\times_d(x',y')\right\}\\ &=\rho_{g_1\times g_2}(x,y)\right)\otimes\rho_{g_1\times g_2}(x',y')\\ &=\varphi\left((\rho_{g_1}(x),\rho_{g_2}(y))\right)\otimes\varphi\left((\rho_{g_1}(x'),\rho_{g_2}(y'))\right). \end{split}$$

Hence, φ is an isomorphism. \Box

Theorem 4.8. Let \mathcal{G} be a v-linked g-hypergraph and (X_2, \circ) be the g-hypergroupoid associated with \mathcal{G} . If $(X_1, *)$ is a separable hypergroupoid and $\varphi : X_1 \to X_2$ is an epimorphism, then there exists a regular equivalence relation μ on X_1 such that

$$X_1/\mu \cong X_2/\rho_G$$
.

Proof. Suppose that the relation μ on X_1 is defined by $x\mu y \Leftrightarrow \varphi(x)\rho_{\mathcal{G}}\varphi(y)$, for all $x, y \in X_1$. Since $\rho_{\mathcal{G}}$ is an equivalence relation on X_2 , then it is easy to check that μ is an equivalence relation on X_1 . Let $x, y, z \in X_1$ be arbitrary elements such that $x\mu y$. We show that $(x * z)\overline{\mu}(y * z)$. From $x\mu y$ it follows that $\varphi(x) \circ \varphi(x) = \varphi(y) \circ \varphi(y)$ which implies that $\varphi(x * x) = \varphi(y * y)$. Let $r \in x * z$ be an arbitrary element. Then, we have $\varphi(r) \in \varphi(x * z) = \varphi(x * x) \cup \varphi(z * z) = \varphi(y * y) \cup \varphi(z * z) = \varphi(y * z)$. Therefore, there is $t \in y * z$ such that $\varphi(r) = \varphi(t)$. This means that $r\mu t$ and so $(x * z)\overline{\mu}(y * z)$. In a similar way we can show that $(z * x)\overline{\mu}(z * y)$. Thus μ is regular. Now, let $\psi : X_1/\mu \to X_2/\rho_{\mathcal{G}}$ is defined by $\psi(\mu(x)) = \rho_{\mathcal{G}}(\varphi(x))$. Suppose that $x, y \in X_1$. Then,

$$\mu(x) = \mu(y) \Leftrightarrow \varphi(x)\rho_{\mathcal{G}}\varphi(y) \Leftrightarrow \rho_{\mathcal{G}}(\varphi(x)) = \rho_{\mathcal{G}}(\varphi(y)) \Leftrightarrow \psi(\mu(x)) = \psi(\mu(y)).$$

Thus ψ is well defined and one to one. Since φ is onto, it follows that ψ is onto. We equip X_1/μ and X_1/ρ_g with the hyperoperations \odot and \Box , respectively. Let $x, y \in X_1$. The following argument shows that ψ is a homomorphism.

$$\begin{split} \psi(\mu(x)) & \boxdot \ \psi(\mu(y)) &= \ \rho_{\mathcal{G}}(\varphi(x)) \boxdot \rho_{\mathcal{G}}(\varphi(y)) \\ &= \ \left\{ \rho_{\mathcal{G}}(\varphi(z)) \mid \varphi(z) \in \varphi(x) \circ \varphi(y) \right\} \\ &= \ \left\{ \rho_{\mathcal{G}}(\varphi(z)) \mid \varphi(z) = \varphi(t) \text{ for some } t \in x * y \right\} \\ &= \ \left\{ \rho_{\mathcal{G}}(\varphi(t)) \mid t \in x * y \right\} \\ &= \ \psi(\left\{ \mu(t) \mid t \in x * y \right\}) \\ &= \ \psi(\mu(x) \odot \mu(y)). \end{split}$$

Theorem 4.9. Let G be a v-linked g-hypergraph and $(X_1, *)$ be the g-hypergroupoid associated with G. If (X_2, \circ) is a separable hypergroupoid and $\varphi : X_1 \to X_2$ is a monomorphism, then there exists a regular equivalence relation μ' on $\varphi(X_1)$ such that

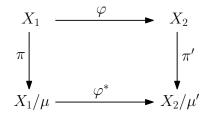
$$X_1/\rho_{\mathcal{G}} \cong \varphi(X_1)/\mu'$$

Proof. Suppose that the relation μ' on $\varphi(X_1)$ is defined by $\varphi(x)\mu'\varphi(y) \Leftrightarrow x\rho_{\mathcal{G}} y$, for all $x, y \in X_1$. It is easy to see that μ' is a regular equivalence relation. Define $\psi: X_1/\rho_{\mathcal{G}} \to \varphi(X_1)/\mu'$ by $\psi(\rho_{\mathcal{G}}(x)) = \mu'(\varphi(x))$. One can easily checks that ψ is an isomorphism. \Box

Lemma 4.10. Let ρ be a regular equivalence relation on a hypergroupoid (X, \circ) . Then, $\pi : X \to X/\rho$ which is defined by $\pi(x) = \rho(x)$, for all $x \in X$, is an epimorphism which is called canonical epimorphism.

Proof. The proof is straightforward. \Box

Theorem 4.11. Let $(X_1, *)$ and (X_2, \circ) be g-hypergroupoids associated with the v-linked g-hypergraphs $\mathcal{G}_1 = (X_1, R_1)$ and $\mathcal{G}_2 = (X_2, R_2)$, respectively. Let $\varphi : X_1 \to X_2$ be an epimorphism such that $\varphi(x)\rho_{\mathcal{G}_2}\varphi(y)$ implies $x\rho_{\mathcal{G}_1}y$. If $\mu = \{(x, y) \in X_1^2 \mid \varphi(x)\rho_{\mathcal{G}_2}\varphi(y)\}$ and $\mu' = \{(\varphi(x), \varphi(y)) \in X_2^2 \mid x\rho_{\mathcal{G}_1}y\}$, then there exists a unique homomorphism $\varphi^* : X_1/\mu \to X_2/\mu'$ such that the following diagram is commutative; i.e., $\pi' \circ \varphi = \varphi^* \circ \pi$, where π and π' denote the



canonical epimorphisms.

Proof. The proof of the fact that μ and μ' are regular equivalence relations is analogous to the corresponding part of the proof of Theorem 4.8 and we omit the details. We equip X_1/μ and X_2/μ' with the hyperoperations \odot and \Box , respectively. Let $\varphi^* : X_1/\mu \to X_2/\mu'$ is defined by $\varphi^*(\mu(x)) = \mu'(\varphi(x))$, for all $x \in X_1$. First, we show that φ^* is well defined. Let $x, y \in X_1$ and $\mu(x) = \mu(y)$. Then, $\varphi(x)\rho_{g_2} \varphi(y)$ and so $x\rho_{g_1} y$. Therefore, φ^* is well defined. Moreover, it is easy to prove that $\varphi^*(\mu(x) \odot \mu(y)) = \varphi^*(\mu(x)) \Box \varphi^*(\mu(y))$ and $\pi' \circ \varphi = \varphi^* \circ \pi$. Now, we show that φ^* is unique. Let $g : X_1/\mu \to X_2/\mu'$ be a homomorphism such that $\pi' \circ \varphi = g \circ \pi$. Then, for all $x \in X_1$, $g(\mu(x)) = g(\pi(x)) = \pi' \circ \varphi(x) = \varphi^* \circ \pi(x) = \varphi^*(\mu(x))$.

5. Fundamental Relation on a g-Hypergroupoid

One of the main tool to study hyperstructures is the fundamental relation β^* in an H_v -semigroup (X, \circ) as the smallest equivalence relation so that the quotient X/β^* would be a semigroup. The relation β^* was introduced on hypergroups by M. Koskas in 1970 [9] and was mainly studied intensively and in depth by Corsini [3], also see [7].

For a relation β on a non-empty set *X*, we denote by $\widehat{\beta}$ the transitive closure of β and define it as follows:

 $x\beta y$ if and only if there exists a natural number k and elements $x = a_1, a_2, \dots, a_{k-1}, a_k = y$ in X such that $a_1\beta a_2, a_2\beta a_3, \dots, a_{k-1}\beta a_k$.

Obviously, $\beta = \widehat{\beta}$ if β is transitive.

The proof of following theorem is similar to the proof of Theorem 1.2.2 of [14].

Theorem 5.1. Let (X, \circ) be an H_v -semigroup and denote **U** the set of all finite products of elements of X. We define the relation β on X by setting $x\beta y$ if and only if x = y or $\{x, y\} \subseteq u$ where $u \in \mathbf{U}$. Then, β^* is the transitive closure of β .

Theorem 5.2. Let $\mathcal{G} = (X, R)$ be a v-linked g-hypergraph and $X_{\mathcal{G}} = (X, \circ)$ be the g-hypergroupoid associated with \mathcal{G} . Then, we have

$$\beta^*(x) = \begin{cases} S & \text{if } x \in S \\ \{x\} & \text{if } x \notin S, \end{cases}$$

where $S = \bigcup_{A \in Cod(R)} A$ and β is the relation defined in Theorem 5.1.

Proof. First, we show that $\bigcup \{u \mid u \in \mathbf{U}\} = S$. Let $x \in S$ be an arbitrary element. Then, there exist $A \in Cod(R)$ and $a \in X$ such that $(a, A) \in R$ and $x \in A$. Therefore, by setting $u = a \circ a$ we have $x \in u$. Hence $S \subseteq \bigcup \{u \mid u \in \mathbf{U}\}$. The reverse inclusion is obvious. We conclude that if $x, y \in X$ and $x\beta y$, then $x \in S$ if and only if $y \in S$. Now, let $x, y \in S$ be arbitrary elements. Then, there exist $A, B \in Cod(R)$ and $a, b \in X$ such that $(a, A) \in R$, $(b, B) \in R$, $x \in A$ and $y \in B$. Therefore, $\{x, y\} \subseteq a \circ b$ which implies that $x\beta y$. Consequently, for every $x, y \in S$ we have $x\beta y$. By the above argument, we obtain

$$\beta(x) = \begin{cases} S & \text{if } x \in S \\ \{x\} & \text{if } x \notin S. \end{cases}$$

It is easy to see that β is transitive and so we have $\widehat{\beta} = \beta$. By using Theorem 5.1, we have $\beta^* = \widehat{\beta}$ which completes the proof. \Box

Corollary 5.3. A v-linked g-hypergraph G = (X, R) is plenary if and only if $\beta^* = X \times X$.

By using the above corollary and Remark 2.7, we obtain the following corollary.

Corollary 5.4. For every separable H_v -group, we have $\beta^* = \beta$.

References

- [1] R. Ameri and M. M. Zahedi, Hyperalgebraic systems, Ital. J. Pure Appl. Math. 6 (1999) 21-32.
- [2] C. Berge, Graphs and Hypergraphs, North Holland, 1979.
- [3] P. Corsini, Prolegomena of Hypergroup Theory, Aviani editor, Second edition, 1993.
- [4] P. Corsini, Hypergraphs and hypergroups, Algebra Universalis 35 (1996) 548-555.
- [5] B. Davvaz, A brief survey of the theory of H_v -structures, In 8th AHA Congress, pages 39–70, Spanidis Press, 2003.
- [6] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, Palm Harbor, USA, 2007.
 [7] D. Freni, A new characterization of the derived hypergroup via strongly regular equivalences, Comm. Algebra 30 (2002) 3977–
- 3989.
 [8] M. N. Iradmusa and A. Iranmanesh, The combinatorial and algebraic structure of the hypergroup associated to a hypergraph, J. Mult.-Valued Logic Soft Comput. 11 (2005) 127–136.
- [9] M. Koskas, Groupoides, demi-hypergroups et hypergroups, J. Math. pures et Appl. 49 (1970) 155–192.
- [10] V. Leoreanu-Fotea P. Corsini and A. Iranmanesh, On the sequence of hypergroups and membership functions determined by a hypergraph, J. Mult.-Valued Logic Soft Comput. 14 (2008), 565–577.
- [11] V. Leoreanu and L. Leoreanu, Hypergroups associated with hypergraphs, Ital. J. Pure Appl. Math. 4 (1998) 119-126.
- [12] M. K. Sen U. Dasgupta, Hyperrelations and generalized hypergraphs, Int. J. Mach. Learn. & Cyber. 4 (2013) 565–574.
- [13] T. Vougiouklis, The fundamental relation in hyperrings. the general hyperfield, In Proc. 4th AHA, pages 203–211, World Scientific, 1991.
- [14] T. Vougiouklis, Hyperstructures and Their Representations, Aviani editor, Hardonic Press, Palm Harbor, USA, 1994.